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TOPOLOGY OF POLAR WEIGHTED HOMOGENEOUS
HYPERSURFACES

Mutsuo Oxka

Abstract

Polar weighted homogeneous polynomials are special polynomials of real variables
Xi, yi, i=1,...,n with z; =x; ++/—1y; which enjoy a “polar action”. In many
aspects, their behavior looks like that of complex weighted homogeneous polyno-
mials. We study basic properties of hypersurfaces which are defined by polar weighted
homogeneous polynomials.

1. Introduction

We consider a polynomial f(z,z) =3, u O Z! where z = (z1,-y2n), 2=
(Ziy..oyZn), 2" =2z{" -~ z)n for v=(vi,...,v,) (respectively z* =z{"...z}" for
w=(yy,...,1,) as usual. Here Z; is the complex conjugate of z;. Writing
zi=x;+V—1ly;, it is easy to see that f is a polynomial of 2n-variables
X1, V1y--+>Xn, ¥o. Thus f can be understood as a real analytic function

f:C"— C. We call f a mixed polynomial of zi,...,z,.
A mixed polynomial f(z,z) is called polar weighted homogeneous if there
exist integers ¢qi,...,q, and pi,...,p, and positive integers m,, m, such that

ng(qla"'aql1):17 ng(pla"'apl’l):L
n n
Zq](v] +1uj) = my, Zp](vj —/lj) = mpa if cv,,u # 0
J=1 j=1

We say f(z,Z) is a polar weighted homogeneous of radial weight type
(91,---.qn;m,) and of polar weight type (pi,..., ps;mp,). We define vectors of
rational numbers (ui,...,u,) and (vi,...,v,) by w; = q;/m,, v; = p;/m, and we
call them the normalized radial (respectively polar) weights. Using a polar coor-
dinate (r,7) of C* where r >0 and 7€ S! with S!' = {ne C||y| =1}, we define
a polar C*-action on C" by
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(rn)oz = (r'yzy,....r¥y"z,), (r,n) eR" x S!

(r,m)oz=(r,g)oz= (rt'y0zy,...,riy?nz,).
Then f satisfies the functional equality
(1) S((r;n) o (2,2)) = r"n™f(z,2).

This notion was introduced by Ruas-Seade-Verjovsky [12] implicitly and then by
Cisneros-Molina [2].
It is easy to see that such a polynomial defines a global fibration

f:C"—f710) — C*.

The purpose of this paper is to study the topology of the hypersurface F = f~1(1)
for a given polar weighted homogeneous polynomial, which is a fiber of the
above fibration. Note that F has a canonical stratification

n}F*Ia F*I:FﬂC*I

.....

Our main result is Theorem 10, which describes the topology of F*! for a
simplicial polar weighted polynomial.

2. Polar weighted homogeneous hypersurface

This section is the preparation for the later sections. Proposition 2 and
Proposition 3 are added for consistency but they are essentially known from the
series of works by J. Seade and coauthors [12, 13, 10, 11, 14].

2.1. Smoothness of a mixed hypersurface. Let f(z,Z) be a mixed polynomial
and we consider a hypersurface V ={ze C"; f(z,Z) =0}. Put z; =x; +1iy;.
Then f(z,Z) is a real analytic function of 2n variables (x,y) with x = (xy,...,xy)
and y= (y1,...,a). Put f(z,Z) = g(x,y) + ih(x,y) where g, 1 are real analytic

functions. Recall that
0 1/ 0 .0 0 1/ 0 .0
—_— = —1— , — = _+l_
6zj 2 6xj ay] 6zj 2 an (3yj
k(o ok ok L ok ok
0z 2\ox; dy) 05 2\ox;  dy

for any analytic function k(x,y). Thus for a complex valued function f, we
define

Thus

of dg .O0h Of dg .dg
_—— 11— _—— 11—
0z 0z 0z 05 0% 0f
We assume that g, # are non-constant polynomials. Then V is a real
codimension two subvariety. Put
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9 dg g 69) R

oxp’ 70X, 0y1T T Oy

drg(X,y) = (

oh oh  oh oh
dRh(X,¥) = (5= sy a2 sy 2 | ER”
R (X5 y) (aXI ) 7axn Y 6}/1 ) ’6}}”) €

For a complex valued mixed polynomial, we use the notation:

df(z,i):<af af)eC’77 c?f(z,i):<§£,‘..,g>eC”

0z’ 0z,

Recall that a point z e V' is a singular point of V if and only if the two vectors
dg(x,y), dh(x,y) are linearly dependent over R (see Milnor [4]). This condition
is not so easy to be checked, as the calculation of g(x,y), 4(x,y) from a given
f(z,Z) is not immediate. However we have

PropoSITION 1.  The following two conditions are equivalent.
(1) ze V is a singular point of V and dimg(V,z) =2n —2. -
(2) There exists a complex number o, |o| =1 such that df (z,z) = o df (z,Z).

