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PSEUDO-JACOBI OPERATORS AND OSSERMAN LIGHTLIKE

HYPERSURFACES

Cyriaque Atindogbe and Krishan L. Duggal

Abstract

We study pseudo-Jacobi operators associated to algebraic curvature maps on

lightlike hypersurfaces M and investigate conditions for an induced Riemann curvature

tensor to be an algebraic curvature map on M. Two examples are provided with

explicit determination of their pseudo-Jacobi operators. Finally, we introduce the

notion of lightlike Osserman hypersurfaces and prove some characterization results.

1. Introduction

One of the most important and central concepts in di¤erential geometry is
the notion of curvature. As it is well known [11], Jacobi and Szabó operators
have been extremely useful in their study. Let ðM; gÞ be a semi-Riemannian
manifold, p A M. F A d4 T ?

p M is said to be an algebraic curvature map (tensor)

on TpM if it satisfies the following symmetries:

Fðx; y; z;wÞ ¼ �F ðy; x; z;wÞ ¼ F ðz;w; x; yÞ;
Fðx; y; z;wÞ þ F ðy; z; x;wÞ þ Fðz; x; y;wÞ ¼ 0:

ð1Þ

The Riemann curvature tensor R is an algebraic curvature tensor on the
tangent space TpM, for every p A M. For an algebraic curvature map F on
TpM, the associated Jacobi operator J is the linear map on TpM characterized by
the identity

gðJðxÞy; zÞ ¼ F ðy; x; x; zÞ:ð2Þ
JðxÞ is a self-adjoint map and F is spacelike (resp. timelike) Osserman tensor

if SpecfJg is constant on the pseudo-sphere of unit spacelike (resp. unit timelike)
vectors in TpM. These are equivalent notions and such a tensor is called an
Osserman tensor. The basic problem is to what extent general sectional curva-
tures can provide information on the curvature and metric tensors. Osserman
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condition has been under much scrutiny in recent years and we refer to [11] for
an extensive bibliography.

Since any semi-Riemannian manifold has lightlike subspaces, we reasonably
expect a role of Jacobi and Szabó type operators in the study of lightlike
manifolds. But, on the latter, the degenerate metric tensor has a non-trivial
kernel so (2) is not well defined in the usual way. Also, in general, induced
Riemann curvature tensors on lightlike manifolds are not algebraic curvature
tensors, i.e (1) does not hold. Therefore, it is our first objective to find
conditions on a lightlike hypersurface to have an induced algebraic Riemann
curvature tensor (Theorems 3.1 and 3.2) so that (1) holds.

Secondly, we introduce and study a class of lightlike Osserman hyper-
surfaces. We first observe that, as in semi-Riemannian case, being spacelike
or timelike Osserman are equivalent notions (Theorem 4.1) and under some
embedding conditions, being Osserman at a point p A M sometimes reduces to
being Osserman for the semi-Riemannian screen leaf through this point (Theorem
4.2). Also, we show that a totally umbilical lightlike hypersurface is locally
Einstein and pointwise Osserman (Theorem 4.3).

2. Preliminaries

Let ðM; gÞ be a hypersurface of an ðnþ 2Þ-dimensional semi-Riemannian
manifold ðM; gÞ of constant index 0 < n < nþ 2. In the classical theory of
nondegenerate hypersurfaces, the normal bundle has trivial intersection f0g with
the tangent one and plays an important role in the introduction of main induced
geometric objects of M. In case of lightlike hypersurfaces, the situation is
totally di¤erent. The normal bundle TM? is a rank-one distribution over
M: TM? HTM and then coincides with the radical distribution Rad TM ¼
TM VTM?. Hence, the induced metric tensor g is degenerate with constant
rank n.

A complementary bundle of Rad TM in TM is a rank n nondegenerate
distribution over M, called a screen distribution of M, denoted by SðTMÞ. Ex-
istence of SðTMÞ is secured provided M be paracompact. A lightlike hyper-
surface with a specific screen distribution is denoted by ðM; g;SðTMÞÞ.

It is well-known [9] that for such a triplet, there exists a unique vector sub
bundle trðTMÞ of rank 1 over M, such that for any non-zero section x of TM?

on a coordinate neighborhood UHM, there exists a unique section N of trðTMÞ
on U satisfying

gðN; xÞ ¼ 1; gðN;NÞ ¼ gðN;WÞ ¼ 0; EW A GðSTðMÞjUÞ:ð3Þ

TM and TM are decomposed as follows:

TM ¼ SðTMÞ l
?

TM?;ð4Þ

TMjM ¼ TMl trðTMÞ:ð5Þ
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We denote by GðEÞ the FðMÞ-module of smooth sections of a vector bundle
E over M, FðMÞ being the algebra of smooth functions on M. Also, all
manifolds are supposed to be smooth, paracompact and connected.

The induced connection, say ‘, on M is defined by

‘XY ¼ Qð‘XYÞ; EX ;Y A GðTMÞ;

where ‘ denotes the Levi-Civita connection on ðM; gÞ and Q the projection
morphism on TM with respect to the decomposition (4). Notice that ‘ depends
on both g and a screen distribution SðTMÞ of M.

Let P be the projection morphism of GðTMÞ on GðSðTMÞÞ with respect to
the decomposition (5). The local Gauss and Weingarten type formulas are given
by

‘XY ¼ ‘XY þ BðX ;YÞN;

‘XN ¼ �ANX þ tðX ÞN;

‘XPY ¼ ‘
?

