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REMARKS ON REFINED KIRBY CALCULUS
FOR THREE-MANIFOLDS OF CYCLIC FIRST HOMOLOGY GROUPS
OF ODD PRIME POWER ORDERS

KENICHI FUIIWARA

Abstract

Habiro arranged Kirby moves into a pair so that it preserves linking matrices. The
author showed that two framed links of diagonal linking matrices yield homeomorphic
3-manifolds of linking form (+1/p) for an odd prime p if and only if they are related by
a sequence of Habiro moves. We generalize this result to 3-manifolds of linking forms
(£1/¢) for any odd prime power c.

1. Introduction

Every orientable connected closed 3-manifold is obtained by surgery along
an integral framed link in S® [4, 5. Two such links yield homeomorphic
manifolds if and only if they are related by a sequence of Kirby moves
((de)stabilizations and handle slides) [3]. Here, stabilization is introducing a
(+1)-framed trivial component to a framed link and a handle slide is deforming a
link component as a band connected sum with the curve representing the framing
of another component (see [3]). A handle slide changes framing and linking
number.

A symmetric integral matrix is called the /linking matrix of an oriented
ordered integral framed link if its diagonal entries denote framings and off-
diagonal entries linking numbers. For an integer ¢, let 5#(c) denote the set of
unoriented unordered framed links whose linking matrices can be written as

diag(+1,...,£l,0) = (£1) ®--- @ (£1) ® (¢),

where the signs of +1 are taken arbitrary.
Every integral homology sphere is obtained from a link in s#(+1). K.
Habiro arranged two handle slides into a pair called a band slide so that it is
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closed in #(+1). He proved that two links in #(+1) yield homeomorphic
manifolds if and only if they are related by a sequence of (de)stabilizations and
band slides [2].

In the previous paper [1], we extended Habiro’s theorem to #(+p) for an
odd prime p, that is, two links in #(+p) yield homeomorphic manifolds if and
only if they are related by a sequence of (de)stabilizations and band slides. Note
that every manifold of linking form (+1/p) is obtained by a link in s#(+p). We
generalize these results to manifolds of linking forms (+1/p*) as follows:

THEOREM 1.1. Let p be a positive odd prime and s be a non-negative integer.
Two links in #(+p*) yield homeomorphic 3-manifolds after surgery if and only if
they are related by a sequence of (de)stabilizations, band slides and ambient
isotopies.

2. Proofs

Let I, denote the identity matrix of size n and E¢; denote the matrix unit
with 1 for (£,{)-entry and 0 otherwise. We define the following n x n matrices:

(2.1) Pee =1, —Ec¢e—Eee+ Ee ¢+ Ep ¢ (I1<&l<né#0),
(22) QC =1, — 2E§"§ (1 <{< I’Z),
(2.3) Ree=IL+E:; (1<&¢<né#0).

For 1 <i<r (<n/2), we regard i’ and i” as functions satisfying {i’,i"} =
{2i —1,2i}. Put Tir jr = R;Alj»//Rj/,,'w for 1 <i,j<r i#j. Let L jry denote
the group generated by matrices 7y . For vectors ¥, ¢/, we write ¥ ~, 7 if
' = S7 for some S €<ty ;;». We denote the transposed matrix of M by 'M.
See [1] for detail.

We shall improve the argument of Section A.3 in [1].

LEMMA 2.4. For a number seN, a prime p and any non-zero vector
Ge (Z/p*L)” of size 2r>4, there exist w,teZ with 0<t<s such that
0~ 0,...,0,wp’, p) (mod p*).

Proof.  Our proof is similar to that of Lemma A.15 in [1]. Thus, we may
assume r =2 and we have ¥ ~;'(0,a,b,¢). Take a’,b’,c',teZ so that
(2.5) Y0,a,b,c) ="0,d'p",b'p", c'p") = 1(0,a’,b',c\p" (pfged(a’,b',c")).

We abuse the vector '(0,a’,b’,¢') as one in (Z/p*~'Z)*. Notice a’ € (Z/p*~'Z)*
since we may assume «’ # 0 (mod p) (see [1]). Then, the same deformation as
in [1] implies *(0,a’,b’,¢") ~;(0,0,w,1). We complete the proof. O

Remark 2.6. Lemma A.15 in [1] is obtained by putting s =1. For s > 1,
we need (2.5) and need a’ € (Z/p*~'Z)" to change ¢’ to 1 in Z/p*~'Z.
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Let ¢ #0 be an integer and 4 be an n x n integral matrix of the form
A=A"® (c) such that 4" is an (n— 1) x (n— 1) matrix of det 4’ =+1. We
call

O(4;Z) :={ge GL(m: Z) | 'gAg = A}

the orthogonal group and SO(A;Z) denotes the special orthogonal group. Let &,
denote the unit vector '(0,0,...,0,1). The last column vector of g € SO(4;Z) is
written as g€,, which has the following simple form:

LemmA 2.7. Let A be a matrix as above. For any matrix g € SO(4;Z), its
last vector g&, satisfies g&, = /&, (mod ¢) for some integer ) with J*> =1 (mod c).
In other words, when we write

P i
9=\
v A

for some column vectors i and v of size n — 1 and for some matrix P of size n — 1,
we have @i =0 (mod ¢) and 2> =1 (mod c).

