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Abstract

This paper studies the uniqueness of meromorphic functions that share three values

CM and obtain some results that are improvements and generalizations of that of H.

Ueda, G. Brosch, etc.

1. Introduction and results

In this paper, by meromorphic function we always mean a function which is
meromorphic in the whole complex plane C. It is assumed that the reader is
familiar with the usual notations and the fundamental results of R. Nevanlinna
theory of meromorphic function as found in [6]. In particular, Sðr; f Þ will denote
any quantity that satisfies Sðr; f Þ ¼ oðTðr; f ÞÞ as r ! þy, possibly outside a set
of r of finite linear measure.

Let f , g be nonconstant meromorphic functions. We say that a mero-
morphic function aðzÞð2yÞ is a small function of f if Tðr; aÞ ¼ Sðr; f Þ. If
Nðr; 1=ð f � aÞÞ ¼ Sðr; f Þ, then we say that a is an exceptional function of f .
Moreover, we denote by Nðr; f ¼ a ¼ gÞ the counting function of those com-
mon zeros of f � a and g� a, where z0 is counted minfp; qg times if z0 is
a common zero of f � a and g� a with multiplicity p and q respectively; as
usual, by Nðr; f ¼ a ¼ gÞ the corresponding reduced counting function; and by
NEðr; f ¼ a ¼ gÞ the counting function which ‘‘counts’’ only those common zeros
of f � a and g� a with the same multiplicity in Nðr; f ¼ a ¼ gÞ. These
notations will be used throughout the paper.

Let f , g be two nonconstant meromorphic functions, and let a be a small
function of f and g or a be a constant. We say that f and g share a CM if
f � a and g� a have the same zeros with the same multiplicity; if we ignore the
multiplicity, then we say that f and g share a IM. In addition, we say that f
and g share y CM (resp. IM) if 1=f and 1=g share the value 0 CM (resp. IM).

For the statement of our results, we need a slight generalization of the
definitions of CM and IM.
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Let f and g be two meromorphic functions, and let a be a small function of
f and g or a be a constant.

Definition 1 (see [7, p. 799]). We say that f and g share a ‘‘CM ’’ if

N r;
1

f � a

� �
�NEð f ¼ a ¼ gÞ ¼ Sðr; f Þ and N r;

1

g� a

� �
�NEðr; f ¼ a ¼ gÞ ¼

Sðr; gÞ.

Definition 2 (see [9, p. 317]). We say that f and g share a ‘‘IM ’’ if

N r;
1

f � a

� �
�Nðr; f ¼ a ¼ gÞ ¼ Sðr; f Þ and N r;

1

g� a

� �
�Nðr; f ¼ a ¼ gÞ ¼

Sðr; gÞ.

Clearly, if a is shared ‘‘CM’’ by f and g, then a must be shared ‘‘IM’’ by f
and g.

R. Nevanlinna proved the following famous four-point theorem.

Theorem A [12]. If two nonconstant meromorphic functions f and g share
four distinct values CM, then f is a Möbius transformation of g.

Since then, many authors studied the uniqueness of meromorphic functions
that share three or four values and obtained a series of results (see [2–5, 8, 10, 11,
13–16] etc). As we have known, in such problems of uniqueness of meromor-
phic function, some results can be usually generalized from sharing value to
sharing small function. But, these generalizations are sometimes very di‰cult
(see [7–9], [18] etc).

In 1997, Hua and Fang proved the following result.

Theorem B [7]. Let f and g be two nonconstant meromorphic functions,
and let ajðzÞ ð j ¼ 1; . . . ; 4Þ be distinct small functions of f and g. If f and g
share ajðzÞ ð j ¼ 1; 2; 3Þ CM, and share a4ðzÞ IM. Then f and g satisfy one of the
following cases.

