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Abstract

This paper studies the uniqueness of meromorphic functions that share three values
CM and obtain some results that are improvements and generalizations of that of H.
Ueda, G. Brosch, etc.

1. Introduction and results

In this paper, by meromorphic function we always mean a function which is
meromorphic in the whole complex plane C. It is assumed that the reader is
familiar with the usual notations and the fundamental results of R. Nevanlinna
theory of meromorphic function as found in [6]. In particular, S(r, /) will denote
any quantity that satisfies S(r, f) = o(T(r, f)) as r — +o0, possibly outside a set
of r of finite linear measure.

Let f, g be nonconstant meromorphic functions. We say that a mero-
morphic function a(z)(# o) is a small function of f if T(r,a)=S(r, f). If
N, 1/(f —a)) = S(r,f), then we say that a is an exceptional function of f.
Moreover, we denote by N(r, f =a=g) the counting function of those com-
mon zeros of f—a and g —a, where zp is counted min{p,q} times if z is
a common zero of f —a and g —a with multiplicity p and ¢ respectively; as
usual, by N(r, f = a=g) the corresponding reduced counting function; and by
Ng(r, f = a = g) the counting function which “counts” only those common zeros
of f—a and g —a with the same multiplicity in N(r,f =a=g). These
notations will be used throughout the paper.

Let f, g be two nonconstant meromorphic functions, and let a be a small
function of f and g or a be a constant. We say that f and g share ¢ CM if
f —a and g — a have the same zeros with the same multiplicity; if we ignore the
multiplicity, then we say that f and g share « IM. In addition, we say that f
and g share oo CM (resp. IM) if 1/f and 1/g share the value 0 CM (resp. IM).

For the statement of our results, we need a slight generalization of the
definitions of CM and IM.
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Let f and g be two meromorphic functions, and let ¢ be a small function of
f and g or a be a constant.

DreFINITION 1 (see [7, p. 799]). We say that [ and g share a “CM” if
W) = Nelf =a=a) = S0.f) and N(rL) = Nelr.f =a=g) -

S(r,g).

DerNITION 2 (see [9, p. 317]). We say that f and g share a “IM” if
N(r,ﬁ)—ﬁ(r,f:a:g):é’(r,f) and N(r,gia>—ﬁ(r,f:a:g):

S(r,g).

Clearly, if a is shared “CM” by f and g, then ¢ must be shared “IM” by f
and g.
R. Nevanlinna proved the following famous four-point theorem.

THEOREM A [12]. If two nonconstant meromorphic functions f and g share
Sfour distinct values CM, then f is a Mdbius transformation of g.

Since then, many authors studied the uniqueness of meromorphic functions
that share three or four values and obtained a series of results (see [2-5, 8, 10, 11,
13-16] etc). As we have known, in such problems of uniqueness of meromor-
phic function, some results can be usually generalized from sharing value to
sharing small function. But, these generalizations are sometimes very difficult
(see [7-9], [18] etc).

In 1997, Hua and Fang proved the following result.

THEOREM B [7]. Let f and g be two nonconstant meromorphic functions,
and let a;(z) (j=1,...,4) be distinct small functions of f and g. If f and g
share a;(z) (j =1,2,3) CM, and share a4(z) IM. Then f and g satisfy one of the
following cases.

) f=g, (i) F=-G with a(z)=-1, (ii) F+G =2 with a(z) =2
(iv) (F=1/2)(G-1/2)=1/4 with a(z)=1/2, (v) F-G=1 wzth
) = _17

Vi) (F=1)(G=1)=1 with a(z) =2, (vii) F+G=1 with a(z) =1/2,
F= f—a az—a3, G=9"% 02*03’ and a(z) = a—a @ —a
f—aa—a g—aza—a as —as ay — aj

where

Remark 1. From the proof of Lemma 6 and Lemma 7 in [7], it is easy to
see that the conclusion is still true if we replace IM with “IM” in Theorem B.

