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Abstract

An irreducible non-torus plane sextic with simple singularities is said to be special if

its fundamental group factors to a dihedral group. There exist (exactly) ten config-

urations of simple singularities that are realizable by such curves. Among them, six are

realizable by non-special sextics as well. We conjecture that for each of these six

configurations there always exists a non-special curve whose fundamental group is

abelian, and we prove this conjecture for three configurations (another one has already

been treated in one of our previous papers). As a corollary, we obtain new explicit

examples of Alexander-equivalent Zariski pairs of irreducible sextics.

1. Introduction

1.1. Motivations. An old conjecture by the second author says that the
fundamental group of (the complement of )1 an irreducible plane sextic with
simple singularities and which is not of torus type is abelian. (We recall that a
sextic is said to be of torus type if its defining polynomial can be written as
F 3
2 þ F 2

3 , where F2 and F3 are homogeneous polynomials of degree 2 and 3
respectively.) Although this statement has been checked for hundreds of con-
figurations of singularities2—with a considerable contribution by A. Degtyarev [5,
6, 7], see also [14] and [11]—it turns out to be false in general. This was also
observed by A. Degtyarev who proved in [3] that there exist (exactly) ten
equisingular deformation families of irreducible non-torus sextics with simple
singularities and whose fundamental groups factor to the dihedral group Dk,
where k ¼ 10 or 14 (so called special sextics, or Dk-sextics when we need to make
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mention of the dihedral group). The D10-sextics form eight equisingular defor-
mation families, one family for each of the following sets of singularities:

4A4; 4A4 lA1; 4A4 l 2A1; 4A4 lA2;

A9 l 2A4; A9 l 2A4 lA1; A9 l 2A4 lA2; 2A9:
ð1:1Þ

The D14-sextics divide into two families, one for each of the following config-
urations:

3A6 and 3A6 lA1:ð1:2Þ
First explicit examples and fundamental groups of D10-sextics were given in [4]
(see also [12] for the sets of singularities 4A4 and 4A4 lA1).3 First examples of
D14-sextics appeared in [10]. The fundamental group of a D14-sextic with the
set of singularities 3A6 was also given in [10]. The fundamental group of a D14-
sextic with the configuration 3A6 lA1 is still unknown.

A. Degtyarev also observed in [3] that the following six configurations

4A4; 4A4 lA1; A9 l 2A4; A9 l 2A4 lA1; 2A9; 3A6ð1:3Þ
(from the lists (1.1) and (1.2)) can be realized not only by special sextics but also
by non-special ones (i.e., irreducible non-torus sextics the fundamental groups
of which do not admit any dihedral quotient).4 However he did not give any
explicit equation for these non-special curves neither did he calculate their
fundamental groups. The first concrete example, together with the calculation
of its fundamental group, was given is [13] for the configuration of singularities
A9 l 2A4. In fact, we showed in [13] that the non-special sextic in question has
an abelian fundamental group. It is then natural to ask whether the other five
configurations in the list (1.3) can be also realized by non-special sextics having
an abelian fundamental group. In this paper, we answer positively this question
for the sets of singularities 2A9, 4A4 and 3A6. (In general, it seems (from known
examples) that for ‘most of ’ the configurations of singularities realizable by
irreducible non-torus sextics, one may find a curve with that configuration and
whose fundamental group is abelian. Up to now, the only known exceptions are
the four sets of singularities 4A4 l 2A1, 4A4 lA2, A9 l 2A4 lA2, 3A6 lA1,
already mentioned above (cf. footnote 4), and the following two configurations
E7 l 2A4 l 2A2 and E8 lA4 lA3 l 2A2 that have been discovered recently by
A. Degtyarev [9]. Note that for these six configurations the corresponding
equisingular moduli space is connected.)

1.2. Statement of the main result. Consider the curves C1, C2 and C3

defined in sections 2, 3 and 4 below. Their configurations of singularities are
given by

3 In [3] only the existence of special sextics was proved.

4Note that all the other configurations appearing in the lists (1.1) and (1.2) (i.e., 4A4 l 2A1,

4A4 lA2, A9 l 2A4 lA2 and 3A6 lA1) cannot be realized by non-special curves (cf. [3]).
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S1 :¼ 2A9

S2 :¼ 4A4

S3 :¼ 3A6

ð1:4Þ

respectively, all of them in the list (1.3).

