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STABILITY AND INSTABILITY OF STANDING WAVES
FOR 1-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION
WITH MULTIPLE-POWER NONLINEARITY

MASAYA MAEDA

1. Introduction and main results

In the present paper we consider the stability and instability of standing
waves for the following nonlinear Schrédinger equation:

(1) iy +uye + f(u) =0, t>0,xeR,

where f(u) => ", aj|ul”'u with ajeR and 1 < p; < --- < p,, < 0. Equation
(1) arises in various regions of mathematical physics.

The unique local existence of (1) is well known. That is for any uy € H'(R),
there exists a positive constant 7" and a unique local solution u € C([0, T); H'(R)) N
C'([0,T); H'(R)) of (1) with u(0) =uy. Furthermore, u(f) satisfies the two
conservation laws [[u(7)[| ;> = ||uo|| > and E(u(t)) = E(uo), where E(v) := 1 |lvy||,» —
Jr F(lo(x)]) dx and F(s) = [, f(c)de. For details, see, e.g., [4], [11] and [15].

We say that the solution of (1) is a standing wave if it has a form u(¢, x) =
e g, (x), where w > 0. Here ¢, is a solution of the following equation:

(2) Py — 0P + f((ﬂ) =0, xeR,pe H' (R)\{O}

The existence and uniqueness of the solution of (2) is well known: Set

1
o= sup{w > 0: there exists s >0, s.t. Ecos2 —F(s) < 0},

then for any w € (0,w*), there exists a solution ¢, of (2). Further the solution is
unique up to a translation and a phase change ([2]). In the present paper, we
study how the stability of standing waves depends on frequency w in the multiple-
power nonlinearity case.

Stability and instability of standing waves is defined as follows.

DEFINITION 1. A4 standing wave u,(t) = e™'¢,, is said to be stable if for all
¢ > 0 there exists § > 0 with the following property; for any uy € H'(R) satisfying
o — @0l 1 vy < O, the solution u(t) of (1) with u(0) = uy can be continued to a
solution in 0 <t < co and it satisfies the following condition
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sup inf [u(t) — e“p, (- — Wiwy <e
0<i<oo 0hyeR

Otherwise, u,, is called unstable.

Remark 1. We note that the conception of stronger stability which does not

involve the translation
inf ||u(r) — e
JSup Il Jju(t) = Tgullmw)

cannot be used in studying the stability of (1). It is because if u(x, ) = e™'¢p, (x)
is a soluztion of (1), then by a simple calculation, we observe that u.(x,t) =
ellwi—ex=c)y (x4 2ct) is also a solution. It is not hard to see that u.(x,0) can
be taken arbitrary near u(x,0) by taking ¢ small, and if ¢ is not zero, then u.(¢)
always goes away from u(¢) (see [14]).

Recently, many authors have been studying the problem of stability and
instability of standing waves for nonlinear Schrodinger equations (see, e.g., [1, 2,
6,7, 8,9, 10, 12, 14, 17, 18)).

At first, we will introduce the results in the single power case f(u) = alul”'u
with @ >0 and p > 1. For this case, if 1 < p <5, then u, is stable for every
w € (0,00), and if 5 < p, then u, is unstable for every w € (0, c0) (see [1], [3] and
[18]). For the single power case, (1) has scaling invariance, and using it, one can
verify the stability. Note that the stability of standing waves is independent of
the frequency w in the single power case. Although it is not the case with the
double power nonlinearity. In this case, there is no scaling invariance in (1),
so the problem to investigate the stability of standing waves becomes more
complicated.

Although, when f(u) = a;|u|”~'u + ay|u|”* 'u, Ohta [16] proved the follow-
ing theorem.

THEOREM A (Ohta [16]). Let 1 < p; < p.
(I) Let aj,a; > 0.
(L1) If p» <5, then u,, is stable for any w € (0, ).
(L2) If p1 =5, then u,, is unstable for any w € (0, 0).
(I3) If p1 <5< pa, then there exist positive constants o, and
such that u, is stable for any e (0,w,), and unstable for any
€ (wy, 0).
(I) Let a; >0, a <O0.
(IL1) If p1 <5, then u,, is stable for any o € (0,w*).
(IL2) If p1 > 5, then there exist positive constants wz and wy such that
Uy, is unstable for any w € (0,ws3), and stable for any @ € (w4, ®*).
(III) Let a; <0, a; > 0.
(IIL1) If p2 =5, then u, is unstable for any w € (0, o).
(IIL.2) If p» < 5, then there exists a positive constant ws such that u, is
stable for any w € (ws, ). Furthermore if p; + py > 6, then
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there exists a positive constant wg such that u,, is unstable for any
w € (0, wg).

