K. O. ARAUJO AND K. TENENBLAT
KODAI MATH. J.
32 (2009), 59-76

ON SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE
VECTOR

KeLLcio O. AraUIO* AND KETI TENENBLAT'

Abstract

We consider M", n>3, a complete, connected submanifold of a space form
M7 (¢), whose non vanishing mean curvature vector H is parallel in the normal
bundle. Assuming the second fundamental form h of M satisfies the inequality (h)* <
n2|H|*/(n— 1), we show that for ¢ >0 the codimension reduces to 1. When M is a
submanifold of the unit sphere, then M" is totally umbilic. For the case ¢ <0, one
imposes an additional condition that is trivially satisfied when ¢ >0. When M is
compact and has non-negative Ricci curvature then it is a geodesic hypersphere in the
hyperbolic space. An alternative additional condition, when ¢ < 0, reduces the codi-
mension to 3.

1. Introduction

Submanifolds of space forms with parallel mean curvature vector have been
investigated, in recent years, by several authors such as Alencar-do Carmo [AdC],
Bérard-Santos [BS], Cheng-Nonaka [CN], Cheung-Leung-Leung [CLL], de Barros-
Brasil-de Souza [BdBdS], do Carmo-Cheung-Santos [dCCS], Li [L], Mo [M],
Santos [Sa], Sun [Su], Wang-Li [WL].

The main results of this paper extend to submanifolds of the sphere and of
the hyperbolic space, a result proved by Cheng-Nonaka in [CN], for submani-
folds of the Euclidean space.

_ We consider M", n> 3, a complete, connected submanifold of a space form
M"*P(¢), whose mean curvature vector H does not vanish and it is parallel in
the normal bundle. Assuming the second fundamental form / of M satisfies the
inequality <i»> < n?H|*/(n— 1), we show (Theorem 3.2) that whenever ¢ >0
then the codimension reduces to 1. As a consequence, we show that when M is
a submanifold of the unit sphere, then M" is totally umbilic (Corollary 3.3). We
remark that, when ¢ = 0, Theorem 3.2 was proved by Cheng and Nonaka [CN].

A result analogous to Theorem 3.2, when ¢ < 0, is proved by imposing an
additional condition (see Theorem 3.4) that is trivially satisfied when ¢ > 0.
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Under these conditions we prove (Theorem 3.5) that when the submanifold M is
compact and has non-negative Ricci curvature then it is a geodesic hypersphere in
the hyperbolic space H"*!(—1) and therefore it is totally umbilic.

We also consider an alternative additional condition (see (Theorem 3.6)), for
submanifolds M", n > 4, of the hyperbolic space, which implies that in this case
the codimension reduces to 3.

One should mention that Santos [Sa], Sun [Su] and Wang [W] considered
submanifolds of the sphere, with parallel mean cuvature, assuming different
inequalities.

2. Preliminaries

This section contains preliminary results that will be necessary for the proofs
of our main results. Let ®: M" — M"?(¢) be an isometric immersion of an
n-dimensional differential manifold M in an (n + p)-dimensional space form M
with constant sectional curvature ¢. Locally we can consider ® as being an
embedding and we identify x € M with ®(x) e M. In this context, the tangent
space T M is identified with a subspace of 7.M. The normal space T}M is the
subspace of T M of all ¢ € T, M that are orthogonal to T, M with respect to the
metric § of M. We denote by (M) and y(M)™, the sets of the C* vector fields,
tangent and normal to M, respectively. Let V and V be the Riemannian
connections of M and M, respectively. We denote by D the connection of the
normal bundle. For each ¢ € T-M we have a linear transformation Az on T M
defined by

(1) Vyé = —Ae(X) + Dyé.
Given orthonormal vector fields ¢j,...,¢, normal to M, we denote A, = A,
o=1,...,4, and we say that A4,, is the second fundamental forms associated to

