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BOUNDS ON FAKE WEIGHTED PROJECTIVE SPACE

Alexander M. Kasprzyk

Abstract

A fake weighted projective space X is a Q-factorial toric variety with Picard

number one. As with weighted projective space, X comes equipped with a set of

weights ðl0; . . . ; lnÞ. We see how the singularities of Pðl0; . . . ; lnÞ influence the

singularities of X , and how the weights bound the number of possible fake weighted

projective spaces for a fixed dimension. Finally, we present an upper bound on the

ratios lj=
P

li if we wish X to have only terminal (or canonical) singularities.

1. Introduction

Let NGZn be an n-dimensional lattice, and NR :¼ NnZ R. The dual
lattice M :¼ HomðN;ZÞGZn is often referred to as the monomial lattice. Let
fr0; r1; . . . ; rngHN be a set of primitive lattice points such that NR ¼

Pn
i¼0 Rb0ri.

There exist l0; l1; . . . ; ln A Z>0, with gcdfl0; l1; . . . ; lng ¼ 1, unique up to order,
such that:

l0r0 þ l1r1 þ � � � þ lnrn ¼ 0:

Define the n-dimensional cones:

si :¼ conefr0; r1; . . . ; r̂ri; . . . ; rng; for i ¼ 0; 1; . . . ; n;

where r̂ri indicates that the point ri is omitted. The si generate a complete n-
dimensional fan D.

Definition 1.1. The projective toric variety associated with the fan D is
called a fake weighted projective space with weights ðl0; l1; . . . ; lnÞ.

An immediate consequence of this definition is that fake weighted projective
spaces are Q-factorial toric varieties with Picard number one. Of course, the
collection of weighted projective spaces is a sub-collection of fake weighted
projective spaces. Naturally, there exist fake weighted projective spaces which
are not weighted projective spaces.
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Example 1.2. Consider the cubic surface ðW 3 ¼ XYZÞHP3. This has
three A2 singularities, and can be realised as P2=ðZ=3Þ, where the ðZ=3Þ-action
is given by:

e : xi 7! e ixi for ðx1; x2; x3Þ A P2;

where e is a third root of unity. The corresponding fan has rays r0 ¼ ð2;�1Þ,
r1 ¼ ð�1; 2Þ, and r2 ¼ ð�1;�1Þ; it is a fake weighted projective surface with
weights ð1; 1; 1Þ.

Example 1.3. Consider the three-dimensional toric variety X generated by
the fan with rays r0 ¼ ð1; 0; 0Þ, r1 ¼ ð0; 1; 0Þ, r2 ¼ ð1;�3; 5Þ, and r3 ¼ ð�2; 2;�5Þ.
This is a fake weighted projective space with weights ð1; 1; 1; 1Þ, not isomorphic
to P3. In fact ð�KÞ3 ¼ 64=5, and X has four terminal singularities of type
1
5 ð1; 2; 3Þ.

The second example above has appeared on several occasions in the litera-
ture ([BB92, pg. 178], [Mat02, Remark 14.2.3], [BCFþ05, pg. 189], and [Kas06a,
Table 4]). An interesting construction can be found in [Rei87, §4.15]:

Example 1.4. Let MHZ4 be the three-dimensional a‰ne lattice defined by:

M :¼ ðm1;m2;m3;m4Þ A Z4

�����X4
i¼1

mi ¼ 5 and
X4
i¼1

imi 1 0 ðmod 5Þ
( )

:

Let SHMR be the simplex whose four vertices are given by the points
ð5; 0; 0; 0Þ; . . . ; ð0; 0; 0; 5Þ (i.e. the points corresponding to the monomials x5

i ,
i ¼ 1; 2; 3; 4). The toric variety constructed from S is P3=ðZ=5Þ, where the
ðZ=5Þ-action is given by:

e : xi 7! e ixi for ðx1; x2; x3; x4Þ A P3;

where e is a fifth root of unity.

Fake weighted projective spaces occur naturally in toric Mori theory. The
following result is adapted from [Rei83, (2.6)]. (The original statement claimed
that all the fibres of jRjA were weighted projective spaces. This oversight has
been noted—and corrected—in, amongst other places, [Mat02, Remark 14.2.4],
[Fuj03, §1], and [Buc02].)