Theorem 1.1. Each curve Ci ð1a ia 3Þ is an irreducible non-torus non-
special sextic and the fundamental group p1ðCP2nCiÞ is abelian.

Remark 1.2. In fact, p1ðCP2nCiÞFZ=6Z. Indeed, by Hurewicz’s theorem,
if p1ðCP2nCiÞ is abelian, then it is isomorphic to the first integral homology
group H1ðCP2nCiÞ, and it is well known that H1ðCP2nCiÞFZ=6Z.

Remark 1.3. It is also well known that 2A4 can degenerate into one A9 and
thus 4A4 into 2A9 if no degree condition is given. If this degeneration Ct,
t A U HC, can be done in the moduli space of sextics with 4A4 so that the sextic
C0 with 2A9 has an abelian fundamental group, then the commutativity of the
fundamental group for a generic sextic with 4A4 follows by the degeneration
principle. Unfortunately the practical calculation to find such an explicit family
of sextics involves a heavy calculation and we do not have any explicit example.

We expect that the remaining two configurations 4A4 lA1 and A9 l
2A4 lA1 may be also realized by non-special sextics with abelian fundamental
groups. (However, for these two configurations, the computations using Maple
are also very heavy, so it is extremely di‰cult to produce explicit equations.)

Theorem 1.1 is proved in sections 2, 3 and 4. Note that we only have to
show that the fundamental group p1ðCP2nCiÞ is abelian. Indeed, by [3, 8, 18],
an irreducible sextic is of torus type if and only if its fundamental group factors
to the dihedral group D6. So, if p1ðCP2nCiÞ is abelian, then Ci cannot be of
torus type. To show that p1ðCP2nCiÞ is abelian, we use Zariski-van Kampen’s
theorem (cf. [20] and [19]). (The calculations being similar for the three curves,
we will give full details only for the curve C1 and merely sketch the proof for C2

and C3.)

1.3. Alexander-equivalent Zariski pairs. As mentioned above, each con-
figuration of singularities Si in the list (1.4) can be also realized by a special sextic
C 0

i . Explicit equations for these special curves can be found in [4] (configura-
tions 2A9 and 4A4), in [12] (configuration 4A4) and in [10] (configuration 3A6).
The generic Alexander polynomial of an irreducible non-torus sextic being always
trivial (cf. [3]), each pair ðCi;C

0
i Þ—where Ci is the non-special sextic given by

Theorem 1.1—is a new explicit example of so called Alexander-equivalent Zariski
pair. (We recall that a pair of irreducible curves C, C 0 with the same degree and
the same configuration of singularities is said to be a Zariski pair if the pairs of
spaces ðCP2;CÞ and ðCP2;C 0Þ are not homeomorphic (cf. [1]). A Zariski pair
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ðC;C 0Þ is said to be Alexander-equivalent if the generic Alexander polynomials
of the curves C and C 0 are the same. The first example of Zariski pair goes
back to Zariski [20, 21, 22] (see also [1] and [14]). It deals with curves of degree
6, which is the lowest degree where Zariski pairs appear. The first examples of
Alexander-equivalent pairs are due to the second author [16] (irreducible curves
of degree 12) and [17] (irreducible curves of degree 8) and to E. Artal Bartolo
and J. Carmona Ruber [2] (reducible curves of degree 7)5. The existence of
Alexander-equivalent Zariski pairs on irreducible curves of degree 6 was proved
by A. Degtyarev in [3], while the first explicit example was given in our paper
[13].)