&,. We define the normal connection forms S,s by

)4
(2) Dyé, = Syp(X)&,
p=1

where X € y(M). For all o and f5, Sy + Sg, = 0. A vector field £ normal to M
is parallel on the normal bundle, or simply parallel, if D3¢ =0, VX € y(M).
The second fundamental form 4 of M is defined by

WX,Y)=VyY —VyY.
Therefore,
g(h(X,Y), &) = g(4:(X), Y)

where X, Y € y(M) and & e y(M)*.
Let Ei, ..., E, be orthonormal vectors tangent to M at xe M and ¢i,...,¢,
be orthonormal vectors normal to M at x. Then,
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P
—Z (tr 4,)

=1

:»—a

is called the mean curvature vector of the immersion ®. We observe that if H is
parallel then |H| is constant.
The length of the second fundamental form is defined to be

(3) hy? = Zp:tr A2,
a=1

Erbacher [El] proved that if the mean curvature vector H is parallel in the
normal bundle, then the laplacian A of (h)* is given by

) §A<h>2 =y - Y (A Y i 4y
=1

o, =1
P )4 5 )4 5
+ Y (tr Ay (tr A, A7) — > (tr A, 4p)° +) [V 4|,
o, f=1 o, =1 o=1

where V* denotes the sum of the normal and tangent connections,

D
(5) Vidy,=VxA, =Y Sy(X)Ap.
p=1

We now choose orthonormal vector fields, normal to M, in such a way
that the first one is in the direction of H. Suppose, the mean curvature vector
does not vanish at any point of M, i.e. |H| #0 in M. Then, we can choose
orthonormal vector fields &, ...,¢, normal to M such that

H = [H|S,.
We then have the following relations:
(6) tr A, = n|H|
(7) trd,=0, o=273,...,p
Considering the normal connection forms S,s, as defined in (2), we have
(8) Sp=0 p=1,...,p

We observe that if the mean curvature vector is parallel, then
9) A1A, = A,A;, for all o
In fact, this follows from the Ricci equation
RE(X, Y)E), &) = <[41, 4,]X, Y.

Since the left hand side vanishes, we conclude that [4;,4,] =0 for all o.
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Consider the function

)4
(10) IT]> = tr4;,
=2

globally defined on M. Our first lemma describes an expression for the laplacian
of |T|?, that will be extremely important to prove our main results in the next
section.

For the proof of the lemma, we need the following remark. If B is a tensor
of type 1 —1 in M", then we have

(11) %A(tr B?) = tr((A'B)B) + ||VB||*
where

(A/B)(X) = Z VE[(VE[B) - VVE,E[B
i=1

and Ey,...,E, are orthonormal tangent vector fields.

LEmMMA 2.1. Let ® : M" — M"™7() be an isometric immersion. ~Suppose the
mean curvature vector H does not vanish at any point of M, and it is parallel in
the normal bundle. Let ¢y, ...,C, be an orthonormal frame in T+M, such that
H = |H|é.  Considering |T|?, as defined by (10), we have

1 )4
(12) EAITI2 =) {(tr Ay)(tr 4,47) — (tr 4,4,)°}
=2
" t 2 2 g 2
— > {tr[Ay, Ag]'[Ay, Ag] + (tr A,Ap)°} + En| TP + > [V A%
o, =2 =2

Proof. Initially we note, from (10), that

P

(13) Y= "tr A =tr A7 +|T|.
a=1

Hence, from (4), we have

1 2 ~ 2 ~ z 2 g 2 Z 2

SAITI = enchy — Y (tr )+ > Ay A+ (tr AL)(tr 4,47)

=1 o, =1 o, =1
- 2 g 2 1
= > (tr d,4p)° + )|V A, —EA(trAlz).
o, =1 a=1

Using (9), (7) and the fact that [4,, As]" = —[A44, Ag], we have
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(14) %A\T|2 = andh)? — &(tr A))* + i{(tr A))(tr Ay A2) = 2(tr 4,4,)%}

=2

- Ep: {tr[Ay, Ag)'[Ay, Agl + (tr A,Ag)*} + (tr A))(tr A1 47)
o, =2

— (tr A14,) +Z|\v A, - (trA ).