Proposition 1.5. Let X be a projective toric variety whose associated fan D
is simplicial (i.e. X is Q-factorial). If R is an extremal ray of NEðX Þ (the cone of
e¤ective one-cycles) then there exists a toric morphism jR : X ! Y with connected
fibres, which is an elementary contraction in the sense of Mori theory: jR�OX ¼ OY ,
and for a curve CHX , jRC is a point in Y if and only if ½C� A R.
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Let

A ���! B

V V

jR : X ���! Y

be the loci on which jR is not an isomorphism. Then jRjA : A ! B is a flat
morphism, all of whose fibres are fake weighted projective spaces of dimension
dim A� dim B.

We shall investigate the relation between a fake weighted projective space
X with weights ðl0; . . . ; lnÞ and Pðl0; . . . ; lnÞ. In particular, we shall see that
the ‘niceness’ of the singularities of X is restricted by the singularities of
Pðl0; . . . ; lnÞ (Corollaries 2.4 and 2.5). We shall also introduce a measure of
‘how much’ X di¤ers from the bona fide weighted projective space, and establish
an upper bound on this measure (Theorem 2.10 and Corollary 2.11). Finally, in
Theorem 3.5, we present an upper bound on the weights if we wish X to have
at worst terminal (or canonical) singularities.
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2. Fake weighted projective space and weighted projective space

We consider what can be said about fake weighted projective space in terms
of the corresponding weighted projective space. In particular, we shall see how
the singularities of one are dictated by the other, and how weighted projective
space provides a bound when searching for fake weighted projective spaces.

We shall rely on the following result, which allows us to distinguish between
fake and genuine weighted projective space:

Proposition 2.1 ([BB92, Proposition 2]). For any weights ðl0; l1; . . . ; lnÞ
such that gcdfl0; l1; . . . ; lng ¼ 1, let r0; r1; . . . ; rn A N be the primitive generators
for the fan of Pðl0; l1; . . . ; lnÞ. Then:

(i) l0r0 þ l1r1 þ � � � þ lnrn ¼ 0;
(ii) The ri generate the lattice N.
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Furthermore, if r 0
0; r

0
1; . . . ; r

0
n is any set of primitive lattice elements satisfying

(i) and (ii) then there exists a transformation in GLðn;ZÞ sending ri to r 0
i for

i ¼ 0; 1; . . . ; n.

Note that two complete toric varieties are isomorphic as abstract varieties
if and only if they are isomorphic as toric varieties ([Dem70]). This is a
consequence of fact that the automorphism group is a linear algebraic group with
maximal torus; Borel’s Theorem tells us that in such a group any two maximal
tori are conjugate.

Let D in NR be the fan of X , a fake weighted projective space with weights
ðl0; l1; . . . ; lnÞ. Let r0; r1; . . . ; rn be primitive elements of N which generate the
one-skeleton of D. We have that:

Xn
i¼0

liri ¼ 0:ð2:1Þ

Let N 0 HN be the lattice generated by the ri. Let D 0 be the projection of
D onto N 0

R. By construction the corresponding r 0
i of D 0 generate the lattice

N 0 and satisfy equation (2.1). Hence, by Proposition 2.1, D 0 is the fan of
Pðl0; l1; . . . ; lnÞ. We obtain:

Proposition 2.2. Let X be any fake weighted projective space with weights
ðl0; l1; . . . ; lnÞ. There exists a finite Galois étale in codimension one morphism
Pðl0; l1; . . . ; lnÞ ! X.

Corollary 2.3 (cf. [Con02, Proposition 4.7]). Let X be any fake weighted
projective space with weights ðl0; l1; . . . ; lnÞ. Then X is the quotient of
Pðl0; l1; . . . ; lnÞ by the action of the finite group N=N 0 acting free in codimension
one.

Corollary 2.4 (cf. [Rei80, Proposition 1.7]). Let X be any fake weighted
projective space with weights ðl0; l1; . . . ; lnÞ. If X has at worst terminal (resp.
canonical) singularities then Pðl0; l1; . . . ; lnÞ has at worst terminal (resp. canonical)
singularities.

Corollary 2.4 tells us that if we wish to classify all fake weighted projective
spaces with at worst terminal (resp. canonical) singularities, it is su‰cient to find
only those weights ðl0; l1; . . . ; lnÞ for which the corresponding weighted projective
space possesses at worst terminal (resp. canonical) singularities. In essence, there
do not exist any ‘extra’ weights.