For the meromorphic functions that share three values, H. Ueda, G. Brosch
proved the following results respectively.
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THEOREM C (see [2] or [11, p. 36]). Let two meromorphic functions f and g
share 0, 1, co CM. If there exists a finite value a(#0,1) such that g(z) =a
whenever f(z) =a, then f is a Mobius transformation of g.

In order to state Ueda’s result, we need the following notations and
definitions.

Let f be a meromorphic function, let « be a small function of f or be a
constant, and let p, k be positive integers. We denote by f(z9) @) a that zp is a
zero of f —a with multiplicity p, and by E(a,k, f) ={ze C: f(z) v a,p <k}
the set of all zeros (counting multiplicity) of f — a with multiplicity less than or
equal to k.

THEOREM D [13]. Let two meromorphic functions f and g share 0, 1, oo
CM. If there exists a finite value a (#0,1) and an integer k(>2) such that
E(a,k, )= E(a,k,g), then [ is a Mdobius transformation of g.

The main purpose of this paper is further to study the uniqueness of
meromorphic functions that share three values CM, and to prove the following
results.

THEOREM 1. Let two nonconstant meromorphic functions f and g share 0, 1,
oo CM. If there exists a small entire function a(z)(#0,1) of f and g such that
N(r,f=a=g) #S(r,f), then f and g satisfy one of the following five cases.
(i) f=g, @) f-g=1 witha(z)=-1, (iii) f+g=1 with a(z) = 1,
(iv) (f = 1)(g— 1) =1 with a(z) =2,
oJa@n@dz _ o) a@n @ dz _
(v) f(2) _e}()—la g(z) = W’

where y(z) is a nonconstant entire function, and a(z) # —1,%, 2.

By Theorem 1, we can prove the following results which generalizes Theorem
C and improves Theorem D.

THEOREM 2. Let two nonconstant meromorphic functions [ and g share 0, 1,
oo CM. If there exists a small entire function a(z)(#£0,1) of f and g such that
g(z) — a(z) = 0 whenever f(z) v a(z) for p=1,2. Then f and g must satisfy one
of the following ten cases.
() f=g, (i) f=ag, where a(z)(# —1), 1 are exceptional functions of f,
(i) f—1=(1—-a)(g—1), where a(z)(# 2), 0 are exceptional functions of f,
(iv) (f —a)(g—1+a) =a(l — a), where a(z)(# 1), o are exceptional func-
tions of f, (V) f=—g with a(z)=—-1, (Vi) f+g=2 with a(z) =2,
vii) (f—3)(9—1%) = § with a(z) = 1, (vii) f-g=1 with a(z) =
g - 1) =

= -1,
(ix) (f—1 =1 with a(z) =2, X) f+g=1 with a(z)

roi— Il
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Remark 2. In Theorem 2, if f and g share a(z) “IM”, then the cases (ii)—
(iv) of the conclusion of Theorem 2 cannot occur. Since under these three cases,

_ 1 .
we always have N <r, j) = 8(r,f). Suppose that f and g satisfy the case

!
(i), that is to say, f = ag with a(z) # —1. This and Lemma 2 which will be

stated in the next section imply that

N<r, ﬁ) <N Q#) +S(r,f) =2N (rﬁ) +S(r.f)
)50 =28 (r ) 50 = 5001

which means that a? is also an exceptional function of f. But in the case (ii),
f has already two exceptional functions a and 1, thus we must have a*> = a or
a’>=1. Since a #0,1, so we obtain a = —1, a contradiction. Similarly, if f
and ¢ satisfy the case (iii) or (iv), then we can deduce that a(2 — a) or a®/(2a — 1)
is an exceptional function of f, and then get a contradiction.

_ 1
52N<r,
g—a

2. Lemmas

Let k be a positive integer, and let ae CU{oo}. We denote by
N(is1(r,a, f) the counting function of those a-points of f with multiplicity at
least k + 1, and write Ny(r,a, f) = N(r,a,f) — Nyg1(r,a, f).