We now establish the expression for A(tr 47). It follows from (11), that

(15) %A(tr A2) = tr((A' Ay)A4,) + ||[VAL|>.

Erbacher [E1] obtained the following expression for A'A,

(16) N A, =nid, — &(tr A,)] + > (tr Ag)A,Ag — > (tr ApA,) Ay
p

G
+ Z Ap, Ay Agl + > Apl A, Ag) +> (Vi Sop) (Ei) Ay
B i
+2ZSa/f DVEAs =Y Sup(E;)Sp(En)A,
LBy

Substituting (16) in (15) and using the properties of the trace function, we obtain

1
(17) A =nctr A7 = &(tr A,)? + > (i Ag) tr(A,ApA,)
p

= (tr Agd,)? Ztr[A/;, A, Ap) A, + Z tr Ag[A,, Ag)A4,
g

+Z Vi Syp) (Ei) tr Agdy + 2 Syp(E;) tr(V,Ap) A,
i

—stﬁ Sp () tr A, Ay + [|VA,|.
LB,y

Now, consider o =1 in (17). It follows from (7), (8), (9), and the relation
[Ap, A AglA) = AgA\ Agdy — A\ AgAgd, =0,

1
A A}) = nétr A2 — E(tr A))* + (tr A))(tr A1 A1 A) — (tr A, 4;)*

P
= (tr dpA))? + (VA ||,
B=2
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Substituting (18) in (14) and using (9) and (13), we have that

7A|T| = én|T)? +Z{ (tr A)(tr A1 A2) — (tr 4, 4,)%}
=2

{tr[Ay, Ag)'[As, Ag] + (tr Ay Ap)*} + ||V* 44 ||

Mm

2

+ IIV A = VAL

Asa R
M 2
Il

Then, it follows from 5) that (12) holds. This completes the proof of Lemma

1.1. O
Introducing the following notation

(19) N(A,) = tr ALy,  Zog = tr A, Ap,

we can rewrite (12) as follows

_A|T| 3 A (15 A 42) — (1 41 4,)%)
=2

- Z{NAA/;—AﬁA )+ Z4} +en| TP +ZHVA 2.
o, f=2 =2

The following two algebraic results will be very useful for the proof of our
main results.

LemMa 2.2 [LL]. Let Ay,...,A; be symmetric n x n matrices. Then,
2
(20) Z{NAAﬁ—A/;A)—i—Z (ZN )
o, f=1

where N and Z are defined by (19). Equality holds if, and only if, one of the
Jfollowing conditions hold:
1. Aj=---=4,=0;
2. Only two of the matrices Ay,...,A; are nonzero matrices. Moreover,
assuming A; #0 and Ay # 0, then N(A,) = N(A,) := L and there exists
an orthogonal matrix T such that

1 0 0 - 0 01 0 0
0 -1 0 - 0 100 0
T’AIT\/% 0 0 0 - 0] T’AZT\/% 000 0

o 0 o0 --- 0 000 --- 0
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LemmA 2.3 (Chen [C]). Let ai,...,a, and b be n+ 1 real numbers, n > 1,
which satisfy the following

2
<Zu,~> Z(n—l)ZaiZ—I—b (resp. >).
i~ i=1

Then, for all i # j,

b
2a,a; > — (resp. >)

3. Proof of the main results

We begin this section proving the following lemma:

LemMmA 3.1.  Let M" be a submanifold (n > 3) in M"*?. Suppose the mean
curvature vector H does not vanish and it is parallel in the normal bundle. Let
&p,..., &, be orthonormal vector fields in T+M such that H = |H|Z,. If the
second fundamental form h of M satisfies

, _ nlHP
(21) W < —=r,
then
(22) Zp:{(trA Y(tr AjA2) — (tr A A,)*} > Irf*
— 1 14 11y =N 3

o, =2 =2

p p 2
03) Y Ny A + 2 < (Z N(Au) =i,

where N, Z and T are defined by (19) and (10). Moreover, the Ricci curvature of
M" has a lower bound.

