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ON THE GEOMETRY OF CERTAIN IRREDUCIBLE NON-TORUS
PLANE SEXTICS
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Abstract

An irreducible non-torus plane sextic with simple singularities is said to be special if
its fundamental group factors to a dihedral group. There exist (exactly) ten config-
urations of simple singularities that are realizable by such curves. Among them, six are
realizable by non-special sextics as well. We conjecture that for each of these six
configurations there always exists a non-special curve whose fundamental group is
abelian, and we prove this conjecture for three configurations (another one has already
been treated in one of our previous papers). As a corollary, we obtain new explicit
examples of Alexander-equivalent Zariski pairs of irreducible sextics.

1. Introduction

1.1. Motivations. An old conjecture by the second author says that the
fundamental group of (the complement of)' an irreducible plane sextic with
simple singularities and which is not of torus type is abelian. (We recall that a
sextic is said to be of torus type if its defining polynomial can be written as
F; + F}, where F, and F; are homogeneous polynomials of degree 2 and 3
respectively.) Although this statement has been checked for hundreds of con-
figurations of singularities>—with a considerable contribution by A. Degtyarev [5,
6, 7], see also [14] and [11]—it turns out to be false in general. This was also
observed by A. Degtyarev who proved in [3] that there exist (exactly) ten
equisingular deformation families of irreducible non-torus sextics with simple
singularities and whose fundamental groups factor to the dihedral group Dy,
where k = 10 or 14 (so called special sextics, or Di-sextics when we need to make
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!The word ‘complement’, always understood, will be systematically omitted.

2To be precise, what is proved is that for each of the configurations in question there is a curve
with that configuration and whose fundamental group is abelian.
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mention of the dihedral group). The Djg-sextics form eight equisingular defor-
mation families, one family for each of the following sets of singularities:

4A4, 4AL DA, 4AL;D2A, 4AL DAy,
1.1
(L.1) Ao @2As, Av D24 DAL Ay ®2As DAy 2A.

The Dj4-sextics divide into two families, one for each of the following config-
urations:

(12) 3A¢ and 3A¢ D A;.

First explicit examples and fundamental groups of Djy-sextics were given in [4]
(see also [12] for the sets of singularities 4A4 and 4A4 @ A,).> First examples of
Dy4-sextics appeared in [10]. The fundamental group of a Dy4-sextic with the
set of singularities 3A¢ was also given in [10]. The fundamental group of a Dj4-
sextic with the configuration 3A¢ @ A, is still unknown.

A. Degtyarev also observed in [3] that the following six configurations

(13)  4As, 4A; @A, As@2As, Ay D2As DA, 2Ay, 3Ag

(from the lists (1.1) and (1.2)) can be realized not only by special sextics but also
by non-special ones (i.e., irreducible non-torus sextics the fundamental groups
of which do not admit any dihedral quotient).* However he did not give any
explicit equation for these non-special curves neither did he calculate their
fundamental groups. The first concrete example, together with the calculation
of its fundamental group, was given is [13] for the configuration of singularities
Ag ®2A4. In fact, we showed in [13] that the non-special sextic in question has
an abelian fundamental group. It is then natural to ask whether the other five
configurations in the list (1.3) can be also realized by non-special sextics having
an abelian fundamental group. In this paper, we answer positively this question
for the sets of singularities 2A9, 4A4 and 3A¢. (In general, it seems (from known
examples) that for ‘most of’ the configurations of singularities realizable by
irreducible non-torus sextics, one may find a curve with that configuration and
whose fundamental group is abelian. Up to now, the only known exceptions are
the four sets of singularities 4A4 @ 2A;, 4A4 @ Ay, Ag D 2A4 D Ay, 3Ac D A4,
already mentioned above (cf. footnote 4), and the following two configurations
E; ®2A, ®2A; and Eg @ Ay @ A; @ 2A, that have been discovered recently by
A. Degtyarev [9]. Note that for these six configurations the corresponding
equisingular moduli space is connected.)