LemMa 1 (see [7, Lemma 2]). Let f and g be two nonconstant meromorphic
functions that share 0, 1, oo CM. If there exists a small function a(z)(# 0,1, o)

of f and g such that T(r,f) # N(r7 L) + S(r, f), then one of the following
cases holds. f-a
() f=g, (i) f=ag, where a(z), 1 are exceptional functions of f,
(i) f—1=(1—-a)(g—1), where a(z), 0 are exceptional functions of f,
(i) (f —a)(g—14a) =a(l —a), where a(z), oo are exceptional functions of

LeMMA 2 (see |7, Lemma 5]). Let f and g be two nonconstant meromorphic
Sfunctions that share 0, 1, oo CM. If f#g, then for any small function
a(z)(#0,1,00) of f and g, we have

N<3(r,a,f)+N(3(r,a,g) = S(r7f)

Lemma 3 (see [1] or [17, p. 77, Theorem 1.52]). Let f;(z), gj(z)
(j=1,...,n) be two groups of entire functions satisfying the following conditions:

(i) S0, f(z)enE =0, and

(i) p(f;) < p(e?9%) for 1<j<n and 1<h<k<n, where p(f;) and
p(e9=9%) denote the orders of growth of fi(z) and e9®)~9%G) respectively. Then
filz)=0for j=1,...,n
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LemmA 4 (see [19, Lemma 6]). Let fi, fo be nonconstant meromorphic

. N A | i =,
Sunctions satisfying N(r, ;) + N(r,?> =S@r) for j=12. If Nr,fi=1= 1)
# S(r), then there exist two integers s, t satisfying |s|+ |t| >0 such that
A =1, where S(r)=o0(T(r)) (r—+4w,r¢E), T(r)=T(r,/i)+T(r 1),
and E denotes a set of r of finite linear measure.

3. The Proof of Theorem 1

We suppose first that f # g. Since f and g share 0, 1, co CM, by the
second fundamental theorem due to R. Nevanlinna, we have

3.1 (I+o()T(r,f) <N(r,f) +N<r’}) +N<F’J%1>

< N(r,9) + N(r,;) +N<r,gil) <B+o(1)T(r,g).

Similarly, we obtain

(3.2) (1 +0(1)T(r,g) <(3+0(1)T(r,f).
From (3.1) and (3.2), it follows that

(3.3) S(r,f) =S8(r,9).

Set

(3.4) p=l V=0 glu-a

-1 glg—-1)°

If 9 #0, then from (3.3), (3.4), the fundamental estimate of the logarithmic
derivative, and the hypothesis that f and g share 0, 1, oo CM, we have

(3-3) T(r,p) = S0, f) + S(r,9) = S(r, /).
Since f and g share 0, 1, co CM, thus by (3.4) and (3.5) we deduce that

N(r,f=a=g)<N(r,1/p)+S(r.f) < T(r,9) + S(r, f) = S(r, f),
which contradicts the hypothesis of Theorem 1. Hence, we must have ¢ =0,
namely

6 SU-a) _gla-a)

fUfF=1 " glg-1)"

Noting that f and ¢ share 0, 1, co CM, thus there exist two entire functions o
and f such that

(3.7) lze“ g:eﬁ.
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Since f #g, by (3.7) we can deduce that e*# 1, ef #1 and ef~* #£1. Set
y:=f —a, then from (3.7) we have

ef -1 e? -1
(3.8) f:m; 9==5_1
Rewriting (3.6) as
/! g’ > <g’ f’)
39 l—a — =a|l——-%=].
52 i-a(-5t) =55
By (3.7) and the fact that « = — y, we obtain
S [
3.10 Lol L —¢f
(3.10) J 1
from (3.10), it follows that
e S g’ /
3.11 == - =p".
(3.11) TR IR Ay s tabrn bl
Substitution (3.11) into (3.9) gives
(3.12) B =ay.
From (3.8) and (3.12), we have
el 1 el g
(3.13) I =1 YT T

We now claim that [a(z) + 1][a(z) — §][a(z) — 2] = 0 if and only if / and ¢
satisfy one of the cases (ii)—(iv) of the conclusion of Theorem 1, and thus f is a
Mobius transformation of g, where f and g are defined by (3.13).