Proof. First assume that drg, drh are linearly dependent at z. Suppose for
example that dg(x,y) # 0 and write dh(x,y) =t dg(x,y) for some e R. This
implies that

of 09 Of 09

5% (1+1i) 3’ (14 1) 5, thus
of (09 .0g of (09 .0g
_— = 1 _— ] — _— = 1 —_— — .
52 (1 + #) (ax, zayj), 32 (1 + 1) axj+’ 5,

Thus

= 2(1 + ti) dpy(z,7)

= 2(1 + ti) dz9(z,7)

Here d,g = (ﬁ ﬁg) and dzg = <6_Zq 75_(} As g is a real valued
1

oz 0z, oz’ 0Z,
polynomial, using the equality d,g(x,y) = dzg(x,y) we get
— -1, _
df(2.7) = 1 df (2.2)

-t
1+

Conversely assume that df(z,zZ) = a df(z,Z) for some o =a+bhi with
a’> +b*> =1. Using the notations

Thus it is enough to take o =
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a9 dg a9 a9
deg=(=—,..., . dyg=(=2,...,=2), etc,
* (axl axn> v <6y1 )

(1—a) deg+ b dyg = —b dih — (1 + a) dyh
—bdug+ (1 —a)dyg = (a+1)dh—bdh.

Solving these equations assuming a # 1, we get

we get

—2b
drg = (dvg,dyg) = ——=5—— drh
K ( b9) (l—a)z—f—b2 K
which proves the assertion. If @ =1, the above equations implies that dhg =0
and the linear dependence is obvious. O

2.2. Polar weighted homogeneous hypersurfaces. Let f be a polar weighted ho-

mogeneous polynomial of radial weight type (g1, ...,q¢,;m,) and of polar weight
type (pi,...,pn;m,). By differentiating (1) in §1, we get
_ - of a .
2 rJ(2,Z) = i\ 3 Zi T2z Zi
(2) mf(z,7) ;q <(,)Z[z +OZ[Z>
. o o .
(3) m]’f Z Z Zpl<0zl 1 a— )

We call these equalities Euler equalities. Recall that C" has the canonical
hermitian inner product defined by

(Z,W) =Z1W + -+ zZ,W,.

Identifying C" with R by z < (x,y), the Euclidean inner product of R*" is given
as (z,w)g = R(z,w). Or we can also write as

(2. W)g = 5 (1, 0) + (7.9))

PROPOSITION 2. For any o # 0, the fiber F, := f~'(a) is a smooth 2(n — 1)
real-dimensional manifold and it is canonically diffeomorphic to Fy = f~(1).

Proof. Take a point zeF,. We consider two particular vectors
v.,vp € T,C" which are the tangent vectors of the respective orbits of R and S':

d(roz)

V= dr . = ((11217 e ,%1211)7
deoz ) .
Vg = % o = (ip1z1,. .., anZn)~
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Taking the differential of the equality

S ((r,exp(i0)) o z)) = "™ exp(m,0i) f (,Z),
we see that df, : T,C" — T,C* satisfies

0 0
afz(v,) = m1‘|d|5a df-(vo) = mp%

where (r,0) is the polar coordinate of C*. This implies that f:C" — C is
a submersion at z. Thus F, is a smooth codimension 2 submanifold. A
diffeomorphism ¢, : F; — F, is simply given as ¢(z) = (r'/" exp/™) o z where
o = rexp(if). O

The above proof does not work for « = 0. Recall that the polar R*-action
along the radial direction is written in real coordinates as

ro(x,y) = (rf'xy,...,r"x,,ryy,....,r"y,), reR".

PROPOSITION 3. Let V = f~1(0). Assume that q; > 0 for any j. Then V is
contractible to the origin O. If further O is an isolated singularity of V, V\{O} is
smooth.

Proof. A canonical deformation retract §,: V' — V is given as f5,(z) = t oz,
0<r<1. (More precisely fy(z) =lim,_ f,(z).) Then f; =idy and f, is the
contraction to O. Assume that ze V\{O} is a singular point. Consider
the decomposition into real analytic functions f(z) = g(x,y) + ih(x,y). Using
the radial R*-action, we see that

) g(ro(x,y)) = r"g(x,y), h(ro(x,y)) =r"h(x,y).

This implies that g(x,y), 4(x,y) are weighted homogeneous polynomials of (x,y)
and the Euler equality can be restated as

Zp/<x/ )+y;§ (Xa)’)>
Zp/<x/ Xy)+yj§h(x,Y)>-

Differentiating the equalities (4) in r, we get
ag _ m,quj% % 4 Oh
Foro () = IS (), Zh(re (k) = Y L (k)

This implies that these differentials are also weighted homogeneous polynomials
of degree m, —¢;. Thus the jacobian matrix

(G o09)
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is the same with the jacobian matrix at z= (x,y) up to scalar multiplications
in the column vectors by r™r =9 . p"=dn pi=dqi o p™—dn respectively. Thus
any points of the orbit ro (x,y), r > 0 are singular points of V. This is a
contradiction to the assumption that O is an isolated singular point of V, as
lim, o ro (x,y) = O. O

ProPOSITION 4.  (Transversality) Under the same assumption as in Proposition
3, the sphere S. = {z e C";|z| =1} intersects transversely with V for any t©> 0.