(i) f 1 g, (ii) F 1�G with aðzÞ1�1, (iii) F þ G1 2 with aðzÞ1 2,
(iv) ðF � 1=2ÞðG � 1=2Þ1 1=4 with aðzÞ1 1=2, (v) F � G1 1 with

aðzÞ1�1,
(vi) ðF � 1ÞðG � 1Þ1 1 with aðzÞ1 2, (vii) F þ G1 1 with aðzÞ1 1=2,

where F 1
f � a1

f � a3

a2 � a3

a2 � a1
, G1

g� a1

g� a3

a2 � a3

a2 � a1
, and aðzÞ1 a4 � a1

a4 � a3

a2 � a3

a2 � a1
.

Remark 1. From the proof of Lemma 6 and Lemma 7 in [7], it is easy to
see that the conclusion is still true if we replace IM with ‘‘IM’’ in Theorem B.

For the meromorphic functions that share three values, H. Ueda, G. Brosch
proved the following results respectively.
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Theorem C (see [2] or [11, p. 36]). Let two meromorphic functions f and g
share 0, 1, y CM. If there exists a finite value að0 0; 1Þ such that gðzÞ ¼ a
whenever f ðzÞ ¼ a, then f is a Möbius transformation of g.

In order to state Ueda’s result, we need the following notations and
definitions.

Let f be a meromorphic function, let a be a small function of f or be a

constant, and let p, k be positive integers. We denote by f ðz0Þ ¼ðpÞ a that z0 is a

zero of f � a with multiplicity p, and by Eða; k; f Þ ¼ fz A C : f ðzÞ ¼ðpÞ a; pa kg
the set of all zeros (counting multiplicity) of f � a with multiplicity less than or
equal to k.

Theorem D [13]. Let two meromorphic functions f and g share 0, 1, y
CM. If there exists a finite value a ð0 0; 1Þ and an integer kðb2Þ such that
Eða; k; f Þ ¼ Eða; k; gÞ, then f is a Möbius transformation of g.

The main purpose of this paper is further to study the uniqueness of
meromorphic functions that share three values CM, and to prove the following
results.

Theorem 1. Let two nonconstant meromorphic functions f and g share 0, 1,
y CM. If there exists a small entire function aðzÞð2 0; 1Þ of f and g such that
Nðr; f ¼ a ¼ gÞ0Sðr; f Þ, then f and g satisfy one of the following five cases.

(i) f 1 g, (ii) f � g1 1 with aðzÞ1�1, (iii) f þ g1 1 with aðzÞ1 1
2 ,

(iv) ð f � 1Þðg� 1Þ1 1 with aðzÞ1 2,

(v) f ðzÞ ¼ e

Ð
aðzÞg 0ðzÞ dz � 1

egðzÞ � 1
, gðzÞ ¼ e

�
Ð
aðzÞg 0ðzÞ dz � 1

e�gðzÞ � 1
,

where gðzÞ is a nonconstant entire function, and aðzÞ2�1; 12 ; 2.

By Theorem 1, we can prove the following results which generalizes Theorem
C and improves Theorem D.

Theorem 2. Let two nonconstant meromorphic functions f and g share 0, 1,
y CM. If there exists a small entire function aðzÞð2 0; 1Þ of f and g such that

gðzÞ � aðzÞ ¼ 0 whenever f ðzÞ ¼ðpÞ aðzÞ for p ¼ 1; 2. Then f and g must satisfy one
of the following ten cases.

(i) f 1 g, (ii) f 1 ag, where aðzÞð2�1Þ, 1 are exceptional functions of f ,
(iii) f � 11 ð1� aÞðg� 1Þ, where aðzÞð2 2Þ, 0 are exceptional functions of f ,
(iv) ð f � aÞðg� 1þ aÞ1 að1� aÞ, where aðzÞ 2 1