In fact, suppose that there exist four finite complex numbers ¢; (j =1,2,3,4)
c1g+ e

such that f =
c3g + ¢4

, where c¢jcq # cac3. By this and (3.13) we obtain

(3.14)  2¢3+c4—2c —c1 =cre’” Jar +(c3—cy)e I @' (3 + C4)e~r“y/
- c;;eiﬁf‘”" —(c1+c2)e’ + (ca —cr)e™.

We note first that y is not a constant. Otherwise, from (3.12) we know that

p is also a constant, and thus by (3.8) we can deduce that f is a constant, a

contradiction. So from this and the fact that a(z) # 0, 1, we can derive that both

y— [ay’ and [ay’ are not constants. Thus, by applying Lemma 3 to (3.14), and

noting the fact that c¢jcs # cyc3 and that a(z) #0,1, we find that one of the
following cases holds.

) y— Jay’ — [ay’ = constant, that is a(z) =

(11 7 — [ay’ +y = constant, that is a(z) =2,

(iii) —[ay’ —y = constant, that is a(z) = —1.
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Otherwise, i.e., the above three cases are all not true, then by (3.14) and Lemma
3 we can deduce that ¢; =0 for ] =1,2,3,4, which is impossible.

On the other hand, if a(z) = 1, then from (3.12) we have y = 2§ + ¢, where ¢
is a constant. Thus, by (3.7) and the fact that o = — y, it follows that

3.15 9 = e =ebte = e"u.

From the hypothesis of Theorem 1 that N(r, f =a =g) # S(r), we can deduce
that there exists a pomt zo such that f(z9) = g(z0) = a(zo) (#0,1), which and
(3.15) implies that e¢ = 1, and thus we obtain from (3.15) that (¢ — f)(g+ f — 1)
=0, that is f+g=1. Similarly, if a(z) = —1 or a(z) =2, then from (3.7),
(3.12), the fact o = f — y, and the hypothesis of Theorem 1, we can also deduce
that f-g=1 or (f —1)(g— 1) =1, respectively. This proves Theorem 1.

4. The Proof of Theorem 2

We suppose first that f # g. Otherwise, we have done in this case. Since
a(z) is a small function of f and ¢, from Lemma 2 and the hypothesis of
Theorem 2, we have

" V() (r ) st

Form (4.1) and the fact that g(z) = a(z) whenever f(z) W a(z) for p=1,2, it
follows that

(42) Wt =a=g) = N (r )4 501).

We shall divide our argument into two cases.

Case 1. ]V(r,fl_a> =8(r, f).

From (4.1) we have

(4.3) N(r,f 1_ a) < 2N(r,f i a) +8(r, f) = S(r, f).

By (4.3) and Lemma 1, we know that f and g must assume one of the forms (ii)—
(vii) of the conclusion of Theorem 2.

Case 2. N(V,]%) # S(r, f).

From (4.2) we see that N(r, f =a=g) # S(r, f). Therefore, by Theorem 1,
it follows that f and g satisfy one of the forms (viii)—(x) of the conclusion of
Theorem 2, unless

and g=—"—,

(4.4) /= e’ —1 e’ —1

where y is a nonconstant entire function and a(z) # —1,1/2,2.

el 1 el g
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= 1
Since N (r,ﬁ> # S(r, f), from (4.1) we know that there exist a point
zo and a positive integer p(<2) such that f(zo) @ a(zo)(#0,1). Thus from the
hypothesis of Theorem 2, we have g(zo) = a(zp). For simplicity, we write

4.5) 5(z) = eJ O
by (4.4) and (4.5), it follows that
(4.6) 3(20) — a(z0)e”™ + a(zg) — 1 =0,
and
1

1
m — a(Z())m—f— a(Z()) —1=0.