Proof. 1t follows from the hypothesis that (6), (7) and (9) hold. Therefore,
for each o > 2, 4; and A4, can be simultaneously diagonalized. Let pi,...,p,

and p},...,pr be the eigenvalues of 4; and A,, respectively. We observe that
for each fixed o > 2,

(tr Ap)(tr 4147) — (tr 414,)° = (ZP) (Zn:pj(pﬁ)z) - <Xn:p,«pf‘> (Zn:ﬁ,p]?>-
i=1 = i=1 =

Therefore,

1 n
(24) (tr A (tr A7) = (0 4142 =57 pipy v} = ]
i,j=1
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On the other hand, the hypothesis (21) is equivalent to
(n[H|)* = (n— 1) tr A> + (n — 1)|T|*.
Since (6) holds, we obtain the inequality

(25) (Zp,) > (1= 1)S(p)* + (= DITE.
i=1

It follows from Lemma 2.3 that
2
(26) Pibj = %7 L # ]
Substituting the inequality (26) in (24), we obtain

1
(tr A))(tr AjA2) — (tr 4;42) = | T|? Z (Pt —p?)’

—%ITZ{Z Zp,pj}

i,j=1
2
|T|2 - o2 1 2 - o
:THZ(/)[) *§|T| ZP:‘ :
i=1 i=1
Therefore, for each o > 2, since (7) holds, we have

2
7|

T
(27) (tr Ay)(tr A A2) — (tr A 42) > TntrAg.

Summing over «, we obtain the inequality (22). The proof of (23) follows from
Lemma 2.2.

We will now show that the Ricci curvature has a lower bound. For each
fixed o > 2, using (21) and the fact that |T|* < (h)%, we have

(n—1)tr A2 = n?|H|> < (n— D)|T|* = n*|H|* <0 = (tr 4,)*.

This can be written as

0—<ZP1> > (- 1)S () - 2P
i=1

Hence, it follows from Lemma 2.3 that
—n?|H|?
pip; = 1)

This inequality together with (26) implies that the sectional curvature of M" has
a lower bound. Consequently, the Ricci curvature of M” has a lower bound.

O

i J.
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In the next result we treat the case ¢ > 0. We remark that, when ¢ = 0, we
obtain the result proved by Cheng and Nonaka [CN].

_ Tueorem 3.2. Let M", n>3, be a complete connected submanifold of
M™P(¢), ¢>0. Suppose the mean curvature vector H does not vanish and it
is parallel in the normal bundle. If the second fundamental form h of M satisfies

2
8) iyt < L

n—1"

then the codimension reduces to 1.

Proof. Since H does not vanish, we can choose orthonormal vector fields
¢y,...,¢,, normal to M, such that &, = H/|H|. Hence, (6) and (7) hold. We
consider | 7'|* defined by (10). It follows from Lemma 2.1 that (12) holds. Using
the notation introduced in (19), we have that

p
%A|T|2 = ;{arAl)(trAlAg) — (tr 41 4,)°}

)4 )4
— Y AN (Audy — ApAy) + Z2} + én| TP+ ||V A,
o, f=2 =2

Motivated by (22) and (23), we now define P; and P», as

P
(29) Py=> {(tr A))(tr 4,43) — (tr 414,)"},

=2

- 2
(30) Py = Z {N(AuAp — ApAy) + Zyy}
o, f=2
Then
1 2 ~ 2 g * 2

(31) SAIT® = Py — Py + &[T + ) VA,

=2
It follows from Lemma 3.1 that P; > n|T|*/2, and P, < 3|T|*/2. Hence,

(32) P — P> @IT\“-

Therefore, since ¢ > 0, it follows that

(33) %A|T\22P1—P22
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From Lemma 3.1, the Ricci curvature of M” has a lower bound and by
hypothesis |T|*, is bounded from above by n?|H|*/(n—1). Therefore, the
Generalized Maximum Principle (see [O], [Y]), applied to the function |T'|%
implies that there is a sequence {x;} of points on M, such that

(34) lim |7 () = sup| 7%,
K— 00

(35) llim sup A|T|(x;) < 0.
K— 00

Then, using (35), (33) and (34), we obtain
2
0> lim sup AT (x¢) = (n—3) <klim |T|2(xk)> = (n—3)(sup|T)*)?

