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STABILITY AND INSTABILITY OF STANDING WAVES

FOR 1-DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION

WITH MULTIPLE-POWER NONLINEARITY

Masaya Maeda

1. Introduction and main results

In the present paper we consider the stability and instability of standing
waves for the following nonlinear Schrödinger equation:

iut þ uxx þ f ðuÞ ¼ 0; tb 0; x A R;ð1Þ
where f ðuÞ ¼

Pm
j¼1 ajjuj

pj�1
u with aj A R and 1 < p1 < � � � < pm < y. Equation

(1) arises in various regions of mathematical physics.
The unique local existence of (1) is well known. That is for any u0 A H 1ðRÞ,

there exists a positive constant T and a unique local solution u A Cð½0;TÞ;H 1ðRÞÞV
C1ð½0;TÞ;H�1ðRÞÞ of (1) with uð0Þ ¼ u0. Furthermore, uðtÞ satisfies the two
conservation laws kuðtÞkL2 ¼ ku0kL2 and EðuðtÞÞ ¼ Eðu0Þ, where EðvÞ :¼ 1

2 kvxkL2 �Ð
R
FðjvðxÞjÞ dx and F ðsÞ ¼

Ð s

0 f ðsÞ ds. For details, see, e.g., [4], [11] and [15].
We say that the solution of (1) is a standing wave if it has a form uðt; xÞ ¼

eiotjoðxÞ, where o > 0. Here jo is a solution of the following equation:

jxx � ojþ f ðjÞ ¼ 0; x A R; j A H 1ðRÞnf0g:ð2Þ
The existence and uniqueness of the solution of (2) is well known: Set

o� ¼ sup o > 0: there exists s > 0; s:t:
1

2
os2 � F ðsÞ < 0

� �
;

then for any o A ð0;o�Þ, there exists a solution jo of (2). Further the solution is
unique up to a translation and a phase change ([2]). In the present paper, we
study how the stability of standing waves depends on frequency o in the multiple-
power nonlinearity case.

Stability and instability of standing waves is defined as follows.

Definition 1. A standing wave uoðtÞ ¼ eiotjo is said to be stable if for all
e > 0 there exists d > 0 with the following property; for any u0 A H 1ðRÞ satisfying
ku0 � jokH 1ðRÞ < d, the solution uðtÞ of (1) with uð0Þ ¼ u0 can be continued to a
solution in 0a t < y and it satisfies the following condition
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sup
0at<y

inf
y;y AR

kuðtÞ � eiyjoð� � yÞkH 1ðRÞ < e:

Otherwise, uo is called unstable.

Remark 1. We note that the conception of stronger stability which does not
involve the translation

sup
0at<y

inf
y AR

kuðtÞ � eiyjokH 1ðRÞ;

cannot be used in studying the stability of (1). It is because if uðx; tÞ ¼ eiotjoðxÞ
is a solution of (1), then by a simple calculation, we observe that ucðx; tÞ ¼
eiðot�cx�c2tÞjoðxþ 2ctÞ is also a solution. It is not hard to see that ucðx; 0Þ can
be taken arbitrary near uðx; 0Þ by taking c small, and if c is not zero, then ucðtÞ
always goes away from uðtÞ (see [14]).

Recently, many authors have been studying the problem of stability and
instability of standing waves for nonlinear Schrödinger equations (see, e.g., [1, 2,
6, 7, 8, 9, 10, 12, 14, 17, 18]).

At first, we will introduce the results in the single power case f ðuÞ ¼ ajujp�1
u

with a > 0 and p > 1. For this case, if 1 < p < 5, then uo is stable for every
o A ð0;yÞ, and if 5a p, then uo is unstable for every o A ð0;yÞ (see [1], [3] and
[18]). For the single power case, (1) has scaling invariance, and using it, one can
verify the stability. Note that the stability of standing waves is independent of
the frequency o in the single power case. Although it is not the case with the
double power nonlinearity. In this case, there is no scaling invariance in (1),
so the problem to investigate the stability of standing waves becomes more
complicated.