XPY þ CðX ;PY Þx;

‘Xx ¼ �A
?

xX � tðXÞx; EX ;Y A GðTMjUÞ;

ð6Þ

where B and C are the local second fundamental forms on GðTMÞ and

GðSðTMÞÞ, respectively, ‘
?

is a metric connection on GðSðTMÞÞ, A
?

x the local
shape operator on SðTMÞ and t a 1-form on TM. Although SðTMÞ is not
unique, it is canonically isomorphic to the factor vector bundle TM=Rad TM.
As per [9, page 83], although the second fundamental form B of M is inde-
pendent of the choice of a screen distribution, but, it depends on the choice of
N. Also, B satisfies for all X ;Y A GðTMÞ,

BðX ; xÞ ¼ 0 and BðX ;Y Þ ¼ gðA
?

xX ;YÞ:

It is important to mention that there are a large classes of lightlike
hypersurfaces with canonical screen distribution [1, 3, 8, 9, 10].

Definition 2.1. A lightlike hypersurface ðM; g;SðTMÞÞ of a semi-
Riemannian manifold ðM; gÞ is called null transversally closed if its transversal
lightlike bundle trðTMÞ is parallel along the radical direction, that is

‘UV A trðTMÞ; EU A Rad TM and V A trðTMÞ:

Definition 2.2. ðM; g;SðTMÞÞ is called screen conformal [3] if on any
coordinate neighborhood UJM and for any normalizing pair fx;Ng there exists

a non-vanishing smooth function j on U such that AN ¼ jA
?

x.

Denote by R and R the Riemann curvature tensors of ‘ and ‘, respectively.
Recall the following Gauss-Codazzi equations [9, p. 93]
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hRðX ;Y ÞZ; xi ¼ ð‘XBÞðY ;ZÞ � ð‘YBÞðX ;ZÞð7Þ
þ tðXÞBðY ;ZÞ � tðYÞBðX ;ZÞ;

hRðX ;YÞZ;PWi ¼ hRðX ;Y ÞZ;PWiþ BðX ;ZÞCðY ;PWÞð8Þ
� BðY ;ZÞCðX ;PWÞ;

hRðX ;YÞx;Ni ¼ hRðX ;Y Þx;Ni ¼ CðY ;A
?

xXÞ � CðX ;A
?

xYÞð9Þ
� 2 dtðX ;YÞ; EX ;Y ;Z;W A GðTMjUÞ:

Finally, we recall from [2] the following results. Consider on M a normal-
izing pair fx;Ng satisfying (3) and define the one-form

hð�Þ ¼ gðN; �Þ:
For all X A GðTMÞ, X ¼ PX þ hðXÞx and hðXÞ ¼ 0 if and only if X A GðSðTMÞÞ.
Now, we define [ by

[ : GðTMÞ ! GðT �MÞ
X 7! X [ ¼ gðX ; �Þ þ hðX Þhð�Þ:

ð10Þ

Clearly, such a [ is an isomorphism of GðTMÞ onto GðT �MÞ, and generalize the
usual nondegenerate theory. In the latter case, GðSðTMÞÞ coincides with GðTMÞ,
and as a consequence the 1-form h vanishes identically and the projection
morphism P becomes the identity map on GðTMÞ. We let ] denote the inverse
of the isomorphism [ given by (10). For X A GðTMÞ (resp. o A T �M), X [ (resp.
o]) is called the dual 1-form of X (resp. the dual vector field of o) with respect to
the degenerate metric g. It follows from (10) that if o is a 1-form on M, we
have for X A GðTMÞ,

oðXÞ ¼ gðo];X Þ þ oðxÞhðX Þ:
Define a ð0; 2Þ-tensor ~gg by ~ggðX ;YÞ ¼ X [ðY Þ, EX ;Y A GðTMÞ: Clearly, ~gg

defines a non-degenerate metric on M which plays an important role in defining
the usual di¤erential operators gradient, divergence, Laplacian with respect to
degenerate metric g on lightlike hypersurfaces (details be seen in [2]). Also,
observe that ~gg coincides with g if the latter is non-degenerate. The ð0; 2Þ-tensor
g½�;��, inverse of ~gg is called the pseudo-inverse of g. With respect to the quasi
orthonormal local frame field fq0 :¼ x; q1; . . . ; qn;Ng adapted to the decompo-
sitions (4) and (5) we have

~ggðx; xÞ ¼ 1; ~ggðx;X Þ ¼ hðXÞ;
~ggðX ;YÞ ¼ gðX ;YÞ EX ;Y A GðSðTMÞÞ:

ð11Þ

Let ðM; gÞ be a lightlike hypersurface and p A M. We denote

S�
p ðMÞ ¼ fx A TpM j gðx; xÞ ¼ �1g

Sþ
p ðMÞ ¼ fx A TpM j gðx; xÞ ¼ 1g

SpðMÞ ¼ fx A TpM j jgðx; xÞj ¼ 1g ¼ S�
p ðMÞUSþ

p ðMÞ
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3. Pseudo-Jacobi operators

Let us start by an intrinsic interpretation of relation (2) which in semi-
Riemannian setting characterizes the Jacobi operator J associated to an algebraic
curvature map R A d4 T ?

p M, ðp A MÞ. Indeed, we have equivalently for x in the
unit bundle, y, w in TpM,

ðJRðxÞyÞ[gðwÞ ¼ Rðy; x; x;wÞ; that is;ð12Þ

JRðxÞy ¼ Rðy; x; x; �Þ]g ;ð13Þ

where [g and ]g are the usual isomorphisms between TpM and its dual T ?
p M, for

a non-degenerate g. As stated above, the metric g and its associated metric ~gg
coincide if the former is nondegenerate, and equivalently, relation (13) can be
written in the form

~ggðJRðxÞy;wÞ ¼ Rðy; x; x;wÞ;
in which JRðxÞy is well defined. This leads to the following definition.