1.2. Statement of the main result. Consider the curves C;, C, and Cj
defined in sections 2, 3 and 4 below. Their configurations of singularities are
given by

3In [3] only the existence of special sextics was proved.
“Note that all the other configurations appearing in the lists (1.1) and (1.2) (i.e., 4A4 ® 24,
4A4 D Ay, Ag D2A4 @D A; and 3A¢ @ A;) cannot be realized by non-special curves (cf. [3]).
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2 = 2Ag
(14) 22 = 4A4
23 = 3A(,

respectively, all of them in the list (1.3).

THEOREM 1.1. Each curve C; (1 <i<3) is an irreducible non-torus non-
special sextic and the fundamental group mi(CP>\C;) is abelian.

Remark 1.2. In fact, 7;(CP?\C;) ~ Z/6Z. Indeed, by Hurewicz’s theorem,
if 7;(CP?\C;) is abelian, then it is isomorphic to the first integral homology
group H;(CP?\C;), and it is well known that H,(CP?\C;) ~ Z/6Z.

Remark 1.3. Tt is also well known that 2A4 can degenerate into one Ag and
thus 4A4 into 2A¢ if no degree condition is given. If this degeneration C,,
te U < C, can be done in the moduli space of sextics with 4A, so that the sextic
Cy with 2A¢ has an abelian fundamental group, then the commutativity of the
fundamental group for a generic sextic with 4A4 follows by the degeneration
principle. Unfortunately the practical calculation to find such an explicit family
of sextics involves a heavy calculation and we do not have any explicit example.

We expect that the remaining two configurations 4A4 @ A; and A¢ @
2A4 ® A; may be also realized by non-special sextics with abelian fundamental
groups. (However, for these two configurations, the computations using Maple
are also very heavy, so it is extremely difficult to produce explicit equations.)

Theorem 1.1 is proved in sections 2, 3 and 4. Note that we only have to
show that the fundamental group m(CPZ\C,-) is abelian. Indeed, by [3, 8, 18],
an irreducible sextic is of torus type if and only if its fundamental group factors
to the dihedral group Dg. So, if nl(CPz\Ci) is abelian, then C; cannot be of
torus type. To show that z;(CP?\C;) is abelian, we use Zariski-van Kampen’s
theorem (cf. [20] and [19]). (The calculations being similar for the three curves,
we will give full details only for the curve C; and merely sketch the proof for C,
and Cs.)

1.3. Alexander-equivalent Zariski pairs. As mentioned above, each con-
figuration of singularities X; in the list (1.4) can be also realized by a special sextic
C!. Explicit equations for these special curves can be found in [4] (configura-
tions 2A9 and 4A4), in [12] (configuration 4A4) and in [10] (configuration 3Ag).
The generic Alexander polynomial of an irreducible non-torus sextic being always
trivial (cf. [3]), each pair (C;, C/)—where C; is the non-special sextic given by
Theorem 1.1—is a new explicit example of so called Alexander-equivalent Zariski
pair. (We recall that a pair of irreducible curves C, C’' with the same degree and
the same configuration of singularities is said to be a Zariski pair if the pairs of
spaces (CP?,C) and (CP? C’') are not homeomorphic (cf. [1]). A Zariski pair
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(C,C") is said to be Alexander-equivalent if the generic Alexander polynomials
of the curves C and C’ are the same. The first example of Zariski pair goes
back to Zariski [20, 21, 22] (see also [1] and [14]). It deals with curves of degree
6, which is the lowest degree where Zariski pairs appear. The first examples of
Alexander-equivalent pairs are due to the second author [16] (irreducible curves
of degree 12) and [17] (irreducible curves of degree 8) and to E. Artal Bartolo
and J. Carmona Ruber [2] (reducible curves of degree 7)°. The existence of
Alexander-equivalent Zariski pairs on irreducible curves of degree 6 was proved
by A. Degtyarev in [3], while the first explicit example was given in our paper