Although, when f ðuÞ ¼ a1jujp1�1
uþ a2jujp2�1

u, Ohta [16] proved the follow-
ing theorem.

Theorem A (Ohta [16]). Let 1 < p1 < p2.
(I) Let a1; a2 > 0.

(I.1) If p2 a 5, then uo is stable for any o A ð0;yÞ.
(I.2) If p1 b 5, then uo is unstable for any o A ð0;yÞ.
(I.3) If p1 < 5 < p2, then there exist positive constants o1 and o2

such that uo is stable for any o A ð0;o1Þ, and unstable for any
o A ðo2;yÞ.

(II) Let a1 > 0, a2 < 0.
(II.1) If p1 a 5, then uo is stable for any o A ð0;o�Þ.
(II.2) If p1 > 5, then there exist positive constants o3 and o4 such that

uo is unstable for any o A ð0;o3Þ, and stable for any o A ðo4;o
�Þ.

(III) Let a1 < 0, a2 > 0.
(III.1) If p2 b 5, then uo is unstable for any o A ð0;yÞ.
(III.2) If p2 < 5, then there exists a positive constant o5 such that uo is

stable for any o A ðo5;yÞ. Furthermore if p1 þ p2 > 6, then
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there exists a positive constant o6 such that uo is unstable for any
o A ð0;o6Þ.

Theorem A shows that, in the double power case, the stability of standing
waves can change when the frequency o varies. In Theorem A, there are gaps in
(I.3) (for o A ½o1;o2�), (II.2) (for o A ½o3;o4�) and (III.2) (for o A ½0;o5� in the
case of p1 þ p2 < 6 and for o A ½o6;o5� in the case of p1 þ p2 > 6). It seems
di‰cult to verify whether the standing wave uo is stable or not if the equation
does not have scaling invariance. Our first target is to fill these gaps.

Our main results are the following.

Theorem 1. Let f ðuÞ ¼ a1jujp1�1
uþ a2jujp2�1

u.
(1) Suppose a1; a2 > 0 and 1 < p1 < 5 < p2. Then there exists o1 > 0 such

that for o A ð0;o1Þ, uo is stable, and for o A ½o1;yÞ, uo is unstable.
(2) Suppose a1 > 0, a2 < 0 and 5 < p1 < p2. Then there exists o2 > 0 such

that for o A ð0;o2�, uo is unstable, and for o A ðo2;o
�Þ, uo is stable.

(3) Suppose a1 < 0, a2 > 0, 7=3 < p1 < p2 < 5 and p1 þ p2 > 6. Then there
exists o3 > 0 such that for o A ð0;o3�, uo is unstable, and for o A ðo3;yÞ
then uo is stable.

Remark 2. Since a2 > 0 for the cases (1) and (3), we observe that o� ¼ y.
On the other hand, since a2 < 0 for the case (2), we have o� < y.

Remark 3. There are still gaps in the cases of Theorem 1 (3). However
Ohta [16] showed, when a1 < 0, a2 > 0 and p1 ¼ 2, p2 ¼ 3, uo is stable for any
o A ð0;yÞ. So, in Theorem 2 (3), the condition p1 þ p2 > 6 is needed, although
it may be not optimal.

In the single power case, the stability of standing waves does not change by o,
and in the double power case, stability of standing waves change at most once. So,
the natural question arises: if the equation has more powers, then could we get
standing waves that change its stability more than once? The next theorem gives
examples of standing waves that change its stability, by o, two and three times.

Theorem 2. (1) Let f ðuÞ ¼ a1juj2uþ juj6u� juj8u, let a1 > 0 be su‰ciently
small. Then there exist five real numbers 0 < o1 < o2 < o3 < o4 < o5

such that for o A ð0;o1ÞU ðo4;o5Þ, uo is stable, and for o A ðo2;o3Þ, uo
is unstable.