Proof. Let ¢(x,y) = ||z|* = Zj';l(xiz + y,z) Then S; intersects transversely
with V' if and only if the gradient vectors drg, drh, dr¢ are linearly independent
over R.  Note that dré(X,y) = 2(x,y). Suppose that the sphere S, is tangent
to V at z=(x,y) € V. Then we have for example, a linear relation dy(x,y) =
o dh(x,y) + f d¢(x,y) with some «,f € R. Note that the tangent vector v, to the
R*-oribit is tangent to ¥ and it is written v, = (q1X1, - - ., @nXn, @1V15 - - -, GnVu) @S @
real vector. Then we have

dg(ro (x,y)

0= dr

RN dg dg
T j;qj (x]a—xj(x,y) + y/a—y/(x, y))

= (Vr(xv Y)v dg(x, Y))R
= (V"(Xa Y)a & dh(X, y))R + (V"(Xa Y)aﬁ d¢(X’ y))R

=28 _ai(x} +7)
=

as (v.(x,y),dh(x,y))g =0 by the same reason. This is the case only if f=0
which is impossible as V\{O} is non-singular by Proposition 3. O

2.2.1. Remark. Let f(z,z) be a polar weighted homogeneous polynomial with
respective weights (qi1,...,¢.,;m:) and (pi,..., ps;m,). Proposition 3 does not
hold if the radial weights contain some negative ¢;. Assume that ¢; > 0 for any
jand I :={j|g; = 0} is not empty. Then it is easy to see that f does not have
monomial which does not contain any z; with i ¢ I, as if such monomial exists,
its radial degree is 0. This implies that V' = f~!(0) contains the coordinate
subspace C" = {z|z; =0,i¢ I)}. We call C" the canonical retract coordinate
subspace. Then Proposition 3 can be modified as C” is a deformation retract of
V. Of course, C can be contracted to O but this contraction is not through the
action and not related to the geometry of V.

2.2.2. Example. Consider the following examples.
91(2,2) =z{'"5+ -+ zZ, a;=1,j=1,...,n
and there exists j such that a; > 2

- a = -1 = n P
92(2,Z2) =z{'"D + -tz 2+ zy, a =1, j=1,...,n
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PropoSITION 5. (1) The radial weight vector (qi,...,qn) of g1(z,Z) is semi-
positive, i.e. qi >0 for any j if a;>1 for any i. (3j, a; =2 by the
existence of polar action.) It is not strictly positive if and only if n = 2m

is even and either (a) aj =a3=---=ay,—-1=1o0r b) m=ay=---=
om = 1.

In case (a) (respectively (b)), we have ¢y =q4s="-+-= gy, =0 and
q2j+1 > 1, OS]Sm_l (Vesp. 41 = q3 =+ = Qam—1 =0 and qz,Z 1,
1 <j<m).

(2) The radial weight vector (qi,...,qn) of ¢2(z,Z) is semi-positive. It is
not strictly positive if and only if a,=1. Let s be the integer such
that a,=ay,p=---=ay2=1 and a, 2;2>2. Then ¢, = --=
Gn—2s+1 =0 and q; > 1 otherwise.

Proof. We first consider g(z,Z) = z{"Z +---+zZ;. By an easy calcu-
lation, using the notation a;., = a; the normalized radial weigts (u,...,u,) are
given as
1 m—1
U= ——"+ E (@js2i01 — Dajioiva -+~ ajpn-1, if n=2m

al...an_l P

1 m—1 )
up = a1 <1 + ;(aﬁzm — Dajoir - ajn— |, if n=2m+1

and the assertion follows immediately from this expression.
Next we consider g»(z,Z) = z{'Zy + -+ + z»'Z, + z{». Then the normalized

radial weigts (uy,...,u,) are given as
1 1 i 1
aj  ajdjy) ajdjt1 - dp
dji1 — 1 a, — 1
L 44— n—j:o0dd
ajdjt1 Qjdjy1 - dp
i1 — 1 ay—1 — 1 1 .
T T + n—j:even
4jdj 1 Ajdj1 - Ane) - @il
As a; > 1, the assertion follows from the above expression. O

2.3. Simplicial mixed polynomial. Let f(z,z) = Z;:1 ¢;z%zZ™ be a mixed poly-
nomial. Here we assume that ¢j,...,c; #0. Put

f(w) = Z Wb,
Jj=1

We call f the the associated Laurent polynomial. This polynomial plays an
important role for the determination of the topology of the hypersurface
F = f~'(1). Note that
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PROPOSITION 6. If f(z,Z) is a polar weighted homogeneous polynomial of
polar weight type (pi,...,ppimy), f(W) is also a weighted homogeneous Laurent
polynomial of type (pi,...,pn;m,) in the complex variables wi, ..., w,.

A mixed polynomial f(z,z) is called simplicial if the exponent vectors

{n; + m;|j=1,... s} are linearly independent in Z" respectively. In particular,
simplicity implies that s <n. When s=n, we say that f is full. Put n; =
(M1, 0 ), mj=(mjy,...,m;,) in N". Assume that s <n. Consider two

integral matrix N = (n; ;) and M = (m, ;) where the k-th row vectors are n;, my
respectively.

LemmA 7. Let f(z,Z) be a mixed polynomial as above. If f(z,Z) is simpli-
cial, then f(z,Z) is a polar weighted homogeneous polynomial. In the case s = n,
[f(z,Z) is simplicial if and only if det(N + M) # 0.