Theorem A shows that, in the double power case, the stability of standing
waves can change when the frequency w varies. In Theorem A, there are gaps in
(1.3) (for w € [w1,ws]), (I1.2) (for w € [w3,w4]) and (II1.2) (for w € [0, ws] in the
case of p; + p, <6 and for w € [wg, ws] in the case of p; + py > 6). Tt seems
difficult to verify whether the standing wave u,, is stable or not if the equation
does not have scaling invariance. Our first target is to fill these gaps.

Our main results are the following.

TrEOREM 1. Let f(u) = ay|ul” 'u+ as|ul” 'u.

(1) Suppose aj,a, >0 and 1 < py <5< pa. Then there exists w, >0 such
that for o€ (0,1), u, is stable, and for o € [w;, ), u, is unstable.

(2) Suppose ay >0, ay <0 and 5 < py < pa. Then there exists w, > 0 such
that for w e (0,ws], uy, is unstable, and for w € (wy,w*), u, is stable.

(3) Suppose a1 <0, ay >0, 7/3 < p1 < pr<5and py+ pr >6. Then there
exists w3 > 0 such that for o € (0, ws)], u, is unstable, and for @ € (w3, )
then u, is stable.

Remark 2. Since a; > 0 for the cases (1) and (3), we observe that o* = o0.
On the other hand, since a, < 0 for the case (2), we have w* < 0.

Remark 3. There are still gaps in the cases of Theorem 1 (3). However
Ohta [16] showed, when a; <0, a; > 0 and p; =2, p, =3, u, is stable for any
w € (0,00). So, in Theorem 2 (3), the condition p; + p, > 6 is needed, although
it may be not optimal.

In the single power case, the stability of standing waves does not change by w,
and in the double power case, stability of standing waves change at most once. So,
the natural question arises: if the equation has more powers, then could we get
standing waves that change its stability more than once? The next theorem gives
examples of standing waves that change its stability, by w, two and three times.

TueoreM 2. (1) Let f(u) = ay|ul*u + |u|®u — |u|*u, let a; > 0 be sufficiently
small.  Then there exist five real numbers 0 < w; < wy < w3 < Wy < W5
such that for o € (0,w1) U (w4, ws), gy, is stable, and for w € (w2, w3), Uy
is unstable.

) Let f(u) = ay|u*u+ |u|®u — as|ul*u+ [u)u, let ay >0 be sufficiently
small and as > 0 sufficiently large. Then there exist six real numbers
O0<w <y <w; <wy <ws <we such that for e (0,w1)U (w4, ms),
Uy, is stable, and for w € (wa,w3) U (we, ), u, is unstable.

Remark 4. The conditions in Theorem 2 are for only technical reasons.
Our motivation was to show there are equations whose standing waves change its
stability several times when the frequency « varies.
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2. Proofs of Theorems 1 and 2

We first summarize three lemmas needed for the proof of Theorems 1 and 2.

LemmA 1 (Grillakis, Shatah and Strauss [12]). Set

1) =lpali = lrulo)l’ ax.

— o0

If I'(w) > 0, then u,(t) = e, is stable, and if I'(w) < 0, then u, is unstable.

For the case I’'(0) =0, Comech and Pelinovski proved the following the-
orem.

THEOREM B (Comech and Pelinovski [5]). Let e™®p, be the standing wave
solution of (1).  Assume that I'(w,) =0 and I"(w.) # 0 for some w, € (0,w™).
Then there is a positive number ¢ such that for any 6 >0, there exists t; =
1(9,&) < o0 and a pair of functions (»,p) € C'([0,1]; (0,w*)) x C'([0,11]; H' (R)),
such that u(t) = eifow(’/)d'/((pw(,) +p(2)) is a solution to (1) and such that
|0(0) — .| <, [[p(Olgiry <0 and |o(t) — .| > e

The following lemma is a direct consequence of Theorem B.
LemMa 2. If I'(w.) =0 and I"(w.) # 0, then u,, is unstable.