(2) Let f ðuÞ ¼ a1juj2uþ juj6u� a3juj8uþ juj10u, let a1 > 0 be su‰ciently
small and a3 > 0 su‰ciently large. Then there exist six real numbers
0 < o1 < o2 < o3 < o4 < o5 < o6 such that for o A ð0;o1ÞU ðo4;o5Þ,
uo is stable, and for o A ðo2;o3ÞU ðo6;yÞ, uo is unstable.

Remark 4. The conditions in Theorem 2 are for only technical reasons.
Our motivation was to show there are equations whose standing waves change its
stability several times when the frequency o varies.
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2. Proofs of Theorems 1 and 2

We first summarize three lemmas needed for the proof of Theorems 1 and 2.

Lemma 1 (Grillakis, Shatah and Strauss [12]). Set

IðoÞ ¼ kjok
2
2 ¼

ðy
�y

jjoðxÞj
2
dx:

If I 0ðoÞ > 0, then uoðtÞ ¼ eiotjo is stable, and if I 0ðoÞ < 0, then uo is unstable.

For the case I 0ð0Þ ¼ 0, Comech and Pelinovski proved the following the-
orem.

Theorem B (Comech and Pelinovski [5]). Let eiotjo be the standing wave
solution of (1). Assume that I 0ðo�Þ ¼ 0 and I 00ðo�Þ0 0 for some o� A ð0;o�Þ.
Then there is a positive number e such that for any d > 0, there exists t1 ¼
t1ðd; eÞ < y and a pair of functions ðo; rÞ A C 1ð½0; t1�; ð0;o�ÞÞ � C1ð½0; t1�;H 1ðRÞÞ,
such that uðtÞ ¼ ei

Ð t

0
oðt 0Þ dt 0 ðjoðtÞ þ rðtÞÞ is a solution to (1) and such that

joð0Þ � o�j < d, krðtÞkH 1ðRÞ a 0 and joðt1Þ � o�j > e.

The following lemma is a direct consequence of Theorem B.

Lemma 2. If I 0ðo�Þ ¼ 0 and I 00ðo�Þ0 0, then uo� is unstable.

Proof. Because jo is an even real valued function, qojo is an even real
valued function and qxjo is an odd real valued function. It follows that
qojo ? qxjo and qojo ? ijo in H 1ðRÞ. Now, note that the tangent space of
the orbit feisjo� ð� þ yÞ j s; y A Rg is spanned by qxjo� and ijo� . So by Theorem
B,

uðtÞ ¼ exp i

ð t

0

oðtÞ dt
� �

ðjoðtÞ þ rðtÞÞ@ jo� þ tqjo� :

Therefore uðtÞ, which was initially close to the orbit, leaves the e-tubular neigh-
borhood of the orbit in finite time. 9

Lemma 3 (Iliev and Kirchev [14]). Suppose f ðuÞ ¼
Pm

j¼1 ajjuj
pj�1

u, then we
have

I 0ðoÞ ¼ � 1

W 0ðhÞ

ð h

0

Pm
j¼1 cjðhqj � sqj Þ

ð
Pm

j¼1 djðhqj � sqj ÞÞ3=2
ds;

where qj ¼
pj � 1

2
, cj ¼

ajð5� pjÞ
pj þ 1

, dj ¼
2aj

pj þ 1
, WðsÞ ¼ os�

Pm
j¼1

2aj
pj þ 1

sðpjþ1Þ=2

and h ¼ hðoÞ is a positive number satisfying WðhÞ ¼ 0, W 0ðhÞ < 0 and WðsÞ > 0
for all s A ð0; hÞ.
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Remark 5. Function hðoÞ can be defined as

hðoÞ :¼ supfh > 0 jWðsÞ > 0 for all s A ð0; hÞg:
Recall the definition of o�. Since o A ð0;o�Þ, we have WðhðoÞÞ ¼ 0. Further,
by