Proof. First we assume that s=n and consider the system of linear
equations
(m+myDur+ -+ (n, +my)u, =1

(5)
(nnA,l + mn,l)ul + -+ (nnA,n + mn,n)un =1

(m—my v+ -+ (g —my o, =1
(6)

(nn,l - mn,l)vl +-- (nn,n - mn,n)vn =1

It is easy to see that equations (5) and (6) have solutions if det N + M #0
which is equivalent for f to be simplicial by definition. Note that the solutions
(w,...,u,) and (vy,...,v,) are rational numbers. We call them the normalized
radial (respectively polar) weights. Now let m,, m, be the least common multiple
of the denominators of wuy,...,u, and vy,...,v, respectively. Then the weights
are given as q; = wjm,, p; = v;m,, j=1,..., n respectively.

Now suppose that s <n. It is easy to choose positive integral vectors n;,
j=s+1,...,n (and put m; =0, j=s+1,...,n) such that det(N + M) # 0,
where N and M are n x n-matrices adding (n — s) row vectors nyy1,...,n,. Then
the assertion follows from the case s = n. O

This corresponds to considering the mixed polynomial:
f(z,7) = Zqz"f'i;'/ +0x Z .
=1 =
2.3.1. Example. Let
San(,Z) =202 22 g b= 1 i=1,. 0

k(z,z) =z{(Z1+ %)+ +z0 (G + 21), d=2.
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The associated Laurent polynomials are

Jan(w) = it o

k(w) = wd(1/wy 4+ 1/wa) + -+ wd (1w, + 1/wy).

COROLLARY 8. For the polynomial f,y, the following conditions are equiv-
alent.

(1) fap is simplicial.

(2) fap is a polar weighted homogeneous polynomial.

(3) (SC) ap---dy #blbn

Proof. The assertion follows from the equality:

ap 0 +b,
b ay - 0
det(n + m) = det )
0 ibnfl Ay
_ {alaz e dy + (—1)nilb1b2 ---b, for n+m
ayay---a, —biby---b, for n—m. O

The polynomial k(z,Z) is a polar weighted homogeneous polynomial with
respective weight types (1,...,1;d+ 1) and (1,...,1;d —1). However it is not
simplicial.

Now we consider an example which does not satisfy the simplicial condition
(SC) of Corollary 8: ¢, :=z{z{ +---+z2z¢. This does not have any polar

action as they are polynomials of |zi|%, ..., |z,|* and it takes only non-negative
values. Note also that ¢, ' (1) is real codimension 1 as ¢,(x,y) = Zf:l(x,z + yH)“.

As typical simplicial polar weighted polynomials, we consider again the
following two polar weighted polynomials.

91(z,z2) =z{'"5+ - +zZ, a;=1,j=1,...,n
and there exists j such that a; > 2

92(2,2) =z{'"o+ -+, 2otz a=1,j=1,...,n.

The polynomial g;(z,z) with a; > 2, (i=1,...,n) is a special case of o-twisted
Brieskorn polynomial and has been studied intensively ([12]). In our case, we
only assume a; > 2 for some i. The existence of i with ¢; > 2 is the condition for
the existence of polar action. We consider the two hypersurfaces defined by
V; = g7'(0) for i=1,2. The condition for a hypersurface defined by a polar
weighted homogeneous polynomial to have an isolated singularity is more
complicated than that of the singularity defined by a complex anaytic hyper-
surface. For the above examples, we assert the following.
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ProrosITION 9.  For Vi, V,, we have the following criterion.

(1) ;NC*™ i=1,2 are non-singular.

(2) Vi =g7'(0) has no singularity outside of the origin if and only if one of
the following conditions is satisfied.
(@) n is odd.
(b) n is even and there are (at least) two indices i, j (i < j) such that

aj,a; =2 and j—i is odd.

(3) V2 =g5'(0) has no singularity outside of the origin if and only if one of
the following conditions is satisfied.
(a) a, > 2.
(b) ay=1, n=2m+1 is odd and a1 =1 for any 1 < j<m+ 1.

Proof. We use Proposition 1. So assume that
#): G @7) =2df@m7), |l =1.
(1) We consider V. Suppose ze V;NC*™ is a singular point. Note that

& (2,7) = (@05, .zt 2, df(1,7) = (00,20, 20))

(#) implies that

a1 o
(7) @z =z, j=1,.n, ol =1

In this case, indices should be understood to be integers modulo n.  So z,.; = z,
and so on. If ze C™, the multiplication of the absolute values of the both sides
gives a contradiction: [[, ailzi|“ = [T, |z:|“.

Now we consider the smoothness on 7;\{O}. Assume that z is a singular
point of V1\{O}. For simplicity, we may assume that @, > 2 as g, is symmetric
with the permutation i — i+ 1. ~

Assume that z, #0. Then the (1+ 1)-th component of df(z,Z) is non-
zero. Thus by (#), (1+ 1)-th component of df(z,z) is also non-zero. That is,
z,‘fglz‘,ﬂ # 0. In particular, z,;» # 0. We repeat the same argument and get a
sequence of non-zero components z,,z,.2,.... Thus we arrive to the conclusion
that either z,_; #0 (if n—1 is odd) or z, # 0 (if n—1 is even).