[13].)
2. An example of a non-special sextic with the set of singularities 2A¢

and whose fundamental group is abelian

Let (X : Y : Z) be homogeneous coordinates on CP* and (x, y) the affine
coordinates defined by x := X/Z and y:= Y/Z on CP*\{Z =0}. We consider
the projective curve C; defined by the affine equation fi(x,y) =0, where

fi(x, y) := —166 + 148x + 12y — 8y xV/5 + 92y x*V/5 + 186y*x%V/5 — 24)3
+ 502y — 506p* + 12> — 296x* — 308x> + 450x2 + 248x° + 16y°x?
— 884y°x? — 16yx? + 8y x + 434y*x? + 148y*x — 248yx> + 244yx*
—4ySx — 4yx — 24493 %% + 16yx* — 296)%x + 280y%x* + 308y%x°
— T7V5 4 170y° + 64x° — 8yx*V/5 — 8yxV/5 — 380y%x2V/5
— 11225 — 1161°X3V/5 + 161°xV/5 + 116yx3V/5 — 104px°V/5
+ 8y3x2\/§ + 8yx4\/§ + 116y2x3\/§ + 56y4xx/§ + 2y\/§ + 2y5\/§
— 227y*"V5 — 493V/5 + 759°V/5 + 2299°V/5 — 100x*V/5 + 56xV/5
+194x%V/5 — 116x°V/5 + 104x°V/5.

This curve is irreducible, of degree 6, and has two singular points of type Ag
located at (0,+1). Its real plane section {(x,y)eR? fi(x,y) =0} is shown

STwo irreducible curves C, C' with the same degree and the same configuration of singularities
always have the same combinatoric (i.e., there exist regular neighbourhoods 7(C) and T(C’) of C and
C’ respectively such that the pairs (7(C),C) and (T(C’), C’) are homeomorphic). However this is
not always the case for reducible curves. The definition of Zariski pairs for reducible curves should
then be adjusted as follows (cf. [1]): a pair of reducible curves C, C' with the same degree and the
same configuration of singularities is said to be a Zariski pair if C and C’ have the same combinatoric
and if the pairs (CP?,C) and (CP?, C’) are not homeomorphic.
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FIGURE 1. {(x,y)eR? fi(x,y) =0}

in Figure 1. (In the figures we do not respect the numerical scale.) Note
that, after appropriate changes of coordinates, the Newton principal parts of f
at (0,4+1) have no real factorization, so these points are isolated in the set
{(x,y) eR% fi(x,y) =0}

To show that 7;(CP?\C}) is abelian, we use Zariski-van Kampen’s theorem
with the pencil given by the horizontal lines L, : y =#, n € C (cf. [20] and [19]).
We take the point (1:0:0) as base point for the fundamental groups. This
point is nothing but the axis of the pencil, which is also the point at infinity of
the lines L,. Note that it does not belong to the curve. This pencil has 6
singular lines L,,, ..., L, with respect to C;. (A line of the pencil is said to be
singular with respect to C; if it is tangent to the regular part of C; or passes
through singular points of C;.) They correspond to the 6 complex roots

n = _11
7y, = —0.9980 — i0.0059, 3 =i, & —0.9980 + i0.0059,
N, ~0.9964, 5s=1, n5e~3.3097

of the discriminant of f; as a polynomial in x. Note that the lines L, and L,,
pass through a singular point of Cj, while all the other singular lines are tangent
to the curve. See Figure 1.