A similar result holds for Gorenstein fake weighted projective space:

Corollary 2.5. With notation as above, X is Gorenstein only if
Pðl0; l1; . . . ; lnÞ is Gorenstein.
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Let P :¼ convfr0; . . . ; rngHNR be an n-simplex, and define the dual by:

P4 :¼ fu A MR j uðvÞb�1 for all v A Pg:
There is a fascinating result concerning the weights of dual simplices, due to
Conrads:

Proposition 2.6 ([Con02, Lemma 5.3]). Let XðPÞ be any Gorenstein fake
weighted projective space with weights ðl0; l1; . . . ; lnÞ and associated n-simplex P.
Then the fake weighted projective space XðP4Þ also has weights ðl0; l1; . . . ; lnÞ.

It should be noted that weights of Gorenstein weighted projective space
are well understood (see [Bat94]): A weighted projective space Pðl0; . . . ; lnÞ is
Gorenstein if and only if each lj j

P
li. Hence the weights can be expressed in

terms of unit partitions, and are intimately connected with the Sylvester sequence
([Nil07]).

Corollary 2.3 provides the motivation for the following definition:

Definition 2.7. Let PHNR be a n-simplex whose vertices r0; r1; . . . ; rn are
contained in the lattice N. We define the multiplicity of P to be the index of
the lattice generated by the ri in the lattice N; in other words, equal to the order
of the group N=N 0. We write:

mult P :¼ ½N : Zr0 þ Zr1 þ � � � þ Zrn�:

By Proposition 2.1 we have that XðPÞ is a weighted projective space if and
only if mult P ¼ 1. In fact there exists a bound on how large mult P can be; this
depends only on the weights and the number of interior lattice points jN VP�j
of P (see Theorem 2.10). Before we can prove the existence of this bound, we
shall require a generalisation of Minkowski’s Theorem. Throughout, the volume
is given relative to the underlying lattice.

Theorem 2.8 ([vdC35]). Let k be any positive integer and let KHNR be any
centrally symmetric convex body such that vol K > 2nk. Then K contains at least
k pairs of points in the lattice N.

Corollary 2.9. Let P :¼ convfr0; r1; . . . ; rngHNR be any simplex such
that:

Xn
i¼0

liri ¼ 0; for some li A Z>0:

Let h :¼
Pn

i¼0 li and k :¼ jN VP�j. Then:

vol Pa
khn

n!l1l2 � � � ln
:
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Proof. Consider the convex body:

K :¼
Xn
i¼1

miðri � r0Þ
�����jmija li

h

( )
:

This is centrally symmetric around the origin, with volume:

vol K ¼ n!
Yn
i¼1

2li
h

 !
vol P:

If vol K > 2nk then, by Theorem 2.8, at least k pairs of lattice points lie in the
interior of P. But this contradicts the definition of k. Hence vol Ka 2nk and
the result follows. r

Corollary 2.9 can also be found in [Hen83, Theorem 3.4], [LZ91, Lemma
2.3], or [Pik01, Lemma 5].

Theorem 2.10. Let P be the n-simplex associated with a fake weighted
projective space X with weights ðl0; l1; . . . ; lnÞ. Then:

mult Pa
jN VP�jhn�1

l1l2 � � � ln
; where h :¼

Xn
i¼0

li:

Proof. Let P 0 be the simplex associated with Pðl0; l1; . . . ; lnÞ, and let Fi be
the facet of P 0 not containing the vertex r 0

i . By considering the order of the
group action on the a‰ne patch corresponding to Fi, we see that jdet Fij ¼ li.
Summing over all facets, we obtain:

vol P 0 ¼ h

n!
:ð2:2Þ

Combining Proposition 2.2 with equation (2.2) gives:

vol P ¼ h

n!
mult P:ð2:3Þ

Finally we apply Corollary 2.9. r

The omission of l0 in the denominator is intentional. Of course it makes
sense to choose the li such that l0 a lj for all j > 0. It is reasonable to
conjecture that the missing factor l0 should appear in the denominator, making
this bound tighter.

Corollary 2.11. With notation as above, assume that X has at worst
canonical singularities. Then:

mult Pa
hn�1

l1l2 � � � ln
:ð2:4Þ
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When X is canonical, the right hand-side of (2.4) is remarkably similar to the
degree ð�KPÞn of Pðl0; l1; . . . ; lnÞ; the inequality becomes:

mult Pa
l0

h
ð�KPÞn:

We conclude by mentioning two rather neat results of Conrads, for which we
need the following definition.