— If n—11is odd and z,_; # 0, the last component of df(z,z) is non-zero
and we have z,,z; # 0 as we have assumed that a, > 2. This creates two non-

Zero sequences z,,z,z4, ... and zj,z3,.... Thus we conclude that z e C*, which
is impossible by the first argument.
— Ifn—11iseven, z,z,5,...,2z, #0. Thus we see that the first component

of df(z,Z) is non-zero. By the same argument, we get a non-zero sequence
Z2yZ4y e u v

Thus to show that ze C™, it is enough to show that z, ; # 0.

(a) Assume first n is odd. If 1 is even, then we see that z,,z,5,...,2,-1 #0
and we are done. ~

If 1 is odd, we get z, # 0, which implies the first component of df(z,z) is
non-zero. Thus as the second round, we have non-zero a sequence z,zs,...
which contains z,_;. Thus we are done.
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(b) Now we assume that n is even but there is another integer 1 < i < n such
that @; > 2 and a, > 2 and i is odd. If 1 is odd, we have shown that ze C*".

If 7 is even, we get z, # 0 and thus z; # 0. Then the sequence z,zs,...
contains z;_;. As a@; >2, looking at the i-th component of df(z,z), we get
z;-zir1 0. Thus we get a non-zero sequence z;, z;i2,... which contains z, 1,
and we are done.

Now to show that one of the conditions (a) or (b) is necessary, we assume
that n is even and a, =1 for any odd v and a, > 2. Thus putting n = 2m,

f= (212_2 + 23253) + -+ (22171—1Z2m + Zzarz’;”fl).
Consider the subvariety z; =z3 =---=2z,.1 =0. Then
df (2,Z) = (£2,0,24,0, ..., 22, 0), c?f(z,i) = (z;,0,...,2523,0)

the condition (#) is written as

a a o
(#) == 0Z,", Z4 = 0Zy,...,Zom = OUZpm 3

which has real one-dimensional solution
Zoj = aﬂfuy/ (J = 1’ . ’m)’ aﬂmun/mulmfl =1

Jj—1
=1+ axnayj- ey, 3= ds o
i=1
(2) We consider the case V,. We will see first ¥, N C™ is non-singular. Take a
singular point of V5. Then we have some o€ S' so that

#): @ (2.2) = 2df (2,7).
As we have

a,_1—1= a,—1
nil Zmanzn” )7

df(z,2) = (0,7",...,z,"})

we see that (#) implies that z{'"'Z; = 0. Thus there are no singularities on

Vo, NC*™. Suppose that z, # 0 for some 1. If 1 <n— 1, this implies (1 + 1)-th
component of df(z,Z) is non-zero. Thus (#) implies that (z+ 1)-th component
of df is non-zero. In particular, z,, is non-zero. (Of course, z,; #0 if
a1 > 1.) Repeating this argument, we arrive to the conclusion: either z,_;
or z, is non zero.
~ First assume that @, > 2. Comparing the last components of df(z,z) and
df (z,zZ), we observe that z, ; and z, are both non-zero. Now we go in
the reverse direction. As the (n —1)-th component of df(z,Z) is non-zero, the
corresponding (n — 1)-th component z,"> of df(z,z) is non-zero. Then the
(n —2)-th component of df(z,z) is non-zero. Going downwords, we see that
ze C™. However this is impossible, as we have already seen above.

Next we assume that @, =1 and » is odd and ay_; =1 for any j. Note
that the last component of df(z,z) is 1. Thus z,_; #0. If z, #0, we get a

df(2,7) = (@z0 "5, an 2
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contradiction as above ze C*™. Thus we may assume that z, =0. Comparing
(2j)-components of df(z,z) and « df(z,z), we get

=0, zp=o0z",... 201 =2,"3

which has no solution with z,_; # 0.

Now we show that the condition (@) or (b) in (3) is necessary.

(i) Assume that a, = 1 and n is even ans put n = 2m. Let s be the maximal
integer such that ap; > 2. If there does not exists such s, we put s =0. Non-
isolated singularities are given by the solutions of

Zp=z4=--=23y=0, 2221 =0,j<s

_ gyl _ om—3 _ Am—1
Za543 = U201, s Tamml = 25,5, D=0z

(i) Assume that a, =1, n=2m+ 1 is odd, and there exists odd index such
that ;41 > 2. Put s be the maximum integer of such j. Non-isolated singular-
ities are given by the solutions of

Zy=z3="+=Zppy1 = 0, sz:O7jgs
2542 o o

D544 = 0250 5oy Zom = OZgmt 5, L =azy O

2.3.2. Remark. 1. The polynomial g¢(z,z) =z{"Z +---+z{"Z; is an example

of so-called ag-twisted Brieskorn polynomial if a; >2, i=1,...,n. Let o be a
permutation of {1,2,...,n}. Then o-twisted Brieskorn polynomial is defined as
fo(z,Z) = ZilIZ_(T(l) + -+ Z;:”Z_g(n), ap,...,a, = 2.

and the corresponding assertions in Proposition 3 and 4 are proved in [13]. See
also [14] for more systematical treatment for real analytic polynomials which
define Milnor fibrations. In [3], similar conditions for the isolatedness condition
as Proposition 9 are considered. For our purpose, we call f;(z,Z) a weak o-
twisted Brieskorn polynomial if 6 € &, and a; > 1 for any i=1,...,n.