2. An example of a non-special sextic with the set of singularities 2A9

and whose fundamental group is abelian

Let ðX : Y : ZÞ be homogeneous coordinates on CP2 and ðx; yÞ the a‰ne
coordinates defined by x :¼ X=Z and y :¼ Y=Z on CP2nfZ ¼ 0g. We consider
the projective curve C1 defined by the a‰ne equation f1ðx; yÞ ¼ 0, where

f1ðx; yÞ :¼ �166þ 148xþ 12y� 8y5x
ffiffiffi
5

p
þ 92y2x4

ffiffiffi
5

p
þ 186y4x2

ffiffiffi
5

p
� 24y3

þ 502y2 � 506y4 þ 12y5 � 296x4 � 308x3 þ 450x2 þ 248x5 þ 16y3x2

� 884y2x2 � 16yx2 þ 8y3xþ 434y4x2 þ 148y4x� 248yx5 þ 244yx3

� 4y5x� 4yx� 244y3x3 þ 16yx4 � 296y2xþ 280y2x4 þ 308y2x3

� 77
ffiffiffi
5

p
þ 170y6 þ 64x6 � 8yx2

ffiffiffi
5

p
� 8yx

ffiffiffi
5

p
� 380y2x2

ffiffiffi
5

p

� 112y2x
ffiffiffi
5

p
� 116y3x3

ffiffiffi
5

p
þ 16y3x

ffiffiffi
5

p
þ 116yx3

ffiffiffi
5

p
� 104yx5

ffiffiffi
5

p

þ 8y3x2
ffiffiffi
5

p
þ 8yx4

ffiffiffi
5

p
þ 116y2x3

ffiffiffi
5

p
þ 56y4x

ffiffiffi
5

p
þ 2y

ffiffiffi
5

p
þ 2y5

ffiffiffi
5

p

� 227y4
ffiffiffi
5

p
� 4y3

ffiffiffi
5

p
þ 75y6

ffiffiffi
5

p
þ 229y2

ffiffiffi
5

p
� 100x4

ffiffiffi
5

p
þ 56x

ffiffiffi
5

p

þ 194x2
ffiffiffi
5

p
� 116x3

ffiffiffi
5

p
þ 104x5

ffiffiffi
5

p
:

This curve is irreducible, of degree 6, and has two singular points of type A9

located at ð0;G1Þ. Its real plane section fðx; yÞ A R2; f1ðx; yÞ ¼ 0g is shown

5Two irreducible curves C, C 0 with the same degree and the same configuration of singularities

always have the same combinatoric (i.e., there exist regular neighbourhoods TðCÞ and TðC 0Þ of C and

C 0 respectively such that the pairs ðTðCÞ;CÞ and ðTðC 0Þ;C 0Þ are homeomorphic). However this is

not always the case for reducible curves. The definition of Zariski pairs for reducible curves should

then be adjusted as follows (cf. [1]): a pair of reducible curves C, C 0 with the same degree and the

same configuration of singularities is said to be a Zariski pair if C and C 0 have the same combinatoric

and if the pairs ðCP2;CÞ and ðCP2;C 0Þ are not homeomorphic.
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in Figure 1. (In the figures we do not respect the numerical scale.) Note
that, after appropriate changes of coordinates, the Newton principal parts of f1
at ð0;G1Þ have no real factorization, so these points are isolated in the set
fðx; yÞ A R2; f1ðx; yÞ ¼ 0g.

To show that p1ðCP2nC1Þ is abelian, we use Zariski-van Kampen’s theorem
with the pencil given by the horizontal lines Lh : y ¼ h, h A C (cf. [20] and [19]).
We take the point ð1 : 0 : 0Þ as base point for the fundamental groups. This
point is nothing but the axis of the pencil, which is also the point at infinity of
the lines Lh. Note that it does not belong to the curve. This pencil has 6
singular lines Lh1 ; . . . ;Lh6 with respect to C1. (A line of the pencil is said to be
singular with respect to C1 if it is tangent to the regular part of C1 or passes
through singular points of C1.) They correspond to the 6 complex roots

h1 ¼ �1;

h2A�0:9980� i0:0059; h3 ¼ h2A�0:9980þ i0:0059;

h4A0:9964; h5 ¼ 1; h6A3:3097

of the discriminant of f1 as a polynomial in x. Note that the lines Lh1 and Lh5
pass through a singular point of C1, while all the other singular lines are tangent
to the curve. See Figure 1.