In view of a(zp) #0,1, by (4.6) and (4.7) we obtain
(4.8) 3(z0) =1, e’ =1.

We now assert that y’(a%y’ —ay’ —a’) #0. Otherwise, we have either y’ = 0
or a’>y' —ay' —a' =0. If a*>y' —ay’ —a’' =0, namely,

(4.7

! /

4.9 =4 4
(49) TEAS1 T a
Integrating (4.9) we have

1
(4.10) a(z) = 7=

where ¢ is a nonzero constant.
Since a(z) is a small function of f, by (4.10) we obtain S(r, f) = T(r,a) =
T(r,e”)+ O(1), that is to say,

(4.11) T(r,e”)=S(r,[).

Moreover, by (4.8) we see that “almost” all the zeros of f —a that have
multiplicity at most 2 must be the zeros of ¢ — 1. Clearly, e” # 1. If this is not
the case, then y is a constant, which contradicts the fact that y’ # 0. Hence, by
(4.11) and (4.1), we have

N(n ﬁ) < N(r, ﬁ) +S(rf) = T(r,e") + (1, f) = S(r. /),

_ 1
which contradicts the hypothesis N (r, ) # S(r, f). We now have shown
that the above assertion is true. f-a

Next, we shall prove

(4.12) N(r,ﬁ)le)Q,fla>+S(r,f).
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Suppose that zy is a zero of f — a with multiplicity 2, and that a(zy) # 0, 1.
By (4.4) we have

ef”yl—l—aey+a
e’ —1

(4.13) f-a=

i

Since any zero zy of f — a with multiplicity at most 2 satisfying a(zg) # 0,1 is
also a zero of e’ — 1, thus from (4.13) we know that zp must be a zero of the
function G :=e)® —1 — ae” + a with multiplicity at least 3. Differentiating G
twice leads us to

G’ = [Cl/y/ + ay// + (ay/)Z]ejay’ . [a// + 2a/y/ + Cly// + a(yr)Z}ey +a"

From this, (4.5) and (4.8), we have
0= G"(20) = d'(20)7"(20) + a(20)7"(20) + [a(20)7" (20)]
—{a"(20) +24'(20)7'(20) + a(z0)7" (20) + a(z0)[7'(20)]*} + a”(z0),

2

that is

(4.14) 7'(20)[a*(20)7" (z0) — a(z0)y"(z0) — a'(20)] = 0.
Since we have proved that y’(a?y’ — ay’ — a') # 0, thus from (4.14) and Lemma 2,
it follows that

1 1
(4.15) Ng <r’f—a> < 2N<r, @ —ay = a’)> + S, f)
<2T(r,y'(a*)' — ay' = d") + S(r, f) = S(r,e”) + S(r, /).

Since f and g share 0, 1, oo CM, thus (3.2) holds. Moreover, by (4.4) we can
obtain that

g(f — 1) — e

flg=1)

By (3.2) and (4.16) we deduce that

T(r,e?”) <2T(r,f)+2T(r,g) + O(1) < (84+0(1))T(r, f),

(4.16)

1
which when combined with (4.15) gives that N, (r,—) =S(r,f), and so
(4.12) holds. < f-a
r,

1 .
70 f)#N —> + S(r, f), then by Lemma 1, we deduce that a(z) is

f—a

an exceptional function of f. This contradicts the hypothesis of the Case 2 that
_ 1
N (r, ﬁ) # S(r, ). Therefore, we can suppose that

(4.17) T(r, f) = N(r7 f;a) +S(r, f).
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Form (4.12), (4.17) as well as the hypothesis of Theorem 2, we have
418)  T(r.f)=N(r1/f —a)+S(r.f) = Ny(r, 1/f —a) + S(r. f)
<N(r,1/g—a)+S(r,f) < T(r,g) + S(r, ).
Next, we shall show that

(4.19) T(r,f)=T(r,g) + O(1).
Set
_f _ /-1
(4.20) fl-—g, fz'ig—l'
Since f and g share 0, 1, co CM, thus from (4.20) we see that
(4.21) N, f)+ N, 1/f;)=0 for j=1,2.