2. Consider a product C"=C°x C" and use variables ve C® and
we C". Assume that there exist mixed polynomials /A(v,¥) and k(w,W) so
that f(z,z) = h(v,v) + k(w,w). f(z,z) is a polar weighted polynomial if and
only if h(v,v), k(w,w) are polar weighted polynomial and it is known that
f~1(1) is homotopic to the join A~ !(1)xk~'(1) if f is polar weighted. Such a
polynomial is called a polynomial of join type ([2], see also [6]).

Now consider a weak o-twisted Brieskorn polynomial f;(z,z). If ¢ has
order n, it is (up to a change of ordering) equal to the cyclic permutation
o= (1,2,...,n) and f; =g;. In general, ¢ can be written as a product of
mutually commuting cyclic permutations ¢ = 7172 ---7,. Put |t;| = {j|7:()) # j}
and put f;, be the partial sum of monomials in f(z,zZ) written in variables
{z;|je|nl}. Thus f; is a join type polynomial of v weak t;-twisted Brieskorn
polynomial f;,. Thus f,(z,Z) has an isolated singularity if and only if each
polynomial f;, has an isolated singularity. A similar assertion is also proved in

[3].
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3. Observe that the singularities of V|, V7, are on the canonical retract
coordinate subspaces C®. Note also that the polar action is trivial on C%.

2.4. Milnor fibration. Let f(z,Z) be a polar weighted homogeneous polynomial
of radial weight type (qi,...,qs;m,) and of polar weight type (p1,..., pu;mp).
Then

f:C" = f710) - C*

is a locally trivial fibration. The local triviality is given by the action. In
particular, the monodromy map /: F — F is given by h(z) = exp(2ni/m,) oz =
(z1 exp(2pimi/my), . .., z, exp(2p,mi/m,)) where F = f~1(1) ([12, 2)).

3. Topology of simplicial polar weighted homogeneous hypersurfaces

Let f(z,z) = 2;:1 c;z"%z™ be a polar weighted homogeneous polynomial of
radial weight type (qi,...,¢n;m,) and of polar weight type (p1,..., pn;m,). Let

F = f71(1) be the fiber.

3.1. Canonical stratification of F and the topology of each stratum. For any
subset 7 < {1,2,...,n}, we define

C'={z]z=0,j¢I}, C'={z|z#0iff iel}, C"=cC{"

and we define mixed polynomials f! by the restriction: f! = f|c;. For sim-
plicity, we write a point of C! as z;. Put F* =C*NF. Note that F*/ is a
non-empty subset of C*! if and only if f’ (z7,7Zr) is not constantly zero. Now we
observe that the hypersurface F = f~!(1) has the canonical stratification

F=1[,F*.

Thus it is essential to determine the topology of each stratum F I Put
F*:=FNC™, the open dense stratum and put F”:= £ (1NnCc™ where
f(w) is the associated Laurent weighted homogeneous polynomial.

Tueorem 10.  Assume that f(z,Z) is a simplicial polar weighted homogeneous
polynomial and let f(w) be the associated Laurent weighted homogeneous poly-
nomial. Then there exists a canonical diffeomorphism ¢ : C*" — C™" which gives
an isomorphism of the two Milnor fibrations defined by f(z,z) and f(w):

c" - f10) —- ¢

L

" _fAfl(O) L} C*

and it satisfies p(F*") =F*" and ¢ is compatible with the respective canonical
monodromy maps.
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Proof. Assume first that s = n for simplicity. Recall that
fw) =2 gwhm.
j=1

Let w= (wi,...,w,) be the complex coordinates of C" which is the ambient
space of F. We construct ¢ : C* — C™ so that ¢(z) = w satisfies

w(p(z))" ™ =2"z™, thus f(p(z)) = f(2).
For the construction of ¢, we use the polar coordinates (p;,0;) for z; € C* and
the polar coordinates (&j,7,;) for w;.  Thus z; = p; exp(if;) and w; = &; exp(in;).
First we take n,=0;,. Put nj= (n1,...,m,), m;=(m1,...,m;,) in N"
Consider two integral matrix N = (n; ;) and M = (m; ;) where the k-th row
vector are ng, my respectively. Now taking the logarithm of the equality
Z%zZ™ = wh ™ we get an equivalent equality:
(1 + mp) log py + - + (in + myu) log p,
= (mj1 —my) log &y + - + (mjy —my) log &, j=1,....n.

This can be written as

log p, log &;
(8) (N+M)| 2 | =WN-M)[

log p, log &,

Put (N — M) (N + M) = (4ij) € GL(n,Q). Now we define ¢ as follows.

p:C" = C" z=(p exp(ith),...,p, exp(it,))
— w = (& exp(ith),..., <&, exp(ib,))

where ¢; is given by & =exp(}./, A log p;) for j=1,...,n. It is obvious that
@ is a real analytic isomorphism of C™ to C™. Let us consider the Milnor
fibrations of f(z,Z) and f(w) in the respective ambient tori C*".