We consider the generic line Lh4þe and we choose generators x1; . . . ; x6 of the
fundamental group p1ðLh4þenC1Þ as in Figure 2, where e > 0 is small enough.
The xk’s ð1a ka 6Þ are lassos oriented counter-clockwise around the six inter-

Figure 1. fðx; yÞ A R2; f1ðx; yÞ ¼ 0g
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section points of the line Lh4þe with the curve. (In the figures, a lasso is
represented by a path ending with a bullet.) Note that

o :¼ x6 � . . . � x1 ¼ e;ð2:1Þ
where e is the unit element (vanishing relation at infinity). The Zariski-van
Kampen theorem says that

p1ðCP2nC1ÞF p1ðLh4þenC1Þ=G1;

where G1 is the normal subgroup of p1ðLh4þenC1Þ generated by the monodromy
relations associated with the singular lines of the pencil. As usual, to find these
relations we fix a ‘standard’ system of generators s1; . . . ; s6 for the fundamental
group p1ðCnfh1; . . . ; h6gÞ with base point h4 þ e (for details we refer to our
previous papers [12, 13]). The monodromy relations around the singular line
Lhj ð1a ja 6Þ are obtained by moving the generic fibre F FLh4þenC1 isotopi-
cally above sj (the loop surrounding hj), and by identifying each xk ð1a ka 6Þ
with its image by the terminal homeomorphism of this isotopy.

The monodromy relation around the singular line Lh4 is a multiplicity 2
tangent relation given by

x5 ¼ x4:ð2:2Þ
To find the monodromy relations around the line Lh5 , we first need to get to

know how the xk’s are deformed when y moves on the real axis from h4 þ e to
h5 � e. We proceed as follows. At ð0; 1Þ, the curve has two branches K and K 0

given by

Figure 2. Generators at y ¼ h4 þ e
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K : y ¼ 1� x3 þ a4x
4 þ a5x

5 þ higher terms;

K 0: y ¼ 1� x3 þ a4x
4 þ a5x

5 þ higher terms;

where a4 ¼ �6=ð
ffiffiffi
5

p
� 3Þ, a5A�65:4412þ i18:0732, and a5 is the complex con-

jugate of a5. These two branches are smooth at ð0; 1Þ and intersect at this point
with intersection multiplicity 5. As we use the pencil fy ¼ h j h A Cg, it is more
convenient to have a parametrization taking y as a parameter. An easy
computation gives Puiseux parametrizations of K and K 0 at ð0; 1Þ:

K : y� 1 ¼ t3; x ¼ �tþ a4

3
t2 � a24 þ a5

3
t3 þ higher terms;ð2:3Þ

K 0: y� 1 ¼ t3; x ¼ �tþ a4

3
t2 � a24 þ a5

3
t3 þ higher terms:ð2:4Þ

From these equations we can easily find the position of the 6 complex roots of
the polynomial f1ðx; h5 � eÞ. In fact, for a fixed y ¼ 1þ h with jhj su‰ciently
small, there are three choices of t (the cubic roots of h) which give three
corresponding points on K (those associated with x1, x4 and x6) and three points
on K 0 (those associated with x2, x3 and x5). Then it follows from the next
lemma that, when y moves on the real axis from h4 þ e to h5 � e, the xk’s are
deformed as shown in Figure 3.

Lemma 2.1. Let y0 be any point in the interval ½h4 þ e; h5 � e�. It is not
possible to have four complex solutions of the equation f1ðx; y0Þ ¼ 0 aligned on a
vertical line u ¼ u0 in the complex plane ðC; x ¼ uþ ivÞ.

Figure 3. Generators at y ¼ h5 � e
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We postpone the proof of this lemma till the end of the section and first
complete the calculation of p1ðCP2nC1Þ.