WðsÞ > 0 , o > VðsÞ :¼
Xm
j¼1

2aj
pj þ 1

sðpj�1Þ=2;

we see that

hðoÞ ¼ supfh > 0 jo > VðsÞ for all s A ð0; hÞg:ð3Þ

So we have that hðoÞ is a monotone increasing function. Furthermore by (3), for
a1 > 0, hð0Þ ¼ 0 and for a1 < 0, hð0Þ > 0. Also for am > 0, limo!y hðoÞ ¼ y
and for am < 0, limo!o � hðoÞ < y.

We now describe the proof of Theorem 1

(Proof of Theorem 1). By Lemmas 1 and 2, we have only to check the sign
of I 0ðoÞ given by lemma 3.

In the case m ¼ 2, I 0ðoÞ can be written as

I 0ðoÞ ¼ � hð5�p1Þ=4

2W 0ðhÞ

ð1

0

Hðh; sÞ
ðd1ð1� sq1Þ þ d2ð1� sq2Þhq2�q1Þ3=2

ds;

where Hðh; sÞ :¼ c1ð1� sq1Þ þ c2ð1� sq2Þhq2�q1 . Because �hð5�p1Þ=4=2W 0ðhÞ is
always positive and we only care about the sign of I 0, it su‰ces to consider

F ðhÞ ¼
ð1

0

Hðh; sÞ
ðd1ð1� sq1Þ þ d2ð1� sq2Þhq2�q1Þ3=2

ds:

By a simple calculation, we have

F 0ðhÞ ¼ a2ðp2 � p1Þ
2ðp2 þ 1Þ hq2�q1�1 �

ð1

0

ð1� sq2Þ ~HHðh; sÞ
ðd1ð1� sq1Þ þ d2ð1� sq2Þhq2�q1Þ5=2

ds;

where ~HHðh; sÞ :¼ �rð1� sq1Þ � c2ð1� sq2Þhq2�q1 and r ¼ c1 þ 2d1ðq2 � q1Þ.
Now define

lðsÞ :¼ 1� sq1

1� sq2
:

Then, lðsÞ is a monotone decreasing function in ð0; 1Þ and lðsÞ satisfies

q1

q2
< lðsÞ < 1; Es A ð0; 1Þ:ð4Þ

Part (1). In this case, we have c1 > 0, c2 < 0 and r > 0. Put
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Ap1;p2 :¼ � c1q1

c2q2

� �1=ðq2�q1Þ
; Bp1;p2 :¼ � rq1

c2q2

� �1=ðq2�q1Þ
:

Taking h ¼ Ap1;p2a
1=ðq2�q1Þ for a > 0, Hðh; sÞ can be rewritten as Hðh; sÞ ¼

c1ð1� sq2ÞflðsÞ � aq1=q2g. From (4), if a < 1, i.e. h < Ap1;p2 , then FðhÞ > 0, and

if a > q2=q1, i.e. h > Ap1;p2ðq2=q1Þ
1=ðq2�q1Þ, then FðhÞ < 0. In the same way, we

see that if h < Bp1;p2 , we have F 0ðhÞ < 0.

Now, Ap1;p2 < Ap1;p2ðq2=q1Þ
1=ðq2�q1Þ always holds since q1 < q2. Also if

7=3a p1, then by a simple calculation we have Ap1;p2 < Ap1;p2ðq2=q1Þ
1=ðq2�q1Þ a

Bp1;p2 . Since F ðAp1;p2Þ > 0, F ðAp1;p2ðq2=q1Þ
1=ðq2�q1ÞÞ < 0 and F is a monotone

decreasing function at ðAp1;p2 ;Ap1;p2ðq2=q1Þ
1=ðq2�q1ÞÞ, there exists an o1 > 0 such

that if o A ð0;o1Þ, then qokjok
2 < 0. So, by lemmas 1 and 2, we have the

conclusion.
For the case 1 < p1 < 7=3, it su‰ces to prove that, if Bp1;p2 a h, then