AV (R R Y VAR (VR o
Recall that the monodromy maps /4*, h* are given as
h*:F* — F*, zw— exp(2ni/m,)oz
W F* = F* we exp(2ni/my) o w.

Note that the C*-action associated with f(w) is the polar action of f(z,7).
Namely exp il o w = (exp(ip10)wi, . ..,exp(ipn0)w,). Thus we have the commu-
tative diagram:
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where F = f~' (@) NC™ and F = f'(2) N C*" for o e C". O
3.1.1. Remark. The case f(z,Z) =z{"Zy +---+z"Z, is studied in [12].

3.2. Zeta-functions. Now we know that by [7, 8], the inclusion map F* < C™
is (s — 1)-equivalence and y(F*) = (—1)""'det(N — M) for s=n and 0 other-
wise. Note also the monodromy map h:F*— F* has a period m,. The fixed
point locus of (h)k is F* if my|k and @ otherwise. Thus using the formula of the
zeta function (see, for example [4]),

o0

G- () = exp <Z<—1>“ dzfmv/omp)) = (1 gm0l

Jj=0

where d = det(N — M) if s=n and d =0 for s <n. Translating this in the
monodromy h* : F* — F*, we obtain

COROLLARY 11. F* has a homotopy type of CW-complex of dimension n — 1
and the inclusion map F* — C™ is an (s — 1)-equivalence. The zeta function
Che (1) of ™+ F* — F* is given as (1 — ™)™V spith d = det(N — M) if s=n
and (-(t) =1 for s < n.

3.2.1. Remark. In general, the restriction of the polar action on C”" to C*/ may
not effective and to make the action effective, we need to define polar weights
as pr;=pi/rr and my;p=m,/r; where r; is the gratest common divisor of
{pi|liel}. However the monodromy map h; : F*/ — F* is equal to the restric-
tion of h: F — F.

4. Connectivity of F

Now we are ready to patch together the information of the strata F*/ for
the topology of F. First we introduce the notion of k-convenience which is
introduced for holomorphic functions ([8]). We say f(z,Z) is k-convenient if
fT#0 for any I = {1,2,...,n} with |[I| >n—k. The following is obvious by
the definition.

PROPOSITION 12.  Assume that f(z,Z) is a simplicial polar weighted homo-
geneous polynomial with s monomials and assume that f is k-convenient. Then

k<s—1.

Now we have the following result about the connectivity of F.
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THEOREM 13.  Assume that f(z,Z) is a simplicial polar weighted homogeneous
polynomial with s monomials and assume that [ is k-convenient. Then F is
min(k,n — 2)-connected.

For the proof, we show the following stronger assertion. Let I < {1,2,... n}
and put
C'(«I)={z=(z1,...,24) €C"|z; #0,j eI}, F(xI)=FNC"(xI).
C'={zeC"|z;#0iff jel}, F'=FnC.

Lemma 14, Under the assumption as in Theorem 13, the inclusion
F(xI) — C"(xI) is min(k + 1,n — 1)-equivalence.

We prove the assertion by double induction on (n,k). Put
\%
L={j,...,n}, Ki={l,...,j,....,n}
c'=ch=c'n{z=0}, F=FnC".
Note that F; is the Milnor fiber of f%. Theorem 13 follows from Lemma 14

by taking I = . Changing the ordering if necessary, we may assume that I = I,
for some t. We consider the filtration of F:

F* =F(xI) = F(xh) = F(xl3) = --- = F(xI,) = F = F(x0).
A key lemma is

LemMMA 15. The inclusion map (F(xI;), F(xIi_1)) — (C"(xI;),C"(*Ii_y)) is
min(k + 1,n — 1)-equivalence.

Proof. Let T; be a tubular neighborhood of {z; = 0} in C"(x/;;) such that
T;NF(xfj;1) is a tubular neighborhood of Fj(x[i11) ={z; =0}NF(x[4) in
F(xlj;1). Consider the following diagrams by the excision isomorphisms and
by the Thom isomorphisms  for D2-bundle:

Hyi(F(xlj1), F(sI))  ——— Hy(F(xL) N Tj, F(+1) N T))

: i

Hyo(C"(+1141), C"(+ L)) ——  Hy (T3, C* (L) N T;)
., H/ 1 (Fi(xLi11))
|
4 e
E— H/,1(Cj 1(*1j+1))

Now note that f& is (k —1)-convenient. Thus by the induction assumption
on Lemma 15, 7/ is isomorphism for / — 1 <k —1. This implies that 7/, 7; is
isomorphism for 7+ 1 <k + 1. OJ
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Proof of Lemma 14. Now we can prove Lemma 14 by the induction on j
and Five Lemma, assuming / = /; for some j, applied to two exact sequences for

the pairs (F(xlj;1), F(xl;)) and (C"(x[j;1), F(x[;)) and commutative diagrams:
Hr (F(xlj), F(xL))  —— H/(F(xj)) —— H/(F(x]11))

! L

Hyr(C(+1), € (1)) —— H,(C"(x1))) —— H/(C"(xL11))