Proof. Because ¢, is an even real valued function, d,¢p, is an even real
valued function and d,¢, is an odd real valued function. It follows that
0wp, L 0xp, and 0,0, L ip, in H'(R). Now, note that the tangent space of
the orbit {e”¢p, (-+ y)|s, y € R} is spanned by 0\p, and ip, . So by Theorem
B,

u(t) = exp (f J;w<r> dr) (o) + (1)) ~ 9o+ 100,

Therefore u(¢), which was initially close to the orbit, leaves the e-tubular neigh-
borhood of the orbit in finite time. [ ]

Lemma 3 (Iliev and Kirchev [14]).  Suppose f(u) =3 ", ajlu|” ", then we
have

, B 1 h Z/’i] Cj(h%‘ _ s%’)
I(w)*—W,h p : 37 ds,
(h) Jo (2, di(he — s9))
where q; = 2 , ¢ = a( p_,)’ d: 4j Wi(s) =ws— " 4a; SprHD/2

2 pji+1 j:p/%;l’ jzlp_,'Jrl
and h = h(w) is a positive number satisfying W(h) =0, W'(h) <0 and W(s) >0
Sor all se (0,h).
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Remark 5. Function h(w) can be defined as
h(w) :=sup{h > 0| W(s) >0 for all se(0,h)}.
Recall the definition of w*. Since w € (0,w*), we have W(h(w)) = 0. Further,
by

24 (1

W) >0 w> V(s =
() () A/‘:lpj—‘rl

3

we see that
(3) h(w) =sup{h>0|w > V(s) for all se(0,h)}.

So we have that /() is a monotone increasing function. Furthermore by (3), for
a; >0, h(0) =0 and for a; <0, A(0) > 0. Also for a, >0, lim,_ h(w) =
and for a, <0, lim,_,- i(w) < co.

We now describe the proof of Theorem 1

(Proof of Theorem 1). By Lemmas 1 and 2, we have only to check the sign
of I'(w) given by lemma 3.
In the case m =2, I'(w) can be written as

h(5p1)/4J1 H(h,s) p
p— S7
2W'(h) Jo (dy(1 = s0) + do(1 — s )har—a)*/?
where H(h,s) := ci(1 —s9) + ca(1 — s2)h%~9, Because —hC—PV/4*/2W'(h) is
always positive and we only care about the sign of I’, it suffices to consider
1
H
h) = J (%.5) — ds.
0 (di(1 = s0) + dy(1 — s@)har—ar)¥/

I'(w) =

By a simple calculation, we have
_ 1 1 — s\ H
l(/’l) _ Clz(pz p‘)hqz—ql—l « J ( S )H(h,S) — dS,
2(p2+1) 0 (dy(1 = s9) + dy(1 — s )he—0)™

where H(h,s) := —r(1 —s9) — c3(1 — s2)h®=9 and r = ¢; + 2di(q2 — q1).
Now define

I —s%

=

1(s) :

Then, /(s) is a monotone decreasing function in (0,1) and /(s) satisfies

4) D15y <1, Vse(0,1).

q2
Part (1). In this case, we have ¢; >0, ¢; <0 and r > 0. Put
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. _aq 1/(q2—q1) . g 1/(q2—q1)
Ap, p, = 20> s Bpip, = 2> .

Taking h = A, o'/~ for o >0, H(hs) can be rewritten as H(h,s)=
ci(1 —s2){l(s) —ag1/q2}. From (4), if « < 1, i.e. h < Ap, p,, then F(h) > 0, and
if «>q2/q1, i.e. h> A, pv(qz/ql)l/ @74 then F(h) <0. In the same way, we
see that if & < B, ,,, we have F’ (h) < 0.

Now, A,y < Apip(q2/q1)" 271 always holds since ¢ < ¢2. Also if
7/3 < p1, then by a simple calculation we have 4, ,, < A4, ,,(92/41) Wa—a) <
B, ,,. Since F(Ap, ) >0, F(A4p, pz(qz/ql)l/ o q‘)) <0 and F is a monotone
decreasing function at (A,,l_pz,Aphpz(qz/ql)l/(q’ ), there exists an @; > 0 such
that if w e (0,w;), then d,p,|> <0. So, by lemmas 1 and 2, we have the
conclusion.

For the case 1< p; <7/3, it sufﬁces to prove that, if B, , <h, then
F(h) <0. If he (A, p,, Apl‘pz(qQ/Q])l/ ©=4)) " there exists a solution of /(s*) —
aq1/q2 =0, since o € (1,¢92/¢q1) and /(s) decreases from 1 to ¢»/q). Furthermore
if s €(0,s%), H(h,s) is positive and if s € (s*,1), it is negative. ~Also because the
denomlnator of the integrand of F is monotomcally decreasing function, we see
that fo H(h,s)ds < 0 implies F(h) < 0. Now we note that

1
J H(h7s> ds:ﬂ_F @492 hqz f117
0 g+l g+1

and

. 1/(a2—a1)
AL h g O@( aqi(g2 + 1)) T
a+1 g+l e2q2(q1 +1)

Therefore, since

(_C1Q1(Q2+ D)
o (qr+1)

we see that F(h) <0 for B, ,, <h.