FðhÞ < 0. If h A ðAp1;p2 ;Ap1;p2ðq2=q1Þ
1=ðq2�q1ÞÞ, there exists a solution of lðs�Þ�

aq1=q2 ¼ 0, since a A ð1; q2=q1Þ and lðsÞ decreases from 1 to q2=q1. Furthermore
if s A ð0; s�Þ, Hðh; sÞ is positive and if s A ðs�; 1Þ, it is negative. Also because the
denominator of the integrand of F is monotonically decreasing function, we see
that

Ð 1
0 Hðh; sÞ ds < 0 implies FðhÞ < 0. Now we note thatð1

0

Hðh; sÞ ds ¼ c1q1

q1 þ 1
þ c2q2

q2 þ 1
hq2�q1 ;

and
c1q1

q1 þ 1
þ c2q2

q2 þ 1
hq2�q1 < 0 , � c1q1ðq2 þ 1Þ

c2q2ðq1 þ 1Þ

� �1=ðq2�q1Þ
< h:

Therefore, since

� c1q1ðq2 þ 1Þ
c2q2ðq1 þ 1Þ

� �1=ðq2�q1Þ
< Bp1;p2 , q1 < q2;

we see that FðhÞ < 0 for Bp1;p2 a h.
Part (2). In this case we have c1 < 0, c2 > 0 and hð0Þ ¼ 0, hðo�Þ < y.

Since the signs of c1, c2 are opposite from part (1), we see that if Ap1;p2 > h, then
FðhÞ < 0, and if Ap1;p2ðq2=q1Þ

1=ðq2�q1Þ < h, then F ðhÞ > 0. Also by a simple
calculation we see that Ap1;p2ðq2=q1Þ

1=ðq2�q1Þ < hðo�Þ.
First if 0a r :¼ c1 þ 2d1ðq2 � q1Þ, then ~HHðh; sÞ will be always negative.

Consequently, since a2 < 0, F 0 > 0 will always hold. So we have the conclusion
in this case.

Next if r < 0, then we see that

~HHðh; sÞ < 0 , �rlðsÞ < c2h
q2�q1 :

Since lðsÞ < 1, if h > ð�r=c2Þ1=ðq2�q1Þ, then ~HHðh; sÞ < 0 and F 0ðhÞ > 0 follows.

By a simple calculation, we see that ð�r=c2Þ1=ðq2�q1Þ < Ap1;p2 . So, for h A

ð0;Ap1;p2 �, F is negative, and for h A ½Ap1;p2 ;Ap1;p2ðq2=q1Þ
1=ðq2�q1Þ�, F 0 is positive,
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and for h A ½Ap1;p2ðq2=q1Þ
1=ðq2�q1ÞÞ; hðo�ÞÞ, F is positive. From this, we have the

conclusion.
Part (3). In this case we have c1 < 0, c2 > 0, r < 0, and hð0Þ > 0. Since the

signs of c1, c2 are the same as in part (2), we see that if Ap1;p2 > h, then F ðhÞ < 0,
and if Ap1;p2ðq2=q1Þ

1=ðq2�q1Þ < h, then F ðhÞ > 0. Now, since hð0Þ > 0, we wish to
make Ap1;p2 larger than hð0Þ. By a simple calculation we see that if q1 þ q2 > 2,
i.e. p1 þ p2 > 6, then hð0Þ < Ap1;p2 holds.