We consider the generic line L,,, and we choose generators ¢, ..., & of the
fundamental group ni(L,,;.\C1) as in Figure 2, where &> 0 is small enough.
The &’s (1 <k < 6) are lassos oriented counter-clockwise around the six inter-
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-

FIGURE 2. Generators at y =1#, +¢

section points of the line L, . with the curve. (In the figures, a lasso is
represented by a path ending with a bullet.) Note that

(21) 601266'...'5]:67

where e is the unit element (vanishing relation at infinity). The Zariski-van
Kampen theorem says that

m1(CP\Cy) ~ 71 (Ly,+:\C1)/ G,

where G is the normal subgroup of 7i(L,,..\Ci) generated by the monodromy
relations associated with the singular lines of the pencil. As usual, to find these
relations we fix a ‘standard’ system of generators ay,...,gs for the fundamental
group 7 (C\{n,,...,7n¢}) with base point 5, +¢ (for details we refer to our
previous papers [12, 13]). The monodromy relations around the singular line
L, (1 <j<6) are obtained by moving the generic fibre F ~ L, .;\C} isotopi-
cally above g; (the loop surrounding 7;), and by identifying each ¢ (1 <k <6)
with its image by the terminal homeomorphism of this isotopy.

The monodromy relation around the singular line L,, is a multiplicity 2
tangent relation given by

(2.2) &s =<y

To find the monodromy relations around the line L, , we first need to get to
know how the ¢&;’s are deformed when y moves on the real axis from 7,4 + ¢ to
ns —e.  We proceed as follows. At (0,1), the curve has two branches K and K’
given by
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FIGURe 3. Generators at y =#55 —¢

K: y=1-x"+asx* +asx® + higher terms,
K': y=1-x+ax*+asx’ + higher terms,

where aq = —6/(v/5 — 3), as ~ —65.4412 + i18.0732, and as is the complex con-
jugate of as. These two branches are smooth at (0, 1) and intersect at this point
with intersection multiplicity 5. As we use the pencil {y = 5|5 € C}, it is more
convenient to have a parametrization taking y as a parameter. An easy
computation gives Puiseux parametrizations of K and K’ at (0,1):

2
(2.3) K: y—1=1¢, x:—t—s—%zz—%ﬁﬁ—&—higher terms,
2 —
(2.4) K: y—1=7¢, x:7t+%12—a“T+aS13+higher terms.

From these equations we can easily find the position of the 6 complex roots of
the polynomial fi(x,#n5—¢). In fact, for a fixed y =1+ # with || sufficiently
small, there are three choices of ¢ (the cubic roots of #) which give three
corresponding points on K (those associated with &, &, and &) and three points
on K’ (those associated with &, & and &s). Then it follows from the next
lemma that, when y moves on the real axis from 7, +¢ to s — ¢, the &;’s are
deformed as shown in Figure 3.

LemMa 2.1. Let yy be any point in the interval [ny+¢e,ns—¢. It is not
possible to have four complex solutions of the equation fi(x, yo) = 0 aligned on a
vertical line u=uy in the complex plane (C,x = u+ iv).
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FIGURE 4. Images of the generators at y =#s — ¢ after one y-turn

We postpone the proof of this lemma till the end of the section and first
complete the calculation of 7;(CP*\C)).

The Puiseux parametrizations (2.3) and (2.4) also show that, when y runs
once counter-clockwise on the circle S,(7s) with centre #5 and radius &, the three
small dotted circles in Figure 3 (which correspond to the term —¢ in equations
(2.3) and (2.4)) make (1/3)-turn in the counter-clockwise direction along the
big dotted circle, while each of the six bullets (corresponding to the terms in %)
runs once counter-clockwise on the corresponding small dotted circle. Figure 4
shows the images &i,...,¢&¢ of &y,...,& after this movement. The monodromy
relations around L, , obtained by identifying & with & (1 <k <6), are then
given by

(2.5) &1 =<4

(2:6) & = &g,

(2.7) &3 = Eelaly!

(2.8) & = (E6&a) &6+ (Eela) ™!

(29) & (&) =wbho ' =4

(2.10) fe=w -5HEEG 0 =588
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It follows immediately from (2.2) and (2.5)-(2.10) that =;(CP>\C}) is
abelian. (We do not need to look for the monodromy relations associated
with the singular lines L, for j=1,2,3,6.) To complete the calculation it
remains to prove Lemma 2.1.