Therefore,
(n—3)(sup|T|*)* =

If n > 4, then we must have |T|2 =0 on M. Hence, foreacha>2 A4,=0
and consequently, the first normal space is generated &;(x). We conclude from
Erbacher’s theorem [E2], that the codimension of the immersion reduces to 1.

Now, suppose 7 =3. From (33) we have A|T|* > 0. So, it follows from
(35) that

(36) lim sup A|T)* (x) = 0.

Observe that the hypothesis (28) implies that the sequence {/}(xx)};Z, is bounded
for each j, i and o. Therefore there is a convergent subsequence {/1}(xt,)}{_-
Define

= lim Aa(xky).

ky— o0

Restricting the inequality (33) to the sequence {xt,}(—, taking the limit and
denotmg by P; and P, the limits taken in P; and Pz, respectively, we obtain
using (35) and (34) that

0> lim sup A|T|?(xx,) = 2(P1 — P2) > (n — 3)(sup| T|*)?

This implies Py = P,. Hence, when we take the limit in (22) and (23), we have
the following equalities

p

_ o o 3 p _
(37) > {tr Ay tr A A — (tr 414,)*} = 3 sup|T|* Y " tr A
=2 =2

(38) > {N(A,Ap — Agd,) + Zpg}y = % (Z N(4 ) .

o, f=2
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From Lemma 2.2, applied to (38), we have either
a) Ay=---=A4,=0; or . .
b) Only two matrices among A», ..., 4, are not zero. In this case, we may
assume, without loss of generality, 4, # 0 and A3 # 0. Moreover, there
is an orthogonal matrix 7" such that

_(1 0 O —_({0 1 0
(39) T’AZT:\@ 0 -1 0| and T'AsT = % 1 00
0 0 O 0 00
where L = tr A7 = N(42) = N(43).
If a) occurs, then we have

p
sup|T|* = Ztr A2 =0.

Therefore, |T|2 =0 on M and the codimension reduces to 1.
We will now prove that b) cannot occur. Suppose, by contradiction, that b)

occurs. For each a« =2,...,p, as we saw in (24), we have
1
tr Ay tr A1 42 —(trAA E ppjp, ] ZlTl E pl—p]
302 2
=-|T|"tr 4
TP 42

where we used (26) and (27). Hence, restricting this inequality to the sequence
{x,} and taking the limit, we get from (37) that

n o . 1 n
(40) > o =) =5 sup|TI” Y (57 = )%
(=1

i,j=1

where p; = limy, .o, p;(xr,) € pff = limy, .o, p}(Xr,). Moreover, from (39) we have
p; # p, for i # j. Then, from (26) and (40) we obtain

(41) Pl =5 sup|T|?, for i# j.

Now, we observe that

tr A3 —n|H|* = tr A> — 2n|H|* + n|H|*

3 3
—2H|Y pi+y |H
i=1 p

(p; — |H|)?

e 1M
S

Il
_
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Then, we define
(42) \U|* := tr 42 — n|H|* > 0.
One can check that
Z pip; = [tr Al —tr Al2 .
i#j
Since, for n =3 we have
[tr 42 —tr A} = 6|H|* — [tr A} — 3|H|?]
— 6|H|* — |U|*.
Therefore, we have the equality
(43) S oy = 6|H U,
i#]
Restricting to the sequence {xj }, taking the limit and using (41), we obtain

6|H|* = Jim. U () + > oy
i#j

11m U (ox,) +Zf sup|T*.
i#j

Hence,

(44) 11m |U| (xr,) +3 sup\T| = 6|H|

,—>U‘

On the other hand, applying the limit to the inequality (25), using (41) and
Lemma 2.3, we have

(45) (Zp,> — (= )33 + (1) sup| TP
i=1

We observe that,

n

n P
Zﬁi:trffl = n|H|, Z(ﬁi)zztr A7 e sup|T\2:Ztr A2
i=1 =2

i=1

So (45) for n =3 reduces to

(3|H|)? —2trA2+ZZtrA2—2 hm ROSE!
=2
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that becomes
(46) Jim <2 () = §|H|2.