2

� �
, y are exceptional func-

tions of f , (v) f 1�g with aðzÞ1�1, (vi) f þ g1 2 with aðzÞ1 2,

(vii) f � 1
2

� �
g� 1

2

� �
1 1

4 with aðzÞ1 1
2 , (viii) f � g1 1 with aðzÞ1�1,

(ix) ð f � 1Þðg� 1Þ1 1 with aðzÞ1 2, (x) f þ g1 1 with aðzÞ1 1
2 .
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Remark 2. In Theorem 2, if f and g share aðzÞ ‘‘IM’’, then the cases (ii)–
(iv) of the conclusion of Theorem 2 cannot occur. Since under these three cases,

we always have N r;
1

f � a

� �
¼ Sðr; f Þ. Suppose that f and g satisfy the case

(ii), that is to say, f 1 ag with aðzÞ2�1. This and Lemma 2 which will be
stated in the next section imply that

N r;
1

f � a2

� �
a 2N r;

1

f � a2

� �
þ Sðr; f Þ ¼ 2N r;

1

ag� a2

� �
þ Sðr; f Þ

a 2N r;
1

g� a

� �
þ Sðr; f Þ ¼ 2N r;

1

f � a

� �
þ Sðr; f Þ ¼ Sðr; f Þ;

which means that a2 is also an exceptional function of f . But in the case (ii),
f has already two exceptional functions a and 1, thus we must have a2 1 a or
a2 1 1. Since a2 0; 1, so we obtain a1�1, a contradiction. Similarly, if f
and g satisfy the case (iii) or (iv), then we can deduce that að2� aÞ or a2=ð2a� 1Þ
is an exceptional function of f , and then get a contradiction.

2. Lemmas

Let k be a positive integer, and let a A CU fyg. We denote by
Nðkþ1ðr; a; f Þ the counting function of those a-points of f with multiplicity at
least k þ 1, and write NkÞðr; a; f Þ ¼ Nðr; a; f Þ �Nðkþ1ðr; a; f Þ:

Lemma 1 (see [7, Lemma 2]). Let f and g be two nonconstant meromorphic
functions that share 0, 1, y CM. If there exists a small function aðzÞð2 0; 1;yÞ

of f and g such that Tðr; f Þ0N r;
1

f � a

� �
þ Sðr; f Þ, then one of the following

cases holds.
(i) f 1 g, (ii) f 1 ag, where aðzÞ, 1 are exceptional functions of f ,
(iii) f � 11 ð1� aÞðg� 1Þ, where aðzÞ, 0 are exceptional functions of f ,
(iv) ð f � aÞðg� 1þ aÞ1 að1� aÞ, where aðzÞ, y are exceptional functions of

f .

Lemma 2 (see [7, Lemma 5]). Let f and g be two nonconstant meromorphic
functions that share 0, 1, y CM. If f 2 g, then for any small function
aðzÞð2 0; 1;yÞ of f and g, we have

Nð3ðr; a; f Þ þNð3ðr; a; gÞ ¼ Sðr; f Þ:

Lemma 3 (see [1] or [17, p. 77, Theorem 1.52]). Let f jðzÞ, gjðzÞ
ð j ¼ 1; . . . ; nÞ be two groups of entire functions satisfying the following conditions:

(i)
Pn

j¼1 fjðzÞeg jðzÞ 1 0, and

(ii) rð fjÞ < rðegh�gk Þ for 1a ja n and 1a h < ka n, where rð fjÞ and
rðegh�gk Þ denote the orders of growth of fjðzÞ and eghðzÞ�gkðzÞ respectively. Then
fjðzÞ1 0 for j ¼ 1; . . . ; n.
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Lemma 4 (see [19, Lemma 6]). Let f1, f2 be nonconstant meromorphic

functions satisfying Nðr; fjÞ þN r;
1

fj

� �
¼ SðrÞ for j ¼ 1; 2. If Nðr; f1 ¼ 1 ¼ f2Þ

0SðrÞ, then there exist two integers s, t satisfying jsj þ jtj > 0 such that
f s
1 � f t

2 1 1, where SðrÞ ¼ oðTðrÞÞ ðr ! þy; r B EÞ, TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ,
and E denotes a set of r of finite linear measure.