Proof of Lemma 2.1. We consider the polynomial

S (w0, p) == filu+iv, y)

for u, v and y real (we recall that f; is the defining polynomial of C;). We
denote by fr(u,v, y) and f5(u,v, y) the real and the imaginary parts of f(u,v, y)
respectively. They have degree 6 and 5 respectively in v. Suppose the equation
fi(x,y0) =0 has 4 complex solutions aligned on a vertical line u =uy in the
complex plane (C,x =u+iv). This implies that the equations

ﬁR(MO,U7 )’0) = fE(u07 v, J’O) =0

have 4 common real solutions vy, vy, v3 and vs. The v;’s are non-zero since
the discriminant of f; as a polynomial in x does not have any solution in
[74 +&ns —¢]. Then, since v divides f5(u,v, y), the equations

f%(UOa v, yO) = 4}((‘\?(”07 v, yo)/U = 07

also have the v;’s (1 <i < 4) as common solutions. As f5(u,v, y)/v has degree 4
in v, it follows that f5(uo, v, yo)/v divides fi(uo, v, yo). The remainder R(u,v, y)
of fr(u,v,y) by fs(u,v,y)/v, as polynomials in v, is then zero for u = uy and
¥ = yo. One checks easily using Maple that R(u,v, y) has the form

R R/
R(u,v,y) = /2/(”7 ) v? 9/(14, ) ,
Rz(l/l,y) Ro(uay)
where R), Rj, R) and R{ are polynomials in « and y. Thus (u,yo) is a
common real solution of the equations

(2.11) Ri(u,y) = Rj(u, y) = 0.
This implies that y, is a root of the resultant
Res,(R5, Ry)

of R) and R as polynomials in u. There is only one real solution yj & 0.9965 of
the equation Res,(R}, R))(y) =0 in the interval [, +¢,55 —¢]. This solution
gives a real number uy & 0.0459 such that the pair (up, yo) is a solution of (2.11).
The condition (ug, yo) =~ (0.0459,0.9965) is then a necessary condition to have 4
complex solutions of the equation fj(x, yo) = 0 aligned on a vertical line u = uy.
However it is not sufficient. In fact, one checks easily using Maple that for
(uo, y0) ~ (0.0459,0.9965) the polynomial (in v) f5(uo,v, yo)/v does not have any
real roots, and the discussion above then shows that it is not possible to find 4
complex roots of fi(x,yo) aligned on the vertical line u = u. O



ON THE GEOMETRY OF CERTAIN IRREDUCIBLE NON-TORUS PLANE SEXTICS 413

3. An example of a non-special sextic with the set of singularities 4A,
and whose fundamental group is abelian

In this section, we consider the curve C, defined by f>(x,y) =0, where
f(x, ) == —5995519872x*yVv/2 + 390096y°xv/2 — 14372748x%y
— 551664y°x — 10015508672x°y + 8478937128x*y — 872359488x°y
+ 1344433152y%x3 + 11107764y%x? + 551664xy* — 551664xy°
— 31808052y*x? + 551664y*x — 472073664x°y?
+35073036x2y% — 3160180972y%x* — 7371y + 14742y*
— 7025413356x* + 19412557632x° — 7371y° — 13411000576x°
— 24800544x2°V/2 + 333798336x° V2 + 2234567488y x*V/2
+390096x)°v/2 — 95065804812x3v/2 — 390096y xv/2
+ 616859712x3yv/2 + 22490208y*x>v/2 — 390096xy°V/2
+ 10163232x2pV/2 — 7852896%x%V/2 + 7082017088x° /2
— 10368y*V2 + 5184y°V/2 + 4967717184x*V2 + 5184y>V/2
+ 9482996224x°v/2 — 13726742208x°V/2.
This curve is an irreducible sextic with four A4-singularities located at (0, +1),
(0,0) and (1,—1) respectively. Its real plane section is shown in Figure 5.
x:rllg x=n6 §X=r19  x=n10
(0,1)4

x=n5

X=n2

(0,0

L 8 (0-1) b (1,-1)