From (42), we have <h)*>=|U|*+|T|>+n|H|>. Hence, it follows from
(46) that

. 9
lim [U|*(xi,) +sup| T|* + 3|H|> = S |H|,
ky— 0 2
that is,
3 .
(47) sup|T|> = 2 |H|? — lim |U[*(xy,).
2 ky— 00

Substituting (47) in (44), we have
. 3 )
6|H|* = lim U|2(xk,_)+3<-|H|2— lim |U|2(xk,_)>
ky— o0 2 ky— o0
. 2 9 2
=2 lim |U|"(x,) +=|H|".
ky— o0 2

Whence it follows that

: 3
lim |UJ*(x,) = = |H|* <0,

ky— o0

This is a contradiction. Therefore, b) cannot occur. This concludes the proof
of the theorem. O

COROLLARY 3.3. Let M" be a complete connected submanifold (n > 3) of the
sphere S™7P(1).  Suppose the mean curvature vector H does not vanish and it is
parallel in the normal bundle. If the second fundamental form h of M satisfies
n?|H|?
n—1

Chy? <

)

then M™" is totally umbilic in S""(1).

Proof. 1f ¢ =1 in Theorem 3.2, then M" is contained in the sphere S"*!(1)
and it has constant mean curvature. Let {E|,...,E,} be an orthonormal basis
of T,M for which the second fundamental form A is diagonal. Denote by
Pis P2y -5 p, the eigenalues of A. Then, Gauss equation can be written

K(EiaE})_lzp[pj7 l;‘é]

where K(E;, E;) denotes the secctional curvature. It follows from (26) that M
has secctional curvature greater than or equal to 1. We conclude, using Theorem
2 proved by Nomizu and Smyth in [NS], that M" is totally umbilic in S"*!(1).

Ul
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A result analogous to Theorem 3.2, when ¢ <0, needs an additional
condition (see (48)) that is trivially satisfied when ¢ > 0.

THEOREM 3.4. Let M", n >3, be a complete and connected submanifold of
the hyperbolic space H"*?(¢), ¢ < 0. Suppose the mean curvature vector does not
vanish and it is parallel in the normal bundle. Let ,&s, ..., ¢, be orthonormal
vector fields normal to M such that H = |H|E,.  If the second fundamental form h
of M satisfies

2 2
<h>2 < n |H|
n—1
and
P
(48) an|TIP+> IV A4,* >0,
a=2

where A, is the second fundamental form associated to &,, |T|2 and V* are defined
by (10) and (5), then the codimension reduces to 1.

Proof. The proof starts with the same arguments used in the proof of
Theorem 3.2. We obtain as in (31) that

1 . Lo
5A|T|2 =P —Py+an|TIP+ )|V A4,
=2

where P; and P, where defined in (29) and (30) and moreover the inequality (32)
holds. Using the hypothesis (48) and (32), we have
3)

%A|T‘22P1—P22 n=3)

T|*.
5T

Now the proof follows with the arguments used in Theorem 3.2 for the case
¢c=0. ]

We will now prove, that a compact submanifold with non-negative Ricci
curvature and satisfying the hypothesis of Theorem 3.4 is a geodesic sphere in
H"*!(=1). This is a submanifold, whose points are at a fixed distance, from a
given point. Such hipersurfaces are totally umbilic [MB].