Definition 3.1. Let ðM; g;SðTMÞÞ be a lightlike hypersurface of a semi-
Riemannian manifold ðM; gÞ, p A M, x A SpðMÞ and R A d4 T ?

p M an algebraic
curvature map. By pseudo-Jacobi operator of R with respect to x, we call the
self-adjoint linear map JRðxÞ of x? defined by

JRðxÞy ¼ Rðy; x; x; �Þ]g;

where ]g denotes the dual isomorphism on the triplet ðM; g;SðTMÞÞ.

Contrary to non-null hypersurfaces, the induced Riemann curvature tensor of
a lightlike hypersurface ðM; g;SðTMÞÞ may not be an algebraic curvature
tensor. For this, we prove the following.

Theorem 3.1. Let ðM; g;SðTMÞÞ be a lightlike hypersurface of a semi-
Riemannian manifold ðM; gÞ. If the induced Riemann curvature tensor of M is an
algebraic curvature tensor, then, locally at least one of the following holds

(a) M is totally geodesic.
(b) M is null transversally closed.

Proof. Let ‘ and ‘ be the Levi-Civita connection on M and the induced
connection on M, respectively. Denote by R and R the curvature tensors of ‘
and ‘, respectively. Let indices a; b; g; . . . range from 0 to n; i; j; k; . . . from 1
to n and A;B;C; . . . from 0 to nþ 1, where dimðMÞ ¼ nþ 2. Consider on M

a local frame x ¼ q

qu0
;
q

qui
;N

� �
such that x ¼ q

qu0
;
q

qui

� �
be a frame on M.

Denote qA for
q

quA
. Using the local expressions of R and R (see [9, page 96])

and (6) leads to the following relations.
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Rijkh ¼ Rijkh þ CihBjk � CikBjh;ð14Þ

Rij0h ¼ Rij0h � CiBjh:ð15Þ

where by definition Rijkh ¼ gðRðqh; qkÞqj; qiÞ and Bij ¼ Bðqi; qjÞ, Cij ¼ Cðqi; qjÞ,
Ci ¼ Cðx; qiÞ are the components of second fundamental forms of M and SðTMÞ.
Thus, the 4-tensor R A d4 T �

p M does not have the usual curvature tensor
symmetries as in the semi-Riemannian setting. Assume that the induced cur-
vature tensor R defines an algebraic curvature map and consider relation (15).
We have

Rij0h ¼ Rij0h � CiBjh ¼ �Rji0h � CiBjh ¼ �ðRji0h þ CiBjhÞ:
Thus,

Rij0h ¼ �Rji0h , CiBjh ¼ �CjBih; 1a i; j; ha n:

Using the symmetry of B and (3) leads to

CiBjh ¼ �CjBih ¼ �CjBhi ¼ ChBji ðFrom ð3ÞÞ
¼ ChBij ¼ �CiBhj ¼ �CiBjh E1a i; j; ha n:

Hence,

CiBjh ¼ 0; E Ei; j; h;ð16Þ
that is, Ci ¼ 0 Ei or Bjh ¼ 0 Ej; h. Since Bðx; �Þ ¼ 0, Bjh ¼ 0 Ej; h leads to M
totally geodesic. Now, assume that in (16) there exist h0 and j0 such that
Bj0h0 0 0. Then Ci ¼ 0 Ei. This leads to the following:

Ci ¼ Cðx; qiÞ ¼ gð‘xqi;NÞ ¼ gð‘xqi;NÞ

¼ �gðqi;‘xNÞ; E1a ia n:

Hence, null transversally closed condition (see Definition 2.1) is equivalent to
Ci ¼ 0 Ei and the proof is complete. r

Note. As a trivial case if both Ci and Bij in (16) vanish, then, both (a) and
(b) may hold simultaneously.

Observe that a large number of lightlike hypersurfaces of Lorentzian
manifolds do have integrable screen distributions [3, 8, 9, 10]. So it seems
reasonable to prove the following characterization result.

Theorem 3.2. Let ðM; g;SðTMÞÞ be a lightlike hypersurface of a semi-
Riemannian manifold ðM; gÞ, with non totally geodesic integrable screen dis-
tribution SðTMÞ. Then, the induced Riemann curvature tensor of M defines
an algebraic curvature map if and only if M is either totally geodesic or locally
screen conformal, with ambient holonomy condition

RðX ;PY ÞðRad TMÞHRad TM EX ;Y A GðTMÞ:
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Proof. Assume the induced Riemann curvature tensor defines an algebraic
curvature map and consider relation (14). We have

Rijkh ¼ Rijkh þ CihBjk � CikBjh

¼ �Rjikh þ CihBjk � CikBjh

¼ �ðRjikh þ CikBjh � CihBjkÞ:

Thus,

Rijkh ¼ �Rjikh , CikBjh � CihBjk ¼ CjhBik � CjkBih:

Also,

Rijkh ¼ Rijkh þ CihBjk � CikBjh

¼ Rkhij þ CihBjk � CikBjh:

So,

Rijkh ¼ Rkhij , CihBjk � CikBjh ¼ CkjBhi � CkiBhj :

Then, since SðTMÞ is integrable, C is symmetric and we have

CjkBih ¼ CihBkj; Ei; j; k; h:

Now, we distinguish two cases: M is totally geodesic or not. If M is
totally geodesic then M is not screen conformal since C0 0. If M is not totally
geodesic, there exist j0 and k0 such that Bj0k0 0 0. Then, we have

Cih ¼
Ck0 j0

Bk0 j0

Bih; Ei; h:

Observe that Ck0 j0 0 0 otherwise C would vanish identically at some p A M.
Also, by continuity Bk0 j0 is nonzero in a neighborhood U of p in M. Define

locally the function j on U by jðxÞ ¼ Ck0 j0

Bk0 j0

ðxÞ. Then CðX ;YÞ ¼ jBðX ;YÞ for

all X , Y in GðSðTMjUÞÞ, which is equivalent to ANX ¼ jA
?