FIGURE 5. {(x,y)eR?% fo(x,y) =0}
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FIGURE 6. Generators at x =75 —¢

To show that nl(CPz\Cz) is abelian, we use here Zariski-van Kampen’s
theorem with the pencil given by the vertical lines L, : x =#, € C. We take the
axis of the pencil (i.e., the point (0:1:0)) as base point for the fundamental
groups. Note that it does not belong to the curve. This pencil has 12 singular
lines Ly, ..., L,, with respect to C;. They correspond to the 12 complex roots

n ~—0.3756, 5, ~—0.0932,
7y ~ —0.0833 — i0.0692, 1, = 71, ~ —0.0833 + i0.0692,
ns ~ —0.0500, 5 =0,
17 ~0.0759 — i0.0786, 75 = ij; ~ 0.0759 + i0.0786,
no ~0.0840, 1,0 =1,
my ~ 1.0465 — i0.0299, 1y, = 77, ~ 1.0465 + i0.0299

of the discriminant of f; as a polynomial in y. The lines L, and L, pass
through singular points of the curve. All the other singular lines are tangent to
it. See Figure 5.

We consider the generic line L, . and take generators &j,...,& of
mi1(Ly,—:\C2) as in Figure 6, where ¢ > 0 is small enough. As above, to find
the monodromy relations assomated with the L,’s we move the generic fibre
F ~ L,_,\C, above a ‘standard’ system of generators of 1 (C\{ny,...,n2}) with
base point 75 — &.

The monodromy relations around the singular lines L,, where j=5,2,1,
can be found easily. They are all multiplicity 2 tangent relations:

&, =&  (monodromy relation around L),
¢s=¢, (monodromy relation around L,,),

& =¢&, e, (monodromy relation around L,).
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Altogether, they give
(3.1) Ce=¢s =81 =¢s
The monodromy relation around L,, is also a multiplicity 2 tangent relation
given by
(3.2) & =858

(To see how the &,’s are deformed, when x moves on the real axis from 75 + ¢ to
ne — €, one may proceed as in Lemma 2.1. To see how the &;’s are deformed
when x makes half-turn around the singular line L, use the Puiseux para-
metrizations of C, at (0,0), (0,1) and (0,—1) given by

x=12,  y=ayt* + ast> + higher terms,

2

x=1, y=1+ayt*+alt’ + higher terms,

"2 ",5

x=1 y=—1+d)t* +ajt* +alt’ + higher terms,

respectively, where a;, a/, a/' are non-zero complex numbers.)

By (3.1) and (3.2), the vanishing relation at infinity is written as
(3.3) & =&

Altogether, the relations (3.1)—(3.3) show that the group m;(CP*\C,) is
abelian. (We do not need to find the monodromy relations around the singular
lines L, for j=3,4,6,7,8,10,11, 12.)

4. An example of a non-special sextic with the set of singularities 3A¢
and whose fundamental group is abelian

In this section, we consider the curve C; defined by f3(x,y) =0, where
f3(x, p) == —168iy° V7 — 852iy*V/7T — 186iy>V/T — 434iy*V/Tx*
— 481y x*VT — 102ix3yV/T — 139213 xV'7 — 54iy*x>V7
— 80iy%x3V7T — 656iy°xV/'7 + 872iy> V7 + 334iy°V/7 — 8982
—1912y% — 2090y° + 472)° + 4428y* + 7x® 4+ 7x* — 14x°
+98x%y +103y°x* + 618p2x% 4 1072y x — 42x2y — 888y%x>
— 5808y*x — 56x*y — 174p3x% + 790y° x> + 3440y°x — 402y*x?
+ 368iy>xV7 + 426iy3x*VT + 62ix*yV'T + 18ix*yV/7
+ 182ip> X3V + 1680iy*xv/7 4 22ix /7 + 1296x)°.