The Puiseux parametrizations (2.3) and (2.4) also show that, when y runs
once counter-clockwise on the circle Seðh5Þ with centre h5 and radius e, the three
small dotted circles in Figure 3 (which correspond to the term �t in equations
(2.3) and (2.4)) make ð1=3Þ-turn in the counter-clockwise direction along the
big dotted circle, while each of the six bullets (corresponding to the terms in t3)
runs once counter-clockwise on the corresponding small dotted circle. Figure 4
shows the images x 0

1; . . . ; x
0
6 of x1; . . . ; x6 after this movement. The monodromy

relations around Lh5 , obtained by identifying x 0
k with xk ð1a ka 6Þ, are then

given by

x1 ¼ x4ð2:5Þ

x2 ¼ x4x3x
�1
4ð2:6Þ

x3 ¼ x6x4x
�1
6ð2:7Þ

x4 ¼ ðx6x4Þ � x6 � ðx6x4Þ�1ð2:8Þ

x5 ð¼ x4Þ ¼ ox2o
�1 ¼ x2ð2:9Þ

x6 ¼ o � x2x1x�1
2 � o�1 ¼ x2x1x

�1
2 :ð2:10Þ

Figure 4. Images of the generators at y ¼ h5 � e after one y-turn
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It follows immediately from (2.2) and (2.5)–(2.10) that p1ðCP2nC1Þ is
abelian. (We do not need to look for the monodromy relations associated
with the singular lines Lhj for j ¼ 1; 2; 3; 6.) To complete the calculation it
remains to prove Lemma 2.1.

Proof of Lemma 2.1. We consider the polynomial

f ðu; v; yÞ :¼ f1ðuþ iv; yÞ

for u, v and y real (we recall that f1 is the defining polynomial of C1). We
denote by f<ðu; v; yÞ and f=ðu; v; yÞ the real and the imaginary parts of f ðu; v; yÞ
respectively. They have degree 6 and 5 respectively in v. Suppose the equation
f1ðx; y0Þ ¼ 0 has 4 complex solutions aligned on a vertical line u ¼ u0 in the
complex plane ðC; x ¼ uþ ivÞ. This implies that the equations

f<ðu0; v; y0Þ ¼ f=ðu0; v; y0Þ ¼ 0

have 4 common real solutions v1, v2, v3 and v4. The vi’s are non-zero since
the discriminant of f1 as a polynomial in x does not have any solution in
½h4 þ e; h5 � e�. Then, since v divides f=ðu; v; yÞ, the equations

f<ðu0; v; y0Þ ¼ f=ðu0; v; y0Þ=v ¼ 0;

also have the vi’s ð1a ia 4Þ as common solutions. As f=ðu; v; yÞ=v has degree 4
in v, it follows that f=ðu0; v; y0Þ=v divides f<ðu0; v; y0Þ. The remainder Rðu; v; yÞ
of f<ðu; v; yÞ by f=ðu; v; yÞ=v, as polynomials in v, is then zero for u ¼ u0 and
y ¼ y0. One checks easily using Maple that Rðu; v; yÞ has the form

Rðu; v; yÞ ¼ R 0
2ðu; yÞ

R 00
2 ðu; yÞ

v2 þ R 0
0ðu; yÞ

R 00
0 ðu; yÞ

;

where R 0
2, R 00

2 , R 0
0 and R 00

0 are polynomials in u and y. Thus ðu0; y0Þ is a
common real solution of the equations

R 0
2ðu; yÞ ¼ R 0

0ðu; yÞ ¼ 0:ð2:11Þ

This implies that y0 is a root of the resultant

ResuðR 0
2;R

0
0Þ

of R 0
2 and R 0

0 as polynomials in u. There is only one real solution y0A0:9965 of
the equation ResuðR 0