xX , for all X , Y in

GðSðTMjUÞÞ. Finally note that A
?

xx ¼ 0. Also, since M is non totally geodesic,

it is null transversally closed, that is ANx ¼ 0. Thus ANX ¼ jA
?

xX for all X , Y
in GðTMjUÞ, that is, M is screen locally conformal (see Definition 2.2). In
addition,

hRðX ;PY Þx;Zi ¼ �hRðZ; xÞX ;PYi ¼ð8Þ �hRðZ; xÞX ;PYi

� BðZ;XÞCðx;PYÞ þ Bðx;X ÞCðZ;PYÞ
¼ �hRðZ; xÞX ;PYi ¼ �hRðX ;PY ÞZ; xi ¼ 0:

Thus, RðX ;PY Þ Rad TMHRad TM.
Conversely, assume that M is either totally geodesic or screen locally con-

formal with required ambient holonomy condition. Observe that the first
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Bianchi identity is straightforward. Also, if M is totally geodesic there is
nothing more to prove since RjTM ¼ R. Now we consider M to be screen
conformal with B0 0 and show that R defines an algebraic curvature map.
From (8) we have for X ;Y ;Z A GðTMÞ and W A SðTMÞ,

hRðX ;YÞZ;Wi ¼ hRðX ;Y ÞZ;Wiþ BðX ;ZÞCðY ;WÞ � BðY ;ZÞCðX ;WÞ:
Thus, since CðX ;WÞ ¼ jBðX ;WÞ, above equation becomes

hRðX ;Y ÞZ;Wi ¼ hRðX ;Y ÞZ;Wiþ j BðX ;ZÞBðY ;WÞ � BðY ;ZÞBðX ;WÞ½ �:
Put

BðX ;Y ;Z;WÞ ¼ BðX ;ZÞBðY ;WÞ � BðY ;ZÞBðX ;WÞ:
We have

hRðX ;YÞZ;Wi ¼ hRðX ;Y ÞZ;Wi� jBðX ;Y ;Z;WÞ;ð17Þ
and it is straightforward that B has the required symmetries. So the left hand
side of (17) has the required symmetries. For the right hand side, first we have
hRðX ;YÞZ; xi ¼ �hRðY ;X ÞZ; xi ¼ 0. Now,

hRðZ; xÞX ;Yi ¼ hRðZ; xÞX ;PYi

¼ hRðZ; xÞX ;PYi� BðZ;XÞCðx;PY Þ þ Bðx;X ÞCðZ;PY Þ;

¼ hRðZ; xÞX ;PYi ¼ �hRðX ;PY Þx;Zi ¼ 0;

by ambient holonomy condition and the proof is complete. r

Example 1. A simple but basic example is that of the lightlike cone 5nþ1

0
at

the origin of Rnþ2
1 for which the null transversal normalization

N ¼ 1

2ðx0Þ2
�x0 q

qx0
þ
Xnþ1

a¼1

xa q

qxa

" #

induces the algebraic curvature tensor

RðX ;Y ÞZ ¼ 1

2ðx0Þ2
gðY ;ZÞPX � gðX ;ZÞPY½ �;

where P is the projection morphism on the screen associated to N. Its associated
pseudo-Jacobi operator is then given, for x A Spð5nþ1

0
Þ, by

JRðxÞ ¼
1

2ðx0Þ2
hx; xi � P:

Example 2. Consider ðM; gÞ a real lightlike hypersurface of an indefinite
almost Hermitian manifold ðM; g; JÞ, where g is a semi-Riemannian metric of
constant index [9, Chapter 6, p. 194]. It is easy to check that fx;Ng being a
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normalizing pair verifying (3), JðTM? l J trðTMÞÞ is a vector sub bundle of
SðTMÞ of rank 2 with hyperbolic fibers. Then,

SðTMÞ ¼ fJðTM?Þl Jðtr TMÞg l
?

D0;

with D0 a non-null almost complex distribution with respect to J. Thus,

TM ¼ fJðTM?Þl Jðtr TMÞg l
?

D0 l
?

TM?:ð18Þ
Now, consider the almost complex distribution

D ¼ fTM? l
?

JðTM?Þg l
?

D0;

and let S denote the projection morphism of TM on D. Put U ¼ �JN and
V ¼ �Jx. Then, for all X A TM,

X ¼ SX þ uðXÞU ;ð19Þ
with u ¼ gð�;VÞ a local 1-form on M. It follows that

JX ¼ FX þ uðX ÞN;

with F ¼ J �S. Clearly, we have

F 2X ¼ �X þ uðXÞU ; uðUÞ ¼ 1:

Thus, provided x and N be globally defined on M, ðF ; u;UÞ defines an almost
contact structure on M [9, p. 195].

We construct an algebraic curvature map RF on M using F as follows:

RF ðx; y; z;wÞ ¼ ðhFy; ziþ hy;FziÞðhFx;wiþ hx;FwiÞð20Þ
� ðhFx; ziþ hx;FziÞðhFy;wiþ hy;FwiÞ;

for all x; y; z;w A TpM, p A M. It is easy to check that such a RF is an algebraic
curvature map on M. Put v ¼ h�;Ui and get

hFx; yiþ hx;Fyi ¼ uðxÞvðFyÞ þ uðyÞvðFxÞ:ð21Þ
Now, we compute the pseudo-Jacobi operator JRF ðxÞ for x A SpðMÞ, p A M.
We have for all y in x?,

JRF ðxÞy ¼ RF ðy; x; x; �Þ]g

¼ ½2hFx; xiðhFy; �iþ hy;Fð�ÞiÞ

� ðhFy; xiþ hy;FxiÞðhFx; �iþ hx;F ð�ÞiÞ�]g:

Then, using (21) leads to

JRF ðxÞy ¼ 2uðxÞvðFxÞ½uðyÞðv � F Þ]g þ vðFyÞu]g �

� ðuðxÞvðFyÞ þ uðyÞvðFxÞÞ½uðxÞðv � F Þ]g þ vðFxÞu]g �:

Using (19) and the Hermitian structure of ðM; g; JÞ we obtain v � F ¼ �h.
Then, ðv � F Þ]g ¼ �x. Also, since uðxÞ ¼ 0, we have u]g ¼ �Jx. Thus,
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JRF ðxÞy ¼ uðxÞ½hðxÞuðyÞ � hðyÞuðxÞ�xþ hðxÞ½hðxÞuðyÞ � hðyÞuðxÞ�Jx:

This implies

JRF ðxÞ ¼ ½hðxÞuð�Þ � hð�ÞuðxÞ�ðuðxÞxþ hðxÞJxÞ

Observe that the pseudo-Jacobi operator JRF ðxÞ, x A SpM, has values in the

holomorphic plane TM? l
?

JðTM?Þ.

Remarks. (a) If the screen distribution SðTMÞ is integrable and for any
x A SpðMÞ, ðp A MÞ, JRðxÞ preserves the radical distribution, then, since g and ~gg
coincide on SðTMÞ, relation (12) (or equivalently (13)) shows that the pseudo-
Jacobi operator JR induces a Jacobi operator JR 0 on ðM 0; g 0 ¼ gjM 0 Þ, where M 0

is a leaf of SðTMÞ and R 0 the restriction on SðTMÞ of R.
(b) Let R be the induced (algebraic) Riemann curvature tensor of M,

ðp A MÞ and x A Rad TpM. Then, we have

JRðxÞx ¼ 0:ð22Þ

Indeed, for all x A SpðMÞ, z A TpM,

~ggðJRðxÞx; zÞ ¼ Rðx; x; x; zÞ ¼ gðRðz; xÞx; xÞ ¼ 0;

and since ~gg is non-degenerate on TM, we have JRðxÞx ¼ 0.

Note also that the screen subspace is preserved by JR. For this, it su‰ces
to show that for all x A SpðMÞ, z A SðTpMÞ, hðJRðxÞzÞ ¼ 0 which is equivalent to
~ggðJðxÞz; xÞ ¼ 0 using (11). But

~ggðJRðxÞz; xÞ ¼ Rðz; x; x; xÞ ¼def : gðRðx; xÞx; zÞ ¼ð1Þ �gðRðx; zÞx; xÞ ¼ 0:

4. Lightlike Osserman hypersurfaces

By the approach developed in this paper (following [9]), the extrinsic geo-
metry of lightlike hypersurfaces ðM; gÞ depends on a choice of screen distribution,
or equivalently, normalization. Since the screen distribution is not uniquely
determined, a well defined concept of Osserman condition is not possible for an
arbitrary lightlike hypersurface of a semi-Riemannian manifold. Thus, one must
look for a class of normalization for which the induced Riemann curvature and
associated Jacobi operator has the desired symmetries and properties. In short,
we precise the following.

Definition 4.1. A screen distribution SðTMÞ is said to be admissible if the
associated induced Riemann curvature is an algebraic curvature.

Examples. Based on Theorem 3.2, we observe that any screen conformal
lightlike hypersurface [3] in a semi-Euclidean space admits an admissible screen
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distribution since its induced curvature tensor defines an algebraic curvature map.
In particular, the canonical screens on the lightlike cones, Monge hypersurfaces
and totally geodesic lightlike hypersurfaces all of them admit admissible screens.

On the other hand, there are large classes of such hypersurfaces (including
above examples) with canonical screen as follows:

(a) Duggal and Bejancu constructed in [9, Chapter 4] a canonical screen
distribution in semi-Euclidean spaces which provided significant geometrically and
physically results on its lightlike hypersurfaces. Moreover, they proved that a
canonical screen distribution is integrable (a desirable property) on any lightlike
hypersurface of a Minkowski space Rn

1 and on any lightlike cone 5n

q�1
of Rnþ1

q .

(b) We know from [3, Theorem 2] that any screen locally conformal lightlike
hypersurface (see Definition 2.2) admits an integrable screen distribution SðTMÞ.
Using this result, Atindogbe and Duggal (same paper [3]) constructed a canonical
screen as follows:

Denote by S1 the first derivative of SðTMÞ given by

S1ðxÞ ¼ spanf½X ;Y �jx; Xx;Yx A SðTxMÞg; Ex A M:

As SðTMÞ is integrable, S1 is a subbundle of SðTMÞ. They proved (see [3,
Theorem 5]) that if S1 coincide with SðTMÞ then there is a unique screen locally
conformal distribution, up to an orthogonal transformation.

(c) Let ðM; gÞ be an ðnþ 2Þ-dimensional globally hyperbolic spacetime man-
ifold, with the metric g given by [4]

ds2 ¼ �dt2 þ emðdx1Þ2 l gab dx
adxb; 2a a; ba nþ 1;

where m is a function of t and x1 alone. Recently, in [8], it has been shown that
M admits a lightlike hypersurface with canonical screen up to an orthogonal
transformation. Also, see [1] and [10] for the construction of invariant nor-
malization and a unique distinguished structure for large classes of physically
significant lightlike hypersurfaces of Lorentzian manifolds.

Based on above, one may ask whether there exists a general class of semi-
Riemannian manifolds of an arbitrary signature which admit admissible canonical
screen distributions. To answer this in a‰rmative, we first quote the following
recent result.

Theorem Duggal [7]. Let ðM; g;SðTMÞÞ be a lightlike hypersurface of a
semi-Riemannian manifold ðMgÞ. Let E be a complementary vector bundle of
TM? in SðTMÞ? such that E admits a covariant constant timelike vector field.
Then, with respect to a section x of Rad TM, M is screen conformal. Thus, M
can admit an integrable canonical screen distribution.