Noting that a(z) is a small function of f and g, so from (4.17), (4.12), (4.2) and
(4.20), we have

(4.22) T(r,f)=Ny(r,1/f —a)+S(r, f) <N, f=a=g)+ S [)

<N fi=1=f)+S(r,f).

From (4.20), (3.2) and the first fundamental theorem due to R. Nevanlinna, we
get

(4.23) T(r,f)=T(r,g/t) 2 T(r, i) — T(r,9) + O(1)
= T(rvfl) —4T(}’,f),
by (4.23), we obtain

1
(4.24) T f)= gT(r,f]).
Similarly, from (4.20) and (3.2) we have

T(r,f)+00) =T(r f=1)=T((9-1)f)
=2 T(r, fa) = T(r,9) + O(1) = T(r, f2) = 4T (r, f),

1e.,

(4.25) T f)= éT(r,fz).

From (4.24) and (4.25) we obtain

(4.26) 70, 1) 2 15 (0 ) + T(r, ).

By (4.22) and (4.26) we deduce that
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(427) N(}’,fIZIZfz)¢O(T(V,f1)+T(V,f2)).

Now we see that f; and f, satisfy all the conditions of Lemma 4, and thus there
exist two integers s and ¢ satistfying |s| 4 |¢| > O such that f*- £ = 1. This and
(4.20) lead to (4.19). Substitution (4.19) into (4.18) gives

(4.28) N <r, 7 1_ a) = N<r,ﬁ) +S(r, f).

Noting that /" and g share 0, 1, oo CM, thus (3.3) holds. From Lemma 2, (4.12)
and (3.3), we have

1
g—a

(4.29) N(r,

—

:N(r,g:a:f)+N(r,gia:f)+N2>(r,g:a¢f)+S(r)

:N1)<r7f1a)—l—N(ng@a:f)—&-Ng)(r,g:asﬁf)-i-S(V),

where S(r) = S(r, f) = S(r,g) and the notation N(r,g ©a= f) for k=1,2

denotes the counting function of those common zeros of f—a and g—a

with multiplicity k£ for g (each common zero in N(r,g © = f) is counted k

times), N(r,g L f) denotes the corresponding reduced counting function, and
Ny (r,g =a # ) denotes the counting function of those points satisfying both
f —a#0 and g — a = 0 with multiplicity less than or equal to 2 (each zero z* of
g — a is counted p times if z* is a zero of g — a with multiplicity p). From (4.28)

and (4.29), we have

(4.30) N(rgZa=f)+Ny(rg=a+f) =S

By (4.30) and Lemma 2, we can deduce that the counting function of the multiple
zeros of g —a is S(r), ie., N(r,g i a) =Ny (r,g 1 a) + S(r). Moreover, we

can see from (4.30) and Lemma 2 that the counting function of those points
satisfying both g —a =0 and f —a #0 is also S(r). From this and (4.12) we
deduce that f and g share a(z) “CM”.

If a = ¢y, where ¢o(#0,1,—1,1/2,2) is a constant, then we set

1 o 1
Y200 —g

4.31 Fji=——
4.31) T 20— f7

From (4.31) and the hypothesis of Theorem 2, it follows that F; and G; share

L, ;, 0 CM, and share l “CM”.
26’0 200 -1 &)
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If a is not a constant, then from (4.31) we see that F; and G; share

1 .
m(;ﬁé o) “CM”. Now we have shown that F; and G; always satisfy the
> —

hypothesis of Theorem B whether « is a constant or not. Thus from Theorem C
we deduce that f and g must assume one of the cases (v)—(x) of the conclusion of
Theorem 2. But these are impossible because a(z) # —1,1/2,2. This completes
the proof of Theorem 2.

Acknowledgment. Authors are thankful to the referee for his/her valuable
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