2;R
0
0ÞðyÞ ¼ 0 in the interval ½h4 þ e; h5 � e�. This solution

gives a real number u0A0:0459 such that the pair ðu0; y0Þ is a solution of (2.11).
The condition ðu0; y0ÞAð0:0459; 0:9965Þ is then a necessary condition to have 4
complex solutions of the equation f1ðx; y0Þ ¼ 0 aligned on a vertical line u ¼ u0.
However it is not su‰cient. In fact, one checks easily using Maple that for
ðu0; y0ÞAð0:0459; 0:9965Þ the polynomial (in v) f=ðu0; v; y0Þ=v does not have any
real roots, and the discussion above then shows that it is not possible to find 4
complex roots of f1ðx; y0Þ aligned on the vertical line u ¼ u0. r
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3. An example of a non-special sextic with the set of singularities 4A4

and whose fundamental group is abelian

In this section, we consider the curve C2 defined by f2ðx; yÞ ¼ 0, where

f2ðx; yÞ :¼ �5995519872x4y
ffiffiffi
2

p
þ 390096y2x

ffiffiffi
2

p
� 14372748x2y

� 551664y2x� 10015508672x5yþ 8478937128x4y� 872359488x3y

þ 1344433152y2x3 þ 11107764y2x2 þ 551664xy3 � 551664xy5

� 31808052y4x2 þ 551664y4x� 472073664x3y3

þ 35073036x2y3 � 3160180972y2x4 � 7371y2 þ 14742y4

� 7025413356x4 þ 19412557632x5 � 7371y6 � 13411000576x6

� 24800544x2y3
ffiffiffi
2

p
þ 333798336x3y3

ffiffiffi
2

p
þ 2234567488y2x4

ffiffiffi
2

p

þ 390096xy5
ffiffiffi
2

p
� 950658048y2x3

ffiffiffi
2

p
� 390096y4x

ffiffiffi
2

p

þ 616859712x3y
ffiffiffi
2

p
þ 22490208y4x2

ffiffiffi
2

p
� 390096xy3

ffiffiffi
2

p

þ 10163232x2y
ffiffiffi
2

p
� 7852896y2x2

ffiffiffi
2

p
þ 7082017088x5y

ffiffiffi
2

p

� 10368y4
ffiffiffi
2

p
þ 5184y6

ffiffiffi
2

p
þ 4967717184x4

ffiffiffi
2

p
þ 5184y2

ffiffiffi
2

p

þ 9482996224x6
ffiffiffi
2

p
� 13726742208x5

ffiffiffi
2

p
:

This curve is an irreducible sextic with four A4-singularities located at ð0;G1Þ,
ð0; 0Þ and ð1;�1Þ respectively. Its real plane section is shown in Figure 5.

Figure 5. fðx; yÞ A R2; f2ðx; yÞ ¼ 0g
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To show that p1ðCP2nC2Þ is abelian, we use here Zariski-van Kampen’s
theorem with the pencil given by the vertical lines Lh : x ¼ h, h A C. We take the
axis of the pencil (i.e., the point ð0 : 1 : 0Þ) as base point for the fundamental
groups. Note that it does not belong to the curve. This pencil has 12 singular
lines Lh1 ; . . . ;Lh12 with respect to C2. They correspond to the 12 complex roots

h1A�0:3756; h2A�0:0932;

h3A�0:0833� i0:0692; h4 ¼ h3A�0:0833þ i0:0692;

h5A�0:0500; h6 ¼ 0;

h7A0:0759� i0:0786; h8 ¼ h7A0:0759þ i0:0786;

h9A0:0840; h10 ¼ 1;

h11A1:0465� i0:0299; h12 ¼ h11A1:0465þ i0:0299

of the discriminant of f2 as a polynomial in y. The lines Lh6 and Lh10 pass
through singular points of the curve. All the other singular lines are tangent to
it. See Figure 5.

We consider the generic line Lh5�e and take generators x1; . . . ; x6 of
p1ðLh5�enC2Þ as in Figure 6, where e > 0 is small enough. As above, to find
the monodromy relations associated with the Lhj ’s we move the generic fibre
F FLh5�enC2 above a ‘standard’ system of generators of p1ðCnfh1; . . . ; h12gÞ with
base point h5 � e.