3. The Proof of Theorem 1

We suppose first that f 2 g. Since f and g share 0, 1, y CM, by the
second fundamental theorem due to R. Nevanlinna, we have

ð1þ oð1ÞÞTðr; f ÞaNðr; f Þ þN r;
1

f

� �
þN r;

1

f � 1

� �
ð3:1Þ

aNðr; gÞ þN r;
1

g

� �
þN r;

1

g� 1

� �
a ð3þ oð1ÞÞTðr; gÞ:

Similarly, we obtain

ð1þ oð1ÞÞTðr; gÞa ð3þ oð1ÞÞTðr; f Þ:ð3:2Þ
From (3.1) and (3.2), it follows that

Sðr; f Þ ¼ Sðr; gÞ:ð3:3Þ
Set

j :¼ f 0ð f � aÞ
f ð f � 1Þ � g 0ðg� aÞ

gðg� 1Þ :ð3:4Þ

If j2 0, then from (3.3), (3.4), the fundamental estimate of the logarithmic
derivative, and the hypothesis that f and g share 0, 1, y CM, we have

Tðr; jÞ ¼ Sðr; f Þ þ Sðr; gÞ ¼ Sðr; f Þ:ð3:5Þ

Since f and g share 0, 1, y CM, thus by (3.4) and (3.5) we deduce that

Nðr; f ¼ a ¼ gÞaNðr; 1=jÞ þ Sðr; f ÞaTðr; jÞ þ Sðr; f Þ ¼ Sðr; f Þ;

which contradicts the hypothesis of Theorem 1. Hence, we must have j1 0,
namely

f 0ð f � aÞ
f ð f � 1Þ 1

g 0ðg� aÞ
gðg� 1Þ :ð3:6Þ

Noting that f and g share 0, 1, y CM, thus there exist two entire functions a
and b such that

f

g
¼ ea;

f � 1

g� 1
¼ eb:ð3:7Þ
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Since f 2 g, by (3.7) we can deduce that ea 2 1, eb 2 1 and eb�a 2 1. Set
g :¼ b � a, then from (3.7) we have

f ¼ eb � 1

eg � 1
; g ¼ e�b � 1

e�g � 1
:ð3:8Þ

Rewriting (3.6) as

ð1� aÞ f 0

f � 1
� g 0

g� 1

� �
1 a

g 0

g
� f 0

f

� �
:ð3:9Þ

By (3.7) and the fact that a ¼ b � g, we obtain

f

g
¼ eb�g;

f � 1

g� 1
¼ eb;ð3:10Þ

from (3.10), it follows that

f 0

f
� g 0

g
¼ b 0 � g 0;

f 0

f � 1
� g 0

g� 1
¼ b 0:ð3:11Þ

Substitution (3.11) into (3.9) gives

b 0 1 ag 0:ð3:12Þ
From (3.8) and (3.12), we have

f ¼ e

Ð
ag 0 � 1

eg � 1
; g ¼ e

�
Ð
ag 0 � 1

e�g � 1
:ð3:13Þ

We now claim that ½aðzÞ þ 1� aðzÞ � 1
2

� �
½aðzÞ � 2�1 0 if and only if f and g

satisfy one of the cases (ii)–(iv) of the conclusion of Theorem 1, and thus f is a
Möbius transformation of g, where f and g are defined by (3.13).

In fact, suppose that there exist four finite complex numbers cj ð j ¼ 1; 2; 3; 4Þ

such that f ¼ c1gþ c2

c3gþ c4
, where c1c4 0 c2c3. By this and (3.13) we obtain

2c3 þ c4 � 2c2 � c1 ¼ c1e
g�
Ð
ag 0 þ ðc3 � c1Þe�

Ð
ag 0 þ ðc3 þ c4Þe

Ð
ag 0ð3:14Þ

� c4e
�gþ

Ð
ag 0 � ðc1 þ c2Þeg þ ðc4 � c2Þe�g:

We note first that g is not a constant. Otherwise, from (3.12) we know that
b is also a constant, and thus by (3.8) we can deduce that f is a constant, a
contradiction. So from this and the fact that aðzÞ2 0; 1, we can derive that both
g�

Ð
ag 0 and

Ð
ag 0 are not constants. Thus, by applying Lemma 3 to (3.14), and

noting the fact that c1c4 0 c2c3 and that aðzÞ2 0; 1, we find that one of the
following cases holds.