Induction starts for j=1: ¢ is min(k + 1,n — 1)-equivalence by Corollary 11.
This completes the proof of Lemma 14. O

4.1. Euler numbers and zeta functions. Let f(z,7) = > ., ¢;z"%Z"™ be a simplicial
polar weighted homogeneous. Let

S ={I<{1,....n}; " is full}

and put r; = ged;.;{p;} and m, ; =m,/r; and put d; = |det;ec;(n; —m;)|. Thus
for e, f' is a simplicial full polar weighted homogeneous polynomial of
polar weight type (p;/rr);., with degree m, ;. We observed in Remark 3.2.1 that
the monodromy map #* : F*I — F*I is equal to the restriction of the mono-
dromy map &: F — F. We denote the zeta function of the monodromy map

h:F—F, h'=hp,:F'—F"

by (1), {*'(1) respectively. Recall that {(7) is an alternating product of char-
acteristic polynomials ([4]). Namely

n—1

(0 =[] 20

_1)/tt

where P; is the characteristic polynomial of the monodromy action on
h.: Hi(F,Q) — H;(F,Q). By Theorem 10 and the additive formula for the
Euler characteristics, using a similar argument as that of Proposition 2.8, [§], we
have:

TaeorEM 16, (1) x(F) = X, ., (=1)/17'd;.
(@) €0 =ley C10, E7(0) = (1= gmor) DI,
4.2. Examples. 1. Assume that f(z) is a homogeneous polynomial defined by
filg)=z"+z+ -+, an,...,a, = 2.
Then F = f;7'(1) is (n — 2)-connected and
A(F) = zn: Yo AFT) = (@ =@ 1) (a = 1) = (=1)"

J=111=j
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and
div(&) = (Mg = 1)+ (Ag, = 1) = (=1)"

as is well-known by [9, 1, 5]. Here div((t —21)---(t — X)) = Z,k:1 el -C*
and A, =div(s” —1).
2. Consider

H(zz)=z2"+ 2 2 4z
Then f, is a simplicial polar weighted polynomial and put
S={L={1,...,j}|j=0,...,n—1}
Thus we have
2F)=(=)"aaran—ar-an+ -+ (=1)""'a,)
t02.(0) = (~1)" ( (= garary ~ (=g + 0+ OV )

Proof. The polar weight of f; is given by (pi,..., p,;m,) where

1 1
mp:al"'am pl:mp<a_l+”.+al,,,a>’

1 1
pzzmp(—+--~+ )
az az...an

1 1 ny,
Pn—1 =Ny + y Pn=
ap—1  dp-1dy ay

Thus the assertion follows from Corollary 11. O

4.3. Surface cases. Consider the case n =3. We consider two simplicial polar
weighted homogeneous polynomials.

- _b _b
fi(z,7) = Zflzzl + 252232 —|—Z§37 ay,az,by,by >0

= - - b
fo(2,Z) = Zlalzé" + zgzzé’z +2°2%,  aaraz > bibyby > 0.

They are 1-convenient. Let Fy = f;{!(1) and F» = f;!(1). By Theorem 13, Fj,
F, are simply connected. Their Betti numbers b,(F;) are given as

bz(Fl) = aiaraz — aaz + az — 1, bz(Fz) = a)dxdsz — b1b2b3 — 1.
(I) First we consider f;. The normalized polar weight for f; is given as

biby | b 1 by 1
v = to—t—, =, hy=—
ayaxaz  ayaz dp arasz  d as
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Let r = ged(b1bs, a1ara3), r1 = ged(by,araz). Then my, is given as ajaaz/r and
the zeta function of Ay : F; — F} is given as
(1 _ [llzd3/?‘])rl
(1 — maas/ry'(] — o)

where P,(¢) is the characteristic polynomial of the monodromy action
his s Hy(F1;Q) — H>(F1;Q). Note that Py(f) =1 —1t. For example,

_ (1 —¢2%)
Ch](t) - (1 _ 1“1“2“3)(1 _ taz.)’
(1 — 14)?
(1 — reiin)d(1 — )

(II) We consider f;. The normalized polar weight for f, is given as:

Gn (1) = Po(1) "' Pa(0)™" =

by=b=1

é/h] (Z) =

y a1:2a{,a2:2a£, b1:b2:2.

araz + biaz + b1 by ayaz + aiby + bybs ayaz + abs + b1 bs
1 pr— = =

arayaz — bbby’ araxaz — bbby’ arayaz — b1bybs

Put d = ajaya; — b1byb3.  The least common multiple m, of the denominators of
vy, vy, v3 depends on ged(d, azas + byaz + b1b;) and so on. We only gives two
examples.

{ (1) Assume that ay =ay =a3=a, by =by=>b3=b. Then v =v, =v3 =

Py Thus

Chz(l) _ (1 _ la—b)a2+ab+b2.

(2) Assume that ged(d, axas + bias + bi1by) = ged(d, ajas + ayby + bybs) =
ged(d,ajay + asby + bybs) = 1. Then m, =d and (1) = (1 —19).

For example, if aj =2, a» =3, a3 =5 and by = by, = b3 =1, we get {,(1) =
(1 —1%).
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