The monodromy relations around the singular lines Lhj , where j ¼ 5; 2; 1,
can be found easily. They are all multiplicity 2 tangent relations:

x4 ¼ x3 ðmonodromy relation around Lh5Þ;
x5 ¼ x4 ðmonodromy relation around Lh2Þ;

x3 ¼ x�1
4 x6x4 ðmonodromy relation around Lh1Þ:

Figure 6. Generators at x ¼ h5 � e
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Altogether, they give

x6 ¼ x5 ¼ x4 ¼ x3:ð3:1Þ
The monodromy relation around Lh9 is also a multiplicity 2 tangent relation

given by

x2 ¼ x1x3x
�1
1 :ð3:2Þ

(To see how the xk’s are deformed, when x moves on the real axis from h5 þ e to
h6 � e, one may proceed as in Lemma 2.1. To see how the xk’s are deformed
when x makes half-turn around the singular line Lh6 , use the Puiseux para-
metrizations of C2 at ð0; 0Þ, ð0; 1Þ and ð0;�1Þ given by

x ¼ t2; y ¼ a4t
4 þ a5t

5 þ higher terms;

x ¼ t2; y ¼ 1þ a 0
4t

4 þ a 0
5t

5 þ higher terms;

x ¼ t2; y ¼ �1þ a 00
2 t

2 þ a 00
4 t

4 þ a 00
5 t

5 þ higher terms;

respectively, where aj, a 0
j , a 00

j are non-zero complex numbers.)
By (3.1) and (3.2), the vanishing relation at infinity is written as

x1 ¼ x�5
3 :ð3:3Þ

Altogether, the relations (3.1)–(3.3) show that the group p1ðCP2nC2Þ is
abelian. (We do not need to find the monodromy relations around the singular
lines Lhj for j ¼ 3; 4; 6; 7; 8; 10; 11; 12.)

4. An example of a non-special sextic with the set of singularities 3A6

and whose fundamental group is abelian

In this section, we consider the curve C3 defined by f3ðx; yÞ ¼ 0, where

f3ðx; yÞ :¼ �168iy5
ffiffiffi
7

p
� 852iy4

ffiffiffi
7

p
� 186iy2

ffiffiffi
7

p
� 434iy4

ffiffiffi
7

p
x2

� 48iy2x4
ffiffiffi
7

p
� 102ix3y

ffiffiffi
7

p
� 1392iy3x

ffiffiffi
7

p
� 54iy2x2

ffiffiffi
7

p

� 80iy2x3
ffiffiffi
7

p
� 656iy5x

ffiffiffi
7

p
þ 872iy3

ffiffiffi
7

p
þ 334iy6

ffiffiffi
7

p
� 898y2

� 1912y3 � 2090y6 þ 472y5 þ 4428y4 þ 7x6 þ 7x4 � 14x5

þ 98x3yþ 103y2x4 þ 618y2x2 þ 1072y2x� 42x2y� 888y2x3

� 5808y4x� 56x4y� 174y3x2 þ 790y3x3 þ 3440y5x� 402y4x2

þ 368iy2x
ffiffiffi
7

p
þ 426iy3x2

ffiffiffi
7

p
þ 62ix2y

ffiffiffi
7

p
þ 18ix4y

ffiffiffi
7

p

þ 182iy3x3
ffiffiffi
7

p
þ 1680iy4x

ffiffiffi
7

p
þ 22ix5y

ffiffiffi
7

p
þ 1296xy3:

(Note that some of the coe‰cients of f3 are non-real.) This curve is irreducible,
of degree 6, and has three A6-singularities located at ð0; 0Þ, ð0; 1Þ and ð1; 0Þ
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respectively. To prove that p1ðCP2nC3Þ is abelian, we apply here Zariski-van
Kampen’s theorem with the pencil given by the horizontal lines Lh : y ¼ h, h A C.
(We take ð1 : 0 : 0Þ as base point for the fundamental groups.) This pencil has 7
singular lines Lh1 ; . . . ;Lh7 with respect to C3, corresponding to the 7 complex
roots

h1A�0:1288� i0:2140; h2A�0:0328� i0:4507;

h3A�0:0158þ i0:0368; h4 ¼ 0; h5A0:0139þ i0:0359;

h6 ¼ 1; h7A1:0778� i0:0105

of the discriminant of f3 as a polynomial in x. The lines Lh4 and Lh6 pass
through singular points of C3. All the other singular lines are tangent to the
curve.