(i) g�
Ð
ag 0 �

Ð
ag 0 1 constant, that is aðzÞ1 1

2 ,
(ii) g�

Ð
ag 0 þ g1 constant, that is aðzÞ1 2, and

(iii) �
Ð
ag 0 � g1 constant, that is aðzÞ1�1.
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Otherwise, i.e., the above three cases are all not true, then by (3.14) and Lemma
3 we can deduce that cj ¼ 0 for j ¼ 1; 2; 3; 4, which is impossible.

On the other hand, if aðzÞ1 1
2 , then from (3.12) we have g1 2b þ c, where c

is a constant. Thus, by (3.7) and the fact that a ¼ b � g, it follows that

g

f
1 eg�b 1 ebþc 1 ec

f � 1

g� 1
:ð3:15Þ

From the hypothesis of Theorem 1 that Nðr; f ¼ a ¼ gÞ0SðrÞ, we can deduce
that there exists a point z0 such that f ðz0Þ ¼ gðz0Þ ¼ aðz0Þ ð0 0; 1Þ, which and
(3.15) implies that ec ¼ 1, and thus we obtain from (3.15) that ðg� f Þðgþ f � 1Þ
1 0, that is f þ g1 1. Similarly, if aðzÞ1�1 or aðzÞ1 2, then from (3.7),
(3.12), the fact a ¼ b � g, and the hypothesis of Theorem 1, we can also deduce
that f � g1 1 or ð f � 1Þðg� 1Þ1 1, respectively. This proves Theorem 1.

4. The Proof of Theorem 2

We suppose first that f 2 g. Otherwise, we have done in this case. Since
aðzÞ is a small function of f and g, from Lemma 2 and the hypothesis of
Theorem 2, we have

N r;
1

f � a

� �
¼ N2Þ r;

1

f � a

� �
þ Sðr; f Þ:ð4:1Þ

Form (4.1) and the fact that gðzÞ ¼ aðzÞ whenever f ðzÞ ¼ðpÞ aðzÞ for p ¼ 1; 2, it
follows that

Nðr; f ¼ a ¼ gÞ ¼ N r;
1

f � a

� �
þ Sðr; f Þ:ð4:2Þ

We shall divide our argument into two cases.

Case 1. N r;
1

f � a

� �
¼ Sðr; f Þ.

From (4.1) we have

N r;
1

f � a

� �
a 2N r;

1

f � a

� �
þ Sðr; f Þ ¼ Sðr; f Þ:ð4:3Þ

By (4.3) and Lemma 1, we know that f and g must assume one of the forms (ii)–
(vii) of the conclusion of Theorem 2.

Case 2. N r;
1

f � a

� �
0Sðr; f Þ.

From (4.2) we see that Nðr; f ¼ a ¼ gÞ0Sðr; f Þ. Therefore, by Theorem 1,
it follows that f and g satisfy one of the forms (viii)–(x) of the conclusion of
Theorem 2, unless

f ¼ e

Ð
ag 0 � 1

eg � 1
and g ¼ e

�
Ð
ag 0 � 1

e�g � 1
;ð4:4Þ

where g is a nonconstant entire function and aðzÞ2�1; 1=2; 2.
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Since N r;
1

f � a

� �
0Sðr; f Þ, from (4.1) we know that there exist a point

z0 and a positive integer pða2Þ such that f ðz0Þ ¼ðpÞ aðz0Þð0 0; 1Þ. Thus from the
hypothesis of Theorem 2, we have gðz0Þ ¼ aðz0Þ. For simplicity, we write