Next, observing ~HHðh; sÞ, we see that if h < ð�rq1=c2q2Þ1=ðq2�q1Þ, then
F 0ðhÞ > 0. Now, if p1 > 7=3, by a simple calculation we see that

Ap1;p2ðq2=q1Þ
1=ðq2�q1Þ < ð�rq1=c2q2Þ1=ðq2�q1Þ:

So, for h A ð0;Ap1;p2 �, F is negative, and for h A ½Ap1;p2 ;Ap1;p2ðq2=q1Þ
1=ðq2�q1Þ�, F 0 is

positive, and for h A ½Ap1;p2ðq2=q1Þ
1=ðq2�q1ÞÞ; hðo�ÞÞ, F is positive. This gives us

the conclusion. 9

(Proof of Theorem 2). We will not consider the point where I 0ðoÞ ¼ 0, so
we will only use Lemmas 1 and 3, and will not use Lemma 2.

Part (1). Since a1 > 0 and a3 :¼ �1 < 0, we have hð0Þ ¼ 0 and hðo�Þ < 0.
Furthermore, calculating hðo�Þ from the definition, we see that hðo�Þ > 1.

By Lemma 3,

I 0ðoÞ ¼
ð h

0

1
2 a1ðh� sÞ � 1

4 ðh3 � s3Þ þ 2
5 ðh4 � s4Þ

1
2 a1ðh� sÞ þ 1

4 ðh3 � s3Þ � 1
5 ðh4 � s4Þ

� �3=2 ds:

Set

Hðh; sÞ :¼ 1

2
a1ðh� sÞ � 1

4
ðh3 � s3Þ þ 2

5
ðh4 � s4Þ:

Then we have

Hðh; sÞ > 0 , a1

2
� 1

4
ðh2 þ hsþ s2Þ þ 2

5
ðh3 þ h2sþ hs2 þ s3Þ > 0:

So, by setting

GðhÞ :¼ a1

2
� 3

4
h2 þ 2

5
h3;

~GGðhÞ :¼ a1

2
� 1

4
h2 þ 8

5
h3;

we see that GaHa ~GG. Therefore if GðhÞ > 0, then Hðh; sÞ > 0 for Es A ð0; hÞ,
and if ~GGðhÞ < 0, then Hðh; sÞ < 0 for Es A ð0; hÞ.

Now, GðhÞ is positive near h ¼ 0 and ~GGðhÞ takes negative values for some
h A ð0; 1Þ when a1 is small. So, we see that there exist h1 < h2 < h3 ð< 1Þ such
that for h A ð0; h1Þ, I 0 > 0 and for h A ðh2; h3Þ, I 0 < 0.

Next, we will show that for h ¼ 1, I 0 > 0.
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Hð1; sÞ ¼ a1

2
ð1� sÞ � 1

4
ð1� s3Þ þ 2

5
ð1� s4Þ

¼ a1

2
ð1� sÞ þ 3

20
þ s3

1

4
� 2

5
s

� �

> 0:

So, there exist two numbers h4 and h5 such that h3 < h4 < 1 < h5 < hðo�Þ and
I 0ðhÞ > 0 for h A ðh4; h5Þ.

Part (2). In this case, we only have to calculate G and ~GG as in Part (1).
9

Remark 6. We can make an example of standing waves that change its
stability exactly 2m� 1 times when the frequency o varies, by considering 2m-
power nonlinearity. In fact, by taking

f ðuÞ ¼ a1juj2uþ
X2m
j¼2

ð�1Þ jN�ðð2m�jÞð2mþ1� jÞ=2Þjuj2jþ2
u;

and if N is su‰ciently large and a1 is su‰ciently small, we see that FðhÞ changes
its sign as frequency o varies in the same way as Theorem 1 and Theorem 2.
This is possible because we can set a1 > 0 and a2m > 0, so that hð0Þ ¼ 0 and
hðyÞ ¼ y. This makes computation simpler because we do not have to
consider the situations like in the proof of part (3) of Theorem (1) (for example,
the situation hð0Þ < Ap1;p2 ).
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(1987), 113–129.

[16] M. Ohta, Stability and instability of standing waves for one-dimensional nonlinear Schrö-
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