Lemma 2.7 holds also for ¢ =0.

Proof of Lemma 2.7. Since we have 'gdg = A, we have the following
identities:

(2.8) ‘PA'P+ ' = A,
(2.9) 'PAi + c2t = 0,
(2.10) wd'ii 4 c)* = c.

By (2.8), we have 'PA’P = A' (mod ¢), and thus P is invertible modulo ¢. By
(2.9), we have '"PA’'ti = 0 (mod ¢), and thus & =0 (mod ¢). We apply this result
to (2.10), showing ci® = ¢ (mod ¢?). This implies 2> =1 (mod ¢) as desired.

O

Let p be a positive odd prime and s be a non-negative integer. For ¢ := p*
and n =2r+ 1, we consider the n x n matrix
0 1 s
--69(1 0)@(1) )-

. 0 1 01 \ /01
(2.11)A.—d1ag<l 0 1 O,p>—<1 0)69

Lemma 2.7 implies the following proposition:

PropoSITION 2.12. Let A be a matrix as in (2.11). For any matrix g€

SO(A4;Z), its last vector g€, satisfies g€, = A&, (mod p*) for some integer A with
=1 (mod p*).
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0 1 0 1
Proof. Put A’::diag(

Seeey and c¢:=p*. Then, apply
Lemma 2.7. 1o 1 0>

O

Remark 2.13. Lemma A.16 in [1] is obtained from Proposition 2.12 by
putting s = 1.

For an odd integer n > 5, consider the following set of matrices:

(2.14) Poiyj1Paiyy (1 <i,j<(n—1)/2,i# j),
(2.15) Pio,
(2.16) 0,0,
c —2k? —2ck
217) Y:=L:®| -2 c 2¢ (c=p'=2k+1>0),

2 —c+1 —2¢+1

(2.18) 713 := Ry 4R3 2,

(219) Tin = Rn72R1731L‘Rn,2;

(2.20) On.

See (2.1)—(2.3) for matrices P ¢, Qr, Rz and I,. We obtain the set of matrices

(5.6)—(5.12) in [1] from the above one by putting s =1 for Y and 7y ,.
THEOREM 2.21. For a matrix A as in (2.11), suppose size(A) =n >5. The

orthogonal group O(A;Z) is generated by matrices from (2.14) to (2.20).

Proof. For g e SO(A4;Z), we have g€, =€, (mod 2) similarly to [1, Lemma
A.17]. Proposition 2.12 then implies g€, = 1€, (mod 2p®). Since p*=
8Mp* + p)* for some M e Z (see [1] for detail), we have A% =1 (mod 2p*).
The fact that the multiplicative group (Z/p*Z)* is cyclic deduces A= +1
(mod 2p*). Hence, either g€, or P; 10,98, equals €, (mod 2p®) (similarly to
[1, Corollary A.18]). A discussion similar to one after [1, Lemma A.19] delivers
a set of generators of SO(A;Z). Then, the same observation as one after [1,
Theorem A.9] completes the proof. O

Remark 2.22. The technique of the above proof is the same as [1]. For
s> 1, we need Proposition 2.12 and that (Z/p*Z)* is cyclic (and has an even
order).

Proof of Theorem 1.1. We prove it by a method similar to [1, 2]. It
suffices to prove for #(p*) because the other case follows from the bijection
O: #(p’) — #(—p*) induced by the orientation reversing involution on
S3. For two links in #(p*), after suitable stabilization, we associate them
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to links with the same linking matrix A. Let Z denote one of those links. It is
a key to find a sequence of handle slides relating Z to itself corresponding to each
generating matrix of the orthogonal group in Theorem 2.21 (see [1, Proposition
4.4] and Remark 2.23 for detail). It gives a sequence sy as in Proof of Theorem
2.3 in [1]. Hence, the same argument after s, completes the proof. O

Remark 2.23. In [1], we claim Lemma 5.13 to prove Proposition 4.4 under
the condition that p is an odd prime but the lemma holds under that p is an odd
integer (and then, so does the proposition). This is because realizations of
matrices Y and 7y, are done in the same ways.
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