(Note that some of the coefficients of f3 are non-real.) This curve is irreducible,
of degree 6, and has three Ag-singularities located at (0,0), (0,1) and (1,0)
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el

FIGURE 7. Generators at y =#n, +¢

respectively. To prove that z;(CP?\C3) is abelian, we apply here Zariski-van
Kampen’s theorem with the pencil given by the horizontal lines L, : y =#, n € C.
(We take (1:0:0) as base point for the fundamental groups.) This pencil has 7
singular lines L, ,...,L, with respect to C3, corresponding to the 7 complex
roots

n ~—0.1288 — i0.2140, 7, ~ —0.0328 — i0.4507,
Ny~ —0.0158 +i0.0368, 5, =0, 75~ 0.0139 + i0.0359,
ne=1, n,~10778 —i0.0105

of the discriminant of f3 as a polynomial in x. The lines L,, and L, pass
through singular points of C;. All the other singular lines are tangent to the
curve.

We consider the generic line L,,.. and take generators &j,...,&s of
n1(Ly,+.\C3) as in Figure 7, where &> 0 is small enough. As above, to find
the monodromy relations, we fix a ‘standard’ system of generators of
71 (C\{#y,...,n7}) with base point n,+¢. It turns out that we only need to
determine the monodromy relations around the singular lines L,, and L,

The monodromy relations around L,, are given by

(4.1) & = Eeésés!

(42) &4 = (Ees) - Eo - (Ess) ™!

(43) = (E6Eséada) - o - (Gedsas) ™!
(4.4) = (56555453) E&E" (Esals)”!
(4.5) = (&8’ & (L&)~
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(To find these relations and determine the exact position of the roots of
Sf3(x,m4 +¢), use the Puiseux parametrizations of the curve at (0,0) and (1,0)
given by

y=1* x=ayt®+ ast* + ast® + higher terms,
y=10, x=1+a5t*+ayt* +agt® + a5’ + higher terms,
respectively, where
ap ~2.7472 — i2.1324,
as ~1.9739 — i1.8813,

ah ~ 313.6754 4 i208.7007.

(The values of the other coefficients are of no use.))
The monodromy relations around L, are given by

(4.6) (&&EN) & (6EG ) = &essy!

(4.7) &HEEG" = (E6¢s) &6+ (Es) ™!

(4.8) &5 = (Eslsés) - E81E " - (EsCa) ™

(4.9) &y = (EsCses) - (HEE ") &4 (LGN (E8s8)

(To see how the &;’s are deformed, when y moves on the real axis from #, + ¢ to
ne — & one may look at the position of the roots of the equation (in x)

n

(0 0+ 00+ 5 (=) =+ 9)) =0

forn=0,1,...,40. To determine the exact position of the roots of f3(x,7s — ¢),
use the Puiseux parametrization of C3 at (0,1) given by

y=1+1t', x=d* +ajt* +alr
where af ~ 1.6560 +i2.3963 and af ~0.8700 + i0.0641.)
These relations are enough to conclude. (We do not need to calculate the
monodromy relations around L, for j=1,2,3,5,7.) Indeed, by (4.2) and (4.7),
we have ’

(4.10) &y = fzflfz_l~

Putting into (4.6) gives 525152_1 = 566556_1. Combined with (4.7), this new
relation shows that &g =¢&s. The latter, combined with (4.1) (respectively
(4.2)), shows that &3 = & (respectively &y = &). Altogether, & = &5 = &4 = &;.
Then the vanishing relation at infinity can be written as &,& = &g 4 while (4.10)
turns into &g, = &,&;. This shows that &, = 56’5, and then &, =&, Finally,
the group 7;(CP?\C3) is abelian.

+ higher terms,
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