Part (2). In this case we have ¢; <0, ¢; >0 and h(0) =0, h(w*) < oo.

Since the signs of ¢, ¢, are oppos1te from part (1), we see that if 4, ,, > A, then
F(h) <0, and if 4, ,,(q2/q1) Vie=4) < p then F(h)>0. Also by a simple
calculation we see that A,,,,,,z(qz/ql)l/(q2 7 h(w™)

First if 0 <r:=c; +2di(q2 —q1), then H(h,s) will be always negative.
Consequently, since a; < 0, F’ > 0 will always hold. So we have the conclusion
in this case.

Next if r < 0, then we see that

H(h,s) <0< —rl(s) < c;h®™1,

Since I(s) < 1, if h> (=r/c))" ™) then H(h,s) <0 and F'(h) >0 follows.
By a simple calculation, we see that (—r/cy)"/(@ 1) < Ap, p,- So, for he

1/(q2—q1)
) < By p, & q1 < q,

(0,4,, 5], F is negative, and for & e [A,,lﬂm,Am‘m(qg/ql)l/(qz_"‘)], F’ is positive,
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and for h € [Ay, ,,(q2/q1)" "), h(w*)), F is positive. From this, we have the
conclusion.

Part (3). In this case we have ¢; <0, ¢ >0, r <0, and 2(0) > 0. Since the
signs of ¢, ¢, are the same as in part (2), we see that if 4, ,, > h, then F(h) <0,
and if Aphpz(qz/ql)l/(qrq‘) < h, then F(h) > 0. Now, since 1(0) > 0, we wish to
make A, ,, larger than /(0). By a simple calculation we see that if ¢; + ¢ > 2,
ie. p1+ p» > 6, then h(0) < 4, ,, holds.

Next, observing H(h,s), we see that if &< (—rq/caqa)/ %), then
F’(h) > 0. Now, if p; > 7/3, by a simple calculation we see that

Api.ps (g2/q)) " 1) < (—rqy [eaqy) V@),

So, for h € (0, 4y, ,,], F is negative, and for & € [Ap, p,, Ap, p(q2/q1) " M), F' is
positive, and for /i € [4,, ,, (g2/q1)" =) h(w*)), F is positive. This gives us
the conclusion. [ |

(Proof of Theorem 2). We will not consider the point where I'(w) =0, so
we will only use Lemmas 1 and 3, and will not use Lemma 2.

Part (1). Since a; > 0 and a3 := —1 <0, we have #(0) =0 and h(w*) < 0.
Furthermore, calculating i(w*) from the definition, we see that A(w*) > 1.

By Lemma 3,

o) — b dai(h—s) =3 (0P —53) +3(h* — 5% 4
(@) = 1 L 3 Lo a2
0 (Yai(h—s)+5(h3 —s3) —L(h* — %))
Set
1 Loy v, 2,4 4
H(h,s) ::E“‘(h_s)_z(h —s)—&-g(h —s7)
Then we have
1 2
H(h,s)>0@%—Z(h2+hs+s2)+§(h3+h2s+hs2+s3)>0.
So, by setting
_@ 3.5 23
G(h) = > 4h +5h,
sy @1, 85
G(h) = 3 4h +5h,

we see that G < H < G. Therefore if G(/) > 0, then H(h,s) > 0 for Vs e (0,4),
and if G(h) <0, then H(h,s) <0 for Vse (0,h).

Now, G(h) is positive near 1 =0 and G(h) takes negative values for some
he(0,1) when a; is small. So, we see that there exist s < fiy < i3 (< 1) such
that for he (0,/), I' >0 and for he (hy,h3), I' <O.

Next, we will show that for 2=1, I’ > 0.
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H(l,s):%(lfs)f%(lff)Jr%(lfs“)
_a 3. gl 2
BT (4 5S>
> 0.

So, there exist two numbers /4 and /s such that i3 < hy <1 < hs < h(w*) and
I'(h) >0 for he (ha,hs). ~

Part (2). In this case, we only have to calculate G and G as in Part (1).

]

Remark 6. We can make an example of standing waves that change its
stability exactly 2m — 1 times when the frequency « varies, by considering 2m-
power nonlinearity. In fact, by taking

2m
S ) = arfufut 3 (=) N Cm e D ¥,
j=2

and if N is sufficiently large and «; is sufficiently small, we see that F(4) changes
its sign as frequency w varies in the same way as Theorem 1 and Theorem 2.
This is possible because we can set a; >0 and ay, > 0, so that 4#(0) =0 and
h(oo) = oo. This makes computation simpler because we do not have to
consider the situations like in the proof of part (3) of Theorem (1) (for example,
the situation /(0) < Ap, ,,).
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