THEOREM 3.5. Let M" be a compact connected submanifold of H"?(—1).
Suppose that the mean curvature vector H does not vanish and it is parallel in the
normal bundle and that the Ricci curvature is non-negative. Let ¢i,...,¢, be
orthonormal vector fields normal to M such that H = |H|E,. If the second
Sfundamental form h of M satisfies

<h>2 < }’l2|H|2
n—1
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and

4
an| T + 3|1V, > 0,
=2

then M" is a geodesic sphere.

Proof. Tt follows from Theorem 3.4 that M" is a hypersurface of H"*!(—1).
The Ricci curvature of M" is non-negative by hypothesis. Since the mean
curvature vector is parallel in the normal bundle, we have that the mean curvature
of M" in H""!'(—1) is constant. We conclude the proof by using a theorem,
proved by Morvan and Bao-Qiang [MB] that any compact hypersurface of
H"*!(—1) with non-negative Ricci curvature and constant mean curvature is a
geodesic sphere. O

We conclude this section with our next result, where we consider an alter-
native hypothesis (see (50)), to the condition (48) of Theorem 3.4, that also allows
us to controll the sign of the laplacian of |T |2. In this case, as we will see, the
codimension is reduced to 3.

THEOREM 3.6. Let M", n>4, be a complete connected submanifold of
H"*?(¢), with ¢ <0 and p >3. Suppose that the mean curvature vector H
does not vanish and it is parallel in the normal bundle. Let ¢, ... &, orthonormal
vector fields normal to M such that H = |H|&,.  Furthermore, suppose that the
first normal space is invariant by parallel translation with respect to the normal
connection. If the second fundamental form h of M satisfies

2 2
» _ n’|H|
(49) < ——
and
2¢n
T? > —
(50) TPz -

where |T|2 is defined by (10), then the codimension reduces to 3.

Proof. With the same arguments used in the proof of Theorem 3.2. We
obtain as in (31) that

1 N wl
EA|T|2 =P, — Py+an|T|? +;||V A,||?

where P; and P, where defined in (29) and (30). Moreover, it follows from (22)
and (23) that
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2
(51) Pl > LA <’ XP:N(A) —3|T|4
=n 7 =3 2 o ) s
and the inequality (32) holds. Using (32), we have
1 -3
(52) SAITP > [(’12—>|T|2+En]|T2.

On the other hand, since (49) holds, by the Generalized Maximum Principle
applied to |T |2, we have the existence of a sequence {z;} of points of M such
that

(53) lim |T)?(z¢) = sup|T|* lim sup AIT|*(z) <0.
Then, it follows from (52), (53) and the hypothesis (50), that
(n—3)

0> lim sup AT (z) = 2 Jim [T 1T (zx) + 54 |T|?(zx)

=2 {@ sup|T|* + En} sup|7|* > 0.
Therefore,
{@ sup|T|* + En} sup|T|* = 0.

From (50), we have that sup|T|* > 0. Hence, sup|T|* = —2én/(n —3), and it
follows from (50) that

2¢n
54 2= :
(54) T = -5
Therefore, we have
1 -3
0= 5A\T|2 >P —Py+én|T) = {(HZ)ITIZ +En} |T)* = 0.

Hence, we have the equalities
P —Py+én|T|P=0
and

(n—3)
2

\T|* +én|T|> =0,
that imply

(55) P — P, :@m“.
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From (51), we have P, < 3|T|*/2. We claim that equality holds. In fact,
otherwise from (51), we would contradict (55). Therefore,

2

3 )4
P=3Tr 2 =3 (YN
=2

Therefore, at a given point yy e M, Lemma 2.2 implies, that either a)
Ay(y9) =0, for all & >2 or b) only two among the matrices 4,(yy) are not
zero. In this case, we may assume wihout loss of generality, that A>(y) # 0 and
A3(yo) #0.

We observe that a) cannot occur, since otherwise, we would have |T|?(yo)
=0, which contradicts (54). Then, b) must occur. Hence, the first normal
space is generated by &;(yo), & (o) and &3(y0) and by hypothesis, it is invariant
by parallel translation of the normal connection. Therefore, it follows from
Erbacher’s theorem [E2], that the codimension reduces to 3. O
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