Consequently, there exist large classes of lightlke hypersurfaces of semi-
Riemannian manifolds which admit admissible canonical screen distributions.
Using this information, we make the following definition:
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Definition 4.2. A lightlike hypersurface ðM; gÞ of a semi-Riemannian
manifold ðM; gÞ of constant index is called timelike (resp. spacelike) Osserman
at p A M if, for each admissible screen distribution SðTMÞ and associate induced
algebraic curvature R, the characteristic polynomial of JRðxÞ is independent of
x A S�

p ðMÞ (resp. x A Sþ
p ðMÞ). Moreover, if this holds at each p A M, then

ðM; gÞ is called pointwise Osserman.

Based on discussion so far, it is clear that the above definition of Osserman
condition is independent on the choice of admissible screen distribution. This
conclusion is noteworthy for the entire study of the geometry of Osserman
lightlike hypersurfaces.

Examples. (a) Being totally umbilical is independent on the choice of
screen distribution. Now, for a given admissible screen on the lightlike cone
5nþ1

0
of Rnþ2

1 , the induced curvature tensor is given by

RðX ;YÞZ ¼ 1

2ðx0Þ2
½gðY ;ZÞPX � gðX ;ZÞPY �

with P the projection morphism of the tangent bundle T5nþ1

0
onto the screen

distribution and the pseudo-Jacobi operator is given for z A Spð5nþ1

0
Þ by

JRðzÞ ¼
1

2ðx0Þ2
hz; zi � P:

It follows that the characteristic polynomial is given by

fzðtÞ ¼ �t
e

2ðx0Þ2
� t

" #n�1

; e ¼ signðzÞ ¼G1;

which is independent on both admissible screen distributions and z A S�
p ð5

nþ1

0
Þ

(resp. z A Sþ
p ð5

nþ1

0
Þ). The lightlike cone is then timelike (resp. spacelike) point-

wise Osserman.
(b) Consider a real lightlike hypersurface of indefinite almost Hermitian

manifold ðM; g; JÞ and suppose an admissible screen distribution induces a
Riemann curvature RF as in Eq. (20). We know that the pseudo-Jacobi
operator JRF is given by

JRF ðzÞ ¼ hðzÞuð�Þ � hð�ÞuðzÞ½ �ðuðzÞxþ hðzÞJxÞ;

and for z A SpðMÞV ðJðTM?Þl Jðtr TMÞÞ, the characteristic polynomial reduces
to

fzðtÞ ¼ ð�1Þnðtþ uðzÞ2Þtn�1;

which obviously depends on z A S�
p ðMÞ and z A Sþ

p ðMÞ. Such a hypersurface
is neither timelike nor spacelike Osserman at any p A M. Observe that u ¼
�gð�; JxÞ is nonzero at every p A M.
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A straight adaptation of technique in [11, pp. 4–5] to the lightlike case shows
that ðM; gÞ being timelike Osserman at p A M is equivalent to ðM; gÞ being
spacelike Osserman at p. More precisely, we have

Theorem 4.1. Let ðM; gÞ be a lightlike hypersurface of a semi-Riemannian
manifold ðM; gÞ. Then, ðM; gÞ is timelike Osserman at p if and only if it is
spacelike Osserman at p.

From now on we refer Osserman at p to both timelike and spacelike. Re-
call that the screen distribution SðTMÞ is totally umbilical [9, page 109] if and
only if on any coordinate neighborhood U A M, there exists a smooth function l
such that CðX ;PY Þ ¼ lgðX ;Y Þ, EX ;Y A TMjU. Then, since C is symmetric in
SðTMÞ, it follows from [9, Theorem 23, page 89] that any totally umbilical
SðTMÞ is integrable. In case l ¼ 0 there is totally geodesic screen foliation on
M. For this later case, the following holds.

Theorem 4.2. Let ðM; gÞ be a lightlike hypersurface of a semi-Riemannian
manifold ðM; gÞ, all of whose admissible screen distributions are totally geodesic in
a neighborhood U of a p A M. Then, ðM; gÞ is Osserman at p if and only if the
semi-Riemannian screen leaves are Osserman at this point. In particular, if ðM; gÞ
has constant index n ¼ 2, then, ðM; gÞ is Osserman at p if and only if semi-
Riemannian admissible screen leaves are of constant sectional curvature at p.

Proof. Consider a generic totally geodesic admissible screen distribution

SðTMÞ on UHM. Let R, R 0 and R
?
denote the algebraic curvature tensors

induced on ðM; gÞ by SðTMÞ, the restriction of R on SðTMÞ and the Riemann

curvature tensor given by the Levi-Civita connection ‘
?

on the screen distribution,

respectively. We first show that under the hypothesis, we have R 0 ¼ R
?
at p.

Let x; y; z A SðTpMÞ. By straightforward calculation using the last two equa-
tions of (6), we have

R 0ðx; yÞz ¼ Rðx; yÞz ¼ R
?

ðx; yÞzþ ½Cðx; zÞA
?

xy� Cðy; zÞA
?

xx�
þ ½ð‘xCÞðy; zÞ � ð‘yCÞðx; zÞ þ tðyÞCðx; zÞ � tðxÞCðy; zÞ�x:

Thus, we get R 0ðx; yÞz ¼ R
?

ðx; yÞz from C ¼ 0. Also, x A SpðMÞ if and only if

x
?
A SpðM ?Þ, with x

? ¼ Px and M ? the leaf of SðTMÞ through p. Moreover,

x? ¼ ðPxÞ? and JRðxÞ ¼ JRðPxÞ. We infer that J
R
?ðx?Þ is the restriction of JRðxÞ

to x
??SðTMÞ

. On the other hand, observe that

x? ¼ x
??SðTMÞ

l
?