Definition 2.12. For n; k A Z>0 we denote by Hermðn; kÞ the set of all
lower triangular matrices H ¼ ðhijÞ A GLðn;QÞVMðn� n;Zb0Þ with det H ¼ k,
where hij A f0; . . . ; hjj � 1g for all j ¼ 1; . . . ; n� 1 and all i > j. We call
Hermðn; kÞ then set of Hermite normal forms of dimension n and determinant k.

Theorem 2.13 ([Con02, Theorem 4.4]). Let X ðP 0Þ be any fake weighted
projective space with weights ðl0; l1; . . . ; lnÞ and associated n-simplex P 0. Let
P the n-simplex associated with Pðl0; l1; . . . ; lnÞ. Then there exists H A
Hermðn;mult P 0Þ such that P 0 ¼ HP (up to the action of GLðn;ZÞ).

Corollary 2.14 ([Con02, Proposition 5.5]). With notation as above, if
XðP 0Þ is Gorenstein then:

mult P 0 jmult P4:

Proof. Since P 0 is reflexive, so P must be reflexive by Corollary 2.5. By
Theorem 2.13 there exists some H A Hermðn;mult P 0Þ such that P 0 ¼ HP. Hence
P 04 ¼ H4P4. Now H4 ¼ ðHtÞ�1, and so det H4 ¼ 1=mult P 0.

Thus det P 04 ¼ det P4=mult P 0. By Proposition 2.6 and equation (2.3) we
obtain:

mult P 04 ¼ mult P4

mult P 0 :

Observing that mult P 04 A Z>0 gives the result. r

3. Upper bounds on the weights

Let X be a fake weighted projective space with weights ðl0; . . . ; lnÞ, where
l0 a � � �a ln and gcdfl0; . . . ; lng ¼ 1. Throughout we shall assume that X has
at worst canonical singularities.

Let P :¼ convfr0; . . . ; rngHNR be the associated simplex. By assumption
there is a unique interior lattice point of P, namely the origin, and:

Xn
i¼0

li

h
ri ¼ 0; where h :¼

Xn
i¼0

li:

In [Pik01] an upper bound is given for the volume of P:
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Theorem 3.1 ([Pik01, Theorem 6]). With notation as above, we have:

vol Pa
1

n!
23n�215ðn�1Þ2nþ1

:

Combining this result with equation (2.2) immediately gives us an upper
bound on h. Unfortunately this bound is far from tight. In the case when X is
Gorenstein, combining equation (2.2) with [Nil07, Theorem C] provides much
better bounds:

Proposition 3.2. Suppose that X is Gorenstein. Then ha tn, where tn :¼
yn � 1 is defined in terms of the Sylvester sequence y0 :¼ 2, yk :¼ 1þ y0 � � � yk�1.

A lower bound on l0=h was also presented in [Pik01]:

Theorem 3.3 ([Pik01, Theorem 2]). With notation as above;

l0

h
b

1

8 � 152nþ1 :

When X is Gorenstein, [Nil07, Proposition 3.4] establishes the following
lower bounds:

Proposition 3.4. Suppose that X is Gorenstein. With notation as above, for
any k A f0; . . . ; ng we have that:

lk

h
b

1

ðk þ 1Þtn�k

:

We shall prove the following upper bounds hold:

Theorem 3.5. With notation as above, for any k A f2; . . . ; ng we have that:

lk

h
a

1

n� k þ 2
;

with strict inequality if X possesses at worst terminal singularities.

We shall require the following elementary lemma:

Lemma 3.6. Let s ¼ conefx1; . . . ; xmg be an m-dimensional convex cone. If
x A �s then 0 A convfx; x1; . . . ; xmg.

We shall present our proof of Theorem 3.5 assuming that X is terminal; the
result when X is canonical should be apparent.
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Proof of Theorem 3.5. Since
Pn

i¼0 liri ¼ 0, so:

Xn�k�1

i¼0

liri ¼
Xn
j¼n�k

�ljrj:

Now
Pn�k�1

i¼0 li ¼ h�
Pn

j¼n�k lj, giving:

x :¼
Xn
j¼n�k

�lj

h� l
rj A convfr0; . . . ; rn�k�1g; where l :¼

Xn
j¼n�k

lj:

Since P is simplicial, convfr0; . . . ; rn�k�1g is a face of P. Since the li are all
strictly positive, x lies strictly in the interior of this face.