We consider the generic line Lh4þe and take generators x1; . . . ; x6 of
p1ðLh4þenC3Þ as in Figure 7, where e > 0 is small enough. As above, to find
the monodromy relations, we fix a ‘standard’ system of generators of
p1ðCnfh1; . . . ; h7gÞ with base point h4 þ e. It turns out that we only need to
determine the monodromy relations around the singular lines Lh4 and Lh6 .

The monodromy relations around Lh4 are given by

x3 ¼ x6x5x
�1
6ð4:1Þ

x4 ¼ ðx6x5Þ � x6 � ðx6x5Þ�1ð4:2Þ

x5 ¼ ðx6x5x4x3Þ � x4 � ðx6x5x4x3Þ�1ð4:3Þ

x6 ¼ ðx6x5x4x3Þ � x4x3x�1
4 � ðx6x5x4x3Þ�1ð4:4Þ

x1 ¼ ðx2x1Þ3 � x2 � ðx2x1Þ�3:ð4:5Þ

Figure 7. Generators at y ¼ h4 þ e
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(To find these relations and determine the exact position of the roots of
f3ðx; h4 þ eÞ, use the Puiseux parametrizations of the curve at ð0; 0Þ and ð1; 0Þ
given by

y ¼ t4; x ¼ a2t
2 þ a4t

4 þ a5t
5 þ higher terms;

y ¼ t2; x ¼ 1þ a 0
2t

2 þ a 0
4t

4 þ a 0
6t

6 þ a 0
7t

7 þ higher terms;

respectively, where

a2A2:7472� i2:1324;

a5A1:9739� i1:8813;

a 0
7A313:6754þ i208:7007:

(The values of the other coe‰cients are of no use.))
The monodromy relations around Lh6 are given by

ðx2x1x�1
2 Þ�1 � x4 � ðx2x1x�1

2 Þ ¼ x6x5x
�1
6ð4:6Þ

x2x1x
�1
2 ¼ ðx6x5Þ � x6 � ðx6x5Þ�1ð4:7Þ

x5 ¼ ðx6x5x4Þ � x2x1x�1
2 � ðx6x5x4Þ�1ð4:8Þ

x6 ¼ ðx6x5x4Þ � ðx2x1x�1
2 Þ � x4 � ðx2x1x�1

2 Þ�1 � ðx6x5x4Þ�1:ð4:9Þ

(To see how the xk’s are deformed, when y moves on the real axis from h4 þ e to
h6 � e, one may look at the position of the roots of the equation (in x)

f3 x; ðh4 þ eÞ þ n

40
ððh6 � eÞ � ðh4 þ eÞÞ

� �
¼ 0

for n ¼ 0; 1; . . . ; 40. To determine the exact position of the roots of f3ðx; h6 � eÞ,
use the Puiseux parametrization of C3 at ð0; 1Þ given by

y ¼ 1þ t4; x ¼ a 00
2 t

2 þ a 00
4 t

4 þ a 00
5 t

5 þ higher terms;

where a 00
2 A1:6560þ i2:3963 and a 00

5 A0:8700þ i0:0641.)
These relations are enough to conclude. (We do not need to calculate the

monodromy relations around Lhj for j ¼ 1; 2; 3; 5; 7.) Indeed, by (4.2) and (4.7),
we have

x4 ¼ x2x1x
�1
2 :ð4:10Þ

Putting into (4.6) gives x2x1x
�1
2 ¼ x6x5x

�1
6 . Combined with (4.7), this new

relation shows that x6 ¼ x5. The latter, combined with (4.1) (respectively
(4.2)), shows that x3 ¼ x6 (respectively x4 ¼ x6). Altogether, x6 ¼ x5 ¼ x4 ¼ x3.
Then the vanishing relation at infinity can be written as x2x1 ¼ x�4

6 , while (4.10)
turns into x6x2 ¼ x2x1. This shows that x2 ¼ x�5

6 , and then x1 ¼ x6. Finally,
the group p1ðCP2nC3Þ is abelian.
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