TM?

and from (22) we have JRðxÞx ¼ 0 for all x A Rad TM. Then, let fxðtÞ and
h
x
? denote the characteristic polynomials of JRðxÞ ðx A S�

p ðMÞÞ and J
R
?ðx?Þ

ðx? A S�
p ðM ?ÞÞ with x

? ¼ Px, respectively. We have
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fxðtÞ ¼ th
x
?ðtÞ

which shows that the characteristic polynomial of JRðxÞ is independent of
x A S�

p ðMÞ if and only if the characteristic polynomial of J
R
?ðx?Þ is independent

of x
?
A S�

p ðM ?Þ. Hence, ðM; gÞ is timelike Osserman at p if and only if M ? (as
a semi-Riemannian manifold) is timelike Osserman at p. Similar is the case for
Sþ
p ðMÞ and x

?
A Sþ

p ðM ?Þ. Since SðTMÞ is an arbitrary admissible screen, the

first part of the theorem is proved.
Now, assume that ðM; gÞ has constant index n ¼ 2. Then, TpM is a

degenerate space of signature ð0;�;þ; . . . ;þÞ. It follows that screen leaves
through p are Lorentzian manifolds. But it is well-known [11, p. 41] that the
latter are Osserman at p if and only if they are constant sectional curvature at
this point. This completes our proof. r

Observe that induced Ricci tensor on lightlike ðM; g;SðTMÞÞ is not nec-
essarily symmetric. In an ambient space form, we prove the following:

Theorem 4.3. Let ðM; gÞ be a (proper) totally umbilical lightlike hypersur-
face of a ðnþ 2Þ-dimensional ðn > 1Þ semi-Riemannian manifold of constant
sectional curvature ðMðcÞ; gÞ. Then, the set of admissible screens reduce to totally
umbilical ones. Also, M is pointwise Osserman and for each admissible SðTMÞ,
RicSðTMÞ is symmetric and M is locally Einstein.

Proof. Recall that a lightlike hypersurface M is totally umbilical [9, page
107] if and only if on any coordinate neighborhood U A M, there exists a smooth
function r such that BðX ;YÞ ¼ rgðX ;YÞ, EX ;Y A TMjU. Equivalently, we have

A
?

xX ¼ rPX EX A TMjU. In case r0 0 then M is proper totally umbilical.
Then, it is known [9, page 108] that the induced Riemann curvature takes the
form

RðX ;Y ÞZ ¼ cfgðY ;ZÞX � gðX ;ZÞYg þ rfgðY ;ZÞANX � gðX ;ZÞANYg:ð23Þ

Now pick an admissible screen SðTMÞ and let R denote the associate induced
curvature tensor. Then, due to gðRðX ;YÞZ;VÞ ¼ gðRðZ;VÞX ;Y Þ for all X , Y ,
Z, V , we have

rfgðY ;ZÞgðANX ;VÞ � gðX ;ZÞgðANY ;VÞ
� gðV ;X ÞgðANZ;Y Þ þ gðZ;XÞgðANV ;YÞg ¼ 0

EX ;Y ;Z;V A GðTMÞ. Since r0 0, choose a Z ? X and gðY ;ZÞ ¼ 1 to get

gðANX � gðANZ;YÞX ;VÞ ¼ 0

for all X ;V A TMjU. Thus, ANX ¼ lPX with l ¼ gðANZ;Y Þ, that is the screen
distribution is totally umbilical.

Conversely, suppose ANX ¼ lPX for some smooth l in CyðMÞ. Then,
(23) becomes
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RðX ;YÞZ ¼ cfgðY ;ZÞX � gðX ;ZÞYg þ lrfgðY ;ZÞPX � gðX ;ZÞPYg;ð24Þ
which defines an algebraic curvature map, that is, SðTMÞ is admissible.

Now, let SðTMÞ be an arbitrary admissible screen distribution on M. To
compute the induced Ricci curvature with respect to SðTMÞ using (24) we con-
sider a quasi-orthonormal basis fx;W1; . . . ;Wng on TMjU. Then,

RicðX ;Y Þ ¼
Xn

i¼1

gðRðX ;WiÞY ;WiÞ þ gðRðX ; xÞY ;NÞ

¼ c½gðX ;YÞ � ngðX ;YÞ� þ lr½gðX ;YÞ � ngðX ;Y Þ� � cgðX ;Y Þ
¼ ½ð1� nÞlr� nc�gðX ;YÞ:

Hence, the Ricci curvature is symmetric. Moreover M is locally Einstein.
Finally, let x A SpðMÞ, p A M, y A x?. Then,

JRðxÞy ¼ Rðy; x; x; �Þ]g

¼ð24Þ ½cfgðx; xÞgð�; yÞ � gð�; xÞgðx; yÞglrfgðx; xÞgð�; yÞ � gð�; xÞgðx; yÞg�]g

¼ ðcþ lrÞgðx; xÞgð�; yÞ]g

¼ ðcþ lrÞgðx; xÞPy

Hence, in adapted quasi-orthonormal basis and using remark 4.1(c), matrix of
JRðxÞ has the form

0 � � � � � � 0

..

.

..

.
ðcþ lrÞgðx; xÞIn�1

0

0
BBBB@

1
CCCCA:

Then, the characteristic polynomial fx of JRðxÞ is given by

fxðtÞ ¼ �t½ðcþ lrÞgðx; xÞ � t�n�1;

with gðx; xÞ ¼G1 and for arbitrary given admissible screen distribution. Thus
M is pointwise Osserman, which completes the proof. r

Corollary 4.1. A lightlike surface M of a 3-dimensional Lorentz manifold
MðcÞ is pointwise Osserman if it is null transversally closed.