Let us suppose for a contradiction that:

ln�kþi b
h

k þ 2
; for all i A f0; . . . ; kg:ð3:1Þ

Consider the ðk þ 1Þ-dimensional lattice G generated by e0; . . . ; ek. There exists
a map of lattices g : G ! N given by sending ei 7! rn�kþi. Note that this map
is injective. Let x 0 :¼

Pk
i¼0 �ln�kþi=ðh� lÞei. We shall show that the non-zero

lattice point p :¼ �
Pk

i¼0 ei lies in convfx 0; e0; . . . ; ekg. Hence gðpÞ0 0 is a
lattice point in convfx; rn�k; . . . ; rngHP.

Since p B convfe0; . . . ; ekg, so gðpÞ is not contained in convfrn�k; . . . ; rng.
The only remaining possibility which does not contradict P having only the origin
as a strictly internal lattice point is that gðpÞ ¼ x. But if P is terminal we have
a contradiction.

Consider ln. By (3.1) we have that:

ln � hb
�hðk þ 1Þ

k þ 2
:ð3:2Þ

Summing (3.1) over 0a i < k gives:

l � ln b
hk

k þ 2
:ð3:3Þ

Combining equations (3.2) and (3.3) gives us that l � hb�h=ðk þ 2Þ. Ob-
serving that l � h < 0, we obtain ðk þ 2Þ=ha 1=ðh� lÞ. Thus, for any j A
fn� k; . . . ; ng, we have that:

�1b
�lj

h� l
;

i.e. the coe‰cients of x 0 are all a�1.
Let t be the lattice translation of G which sends p to 0. Applying Lemma 3.6

to conefte0; . . . ; tekg, if tðx 0Þ A �conefte0; . . . ; tekg then p A convfx 0; e0; . . . ; ekg
and we are done. Hence assume that this is not the case.
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Let Hi HGR be the hyperplane containing the k þ 1 points e0; . . . ; beiei; . . . ; ek,
and p; let Hþ

i be the half–space in GR whose boundary is Hi and which contains
the point 2p. Then:

�conefte0; . . . ; tekg ¼ t 7
k

i¼0

Hþ
i

 !
:

Since tðx 0Þ B �conefte0; . . . ; tekg, we have that x 0 B Hþ
i for some i. Assume,

with possible reordering of the indices, that x 0 B Hþ
0 .

H0 is given by:

Xk
j¼1

mjej � 1�
Xk
j¼1

mj

 !Xk
i¼0

ei

�����mi A R

( )
:

Let q :¼
Pk

i¼0 niei be any point in GR. By projecting q onto H0 along e0
(regarded as a vector) we can always choose our mi such that:

mj þ
Xk
i¼1

mi � 1 ¼ nj; for 1a ja k:ð3:4Þ

Comparing the sign of
Pk

i¼1 mi � 1 with n0 tells us on which side of the
hyperplane H0 the point q lies.

We have that 2p lies on the opposite side of H0 to x 0. Setting nj ¼ �2 for
all j in equation (3.4) tells us that:

Xk
i¼1

mi ¼
�k

k þ 1
:

Hence we see that:

Xk
i¼1

mi � 1 ¼ �k

k þ 1
� 1 > �2:

We thus require that:

Xk
i¼1

mi � 1 <
�ln�k

h� l
:ð3:5Þ

(In other words x 0 lies on the opposite side of H0 to 2p.)
Comparing coe‰cients with x 0, we see that:

mj þ
Xk
i¼1

mi � 1 ¼ �ln�kþj

h� l
; for 1a ja k:ð3:6Þ
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Summing equation (3.6) for all 1a ja k and combining this with (3.5) gives:

Xk
j¼1

�ln�kþj

h� l
þ k <

�ðk þ 1Þln�k

h� l
þ k þ 1:

Simplifying, and recalling that
Pn

j¼n�k lj ¼ l, gives us that:

ln�k <
h

k þ 2
:ð3:7Þ

Equation (3.7) contradicts (3.1), concluding the proof. r
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A. Schürmann, Problems from the Cottonwood Room, Integer points in polyhedra—

geometry, number theory, algebra, optimization, Contemp. math. 374, Amer. Math. Soc.,

Providence, RI, 2005, 179–191.
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