Proof. It is well known [9, page 111] that any lightlike surface of a 3-
dimensional Lorentz manifold M is either proper totally umbilical or totally
geodesic. Hence, it remains only to find necessary and su‰cient condition for
existence of umbilical screen line bundle SðTMÞ on M. As such a SðTMÞ is

non-degenerate, let l ¼ CðW ;WÞ
gðW ;WÞ with SðTMÞ ¼ spanfWg. Then CðX ;PY Þ ¼
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lgðX ;YÞ EX ;Y A TMjU if and only if Cðx;WÞ ¼ 0, that is M is null trans-
versally closed. r

In semi-Riemannian case, we know [11] that being Osserman at a point
simplifies the geometry at that point as the manifold is Einstein at that point.
Moreover, if the latter is connected and of at least dimension 3, by Schur lemma
1 [5], it is Einstein. For lightlike hypersurface, this is not always the case as is
shown in next theorem using the following lemma.

Lemma 4.1. Let ðM; g;SðTMÞÞ be a lightlike hypersurface of a ðnþ 2Þ-
dimensional semi-Riemannian manifold ðM; gÞ, with induced algebraic Riemannian
curvature map R. For all x A SpM, p A M we have

trace JRðxÞ ¼ Ricðx; xÞ � hðRðx; xÞxÞ:

Proof. Let ðe0 ¼ x; e1 ¼ Px; e2; . . . ; en;NÞ be a g-quasi orthonormal basis of
TpM with TpM ¼ spanfðe0; e1; e2; . . . ; enÞg and SðTpMÞ ¼ spanfðe1; e2; . . . ; enÞg.
We have

trace JRðxÞ ¼
Xn

a¼0
a01

g½aa�~ggðJRðxÞea; eaÞ

¼
Xn

a¼2

g½aa�~ggðJRðxÞea; eaÞ þ g½00�~ggðJRðxÞx; xÞ

¼
Xn

a¼2

g½aa�Rðea; x; x; eaÞ ¼
Xn

a¼2

g½aa�gðRðea; xÞx; eaÞ

¼ g½e1e1�gðRðx; xÞx; xÞ þ
Xn

a¼2

g½aa�gðRðea; xÞx; eaÞ

þ gðRðx; xÞx;NÞ � gðRðx; xÞx;NÞ

¼ Ricðx; xÞ � hðRðx; xÞxÞ ¼ð9Þ Ricðx; xÞ � hðRðx; xÞxÞ: 9

Theorem 4.4. Let ðM; gÞ be a lightlike hypersurface that is Osserman at
p A M. If for an admissible screen distribution SðTMÞ, RSðTMÞðx; �Þx is zero
for a x A Rad TM, and jhðRðx; xÞxÞj < m A R for every x A S�

p ðMÞ (or every
x A Sþ

p ðMÞ), then ðM; g;SðTMÞÞ is Einstein at p A M.

Proof. Let M be the ambient semi-Riemannian manifold of M. Denote
by R 0 and g 0 the restriction on SðTMÞ of the induced algebraic curvature tensor
R and the metric tensor g on M, respectively. The Osserman condition at p
implies that the characteristic polynomial of JR is the same for every x A S�

p ðMÞ
(or every x A Sþ

p ðMÞ). Then jtrace JRðxÞj is bounded on S�
p ðMÞ (and Sþ

p ðMÞ).
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Now, using Lemma 4.1, we have for every x A S�
p ðMÞ (or every x A Sþ

p ðMÞ),

jRicðx; xÞja jtrace JRðxÞj þ jhðRðx; xÞxÞj:

It follows that there exist a A R such that jRicðx; xÞja a for every x A S�
p ðMÞ (or

every x A Sþ
p ðMÞ). In particular, we have

jRic 0ðx; xÞja a

for every x A SðTpMÞVS�
p ðMÞ (or every x A SðTpMÞVSþ

p ðMÞ). Therefore, since
ðSðTpMÞ; g 0Þ is non-degenerate, it follows from a well known algebraic result (see
[6]) that

Ric 0ðx; yÞ ¼ lg 0ðx; yÞ Ex; y A SðTpMÞ; with l A R:ð25Þ
Consider ðe0 ¼ x; e1; . . . ; en;NÞ a g-quasi orthonormal basis of TpM with TpM ¼
spanfðe0; e1; . . . ; enÞg and SðTpMÞ ¼ spanfðe1; . . . ; enÞg. We show that for all
x A TpM, Ricðx; xÞ ¼ Ricðx; xÞ ¼ 0. Indeed, we have

Ricðx; xÞ ¼ g½00�~ggðRðx; xÞx; xÞ þ
Xn

i¼1

g½ii�~ggðRðei; xÞx; eiÞ

¼
Xn

i¼1

g 0iigðRðei; xÞx; eiÞ ¼
Xn

i¼1

g 0iigðRðx; eiÞei; xÞ ¼ 0:

Now,

Ricðx; xÞ ¼ g½00�~ggðRðx; xÞx; xÞ þ
Xn

i¼1

g 0iigðRðx; eiÞx; eiÞ

¼ hðRðx; xÞxÞ ¼ð9Þ hðRðx; xÞxÞ ¼ 0

by hypothesis. Hence, since gðx; �Þ ¼ gð�; xÞ ¼ 0, the latter together with (25)
leads to Ricðx; yÞ ¼ lgðx; yÞ, for all x; y A TpM, that is, ðM; g;SðTMÞÞ is Einstein
at p A M. r

Corollary 4.2. Let ðM; gÞ be an admissible lightlike hypersurface of a flat
semi-Riemannian manifold M. If ðM; gÞ is Osserman at p A M then it is Einstein
at p.

Proof. This is immediate consequence of Theorem 4.4 since the flat
condition implies Rðx; �Þx ¼ 0, Ex A Rad TM and hðRðx; xÞxÞ ¼ 0. r
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