dðzÞ :¼ e

Ð
aðzÞg 0ðzÞ dz;ð4:5Þ

by (4.4) and (4.5), it follows that

dðz0Þ � aðz0Þegðz0Þ þ aðz0Þ � 1 ¼ 0;ð4:6Þ
and

1

dðz0Þ
� aðz0Þ

1

egðz0Þ
þ aðz0Þ � 1 ¼ 0:ð4:7Þ

In view of aðz0Þ0 0; 1, by (4.6) and (4.7) we obtain

dðz0Þ ¼ 1; egðz0Þ ¼ 1:ð4:8Þ
We now assert that g 0ða2g 0 � ag 0 � a 0Þ2 0. Otherwise, we have either g 0 1 0

or a2g 0 � ag 0 � a 0 1 0. If a2g 0 � ag 0 � a 0 1 0, namely,

g 0 1
a 0

a� 1
� a 0

a
;ð4:9Þ

Integrating (4.9) we have

aðzÞ1 1

1� ceg
;ð4:10Þ

where c is a nonzero constant.
Since aðzÞ is a small function of f , by (4.10) we obtain Sðr; f Þ ¼ Tðr; aÞ ¼

Tðr; egÞ þOð1Þ, that is to say,

Tðr; egÞ ¼ Sðr; f Þ:ð4:11Þ
Moreover, by (4.8) we see that ‘‘almost’’ all the zeros of f � a that have
multiplicity at most 2 must be the zeros of eg � 1. Clearly, eg 2 1. If this is not
the case, then g is a constant, which contradicts the fact that g 0 2 0. Hence, by
(4.11) and (4.1), we have

N r;
1

f � a

� �
aN r;

1

eg � 1

� �
þ Sðr; f Þ ¼ Tðr; egÞ þ Sðr; f Þ ¼ Sðr; f Þ;

which contradicts the hypothesis N r;
1

f � a

� �
0Sðr; f Þ. We now have shown

that the above assertion is true.
Next, we shall prove

N r;
1

f � a

� �
¼ N1Þ r;

1

f � a

� �
þ Sðr; f Þ:ð4:12Þ
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Suppose that z0 is a zero of f � a with multiplicity 2, and that aðz0Þ0 0; 1.
By (4.4) we have

f � a ¼ e

Ð
ag 0 � 1� aeg þ a

eg � 1
;ð4:13Þ

Since any zero z0 of f � a with multiplicity at most 2 satisfying aðz0Þ0 0; 1 is
also a zero of eg � 1, thus from (4.13) we know that z0 must be a zero of the

function G :¼ e

Ð
ag 0 � 1� aeg þ a with multiplicity at least 3. Di¤erentiating G

twice leads us to

G 00 ¼ ½a 0g 0 þ ag 00 þ ðag 0Þ2�e
Ð
ag 0 � ½a 00 þ 2a 0g 0 þ ag 00 þ aðg 0Þ2�eg þ a 00:

From this, (4.5) and (4.8), we have

0 ¼ G 00ðz0Þ ¼ a 0ðz0Þg 0ðz0Þ þ aðz0Þg 00ðz0Þ þ ½aðz0Þg 0ðz0Þ�2

� fa 00ðz0Þ þ 2a 0ðz0Þg 0ðz0Þ þ aðz0Þg 00ðz0Þ þ aðz0Þ½g 0ðz0Þ�2g þ a 00ðz0Þ;

that is

g 0ðz0Þ½a2ðz0Þg 0ðz0Þ � aðz0Þg 0ðz0Þ � a 0ðz0Þ� ¼ 0:ð4:14Þ
Since we have proved that g 0ða2g 0 � ag 0 � a 0Þ2 0, thus from (4.14) and Lemma 2,
it follows that

Nð2 r;
1

f � a

� �
a 2N r;

1

g 0ða2g 0 � ag 0 � a 0Þ

� �
þ Sðr; f Þð4:15Þ

a 2Tðr; g 0ða2g 0 � ag 0 � a 0ÞÞ þ Sðr; f Þ ¼ Sðr; egÞ þ Sðr; f Þ:

Since f and g share 0, 1, y CM, thus (3.2) holds. Moreover, by (4.4) we can
obtain that

gð f � 1Þ
f ðg� 1Þ ¼ eg:ð4:16Þ

By (3.2) and (4.16) we deduce that

Tðr; egÞa 2Tðr; f Þ þ 2Tðr; gÞ þOð1Þa ð8þ oð1ÞÞTðr; f Þ;

which when combined with (4.15) gives that Nð2 r;
1

f � a

� �
¼ Sðr; f Þ, and so

(4.12) holds.
If Tðr; f Þ0N r;

1

f � a

� �
þ Sðr; f Þ, then by Lemma 1, we deduce that aðzÞ is

an exceptional function of f . This contradicts the hypothesis of the Case 2 that

N r;
1

f � a

� �
0Sðr; f Þ. Therefore, we can suppose that

Tðr; f Þ ¼ N r;
1

f � a

� �
þ Sðr; f Þ:ð4:17Þ
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Form (4.12), (4.17) as well as the hypothesis of Theorem 2, we have

Tðr; f Þ ¼ Nðr; 1=f � aÞ þ Sðr; f Þ ¼ N1Þðr; 1=f � aÞ þ Sðr; f Þð4:18Þ

aNðr; 1=g� aÞ þ Sðr; f ÞaTðr; gÞ þ Sðr; f Þ:

Next, we shall show that

Tðr; f Þ ¼ Tðr; gÞ þOð1Þ:ð4:19Þ
Set

f1 :¼
f

g
; f2 :¼

f � 1

g� 1
:ð4:20Þ

Since f and g share 0, 1, y CM, thus from (4.20) we see that

Nðr; fjÞ þNðr; 1= fjÞ ¼ 0 for j ¼ 1; 2:ð4:21Þ
Noting that aðzÞ is a small function of f and g, so from (4.17), (4.12), (4.2) and
(4.20), we have

Tðr; f Þ ¼ N1Þðr; 1=f � aÞ þ Sðr; f ÞaNðr; f ¼ a ¼ gÞ þ Sðr; f Þð4:22Þ

aNðr; f1 ¼ 1 ¼ f2Þ þ Sðr; f Þ:

From (4.20), (3.2) and the first fundamental theorem due to R. Nevanlinna, we
get

Tðr; f Þ ¼ Tðr; g f1ÞbTðr; f1Þ � Tðr; gÞ þOð1Þð4:23Þ
bTðr; f1Þ � 4Tðr; f Þ;

by (4.23), we obtain

Tðr; f Þb 1

5
Tðr; f1Þ:ð4:24Þ

Similarly, from (4.20) and (3.2) we have

Tðr; f Þ þOð1Þ ¼ Tðr; f � 1Þ ¼ Tðr; ðg� 1Þ f2Þ
bTðr; f2Þ � Tðr; gÞ þOð1ÞbTðr; f2Þ � 4Tðr; f Þ;

i.e.,

Tðr; f Þb 1

5
Tðr; f2Þ:ð4:25Þ

From (4.24) and (4.25) we obtain

Tðr; f Þb 1

10
ðTðr; f1Þ þ Tðr; f2ÞÞ:ð4:26Þ

By (4.22) and (4.26) we deduce that
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Nðr; f1 ¼ 1 ¼ f2Þ0 oðTðr; f1Þ þ Tðr; f2ÞÞ:ð4:27Þ

Now we see that f1 and f2 satisfy all the conditions of Lemma 4, and thus there
exist two integers s and t satisfying jsj þ jtj > 0 such that f s

1 � f t
2 1 1. This and

(4.20) lead to (4.19). Substitution (4.19) into (4.18) gives

N1Þ r;
1

f � a

� �
¼ N r;

1

g� a

� �
þ Sðr; f Þ:ð4:28Þ

Noting that f and g share 0, 1, y CM, thus (3.3) holds. From Lemma 2, (4.12)
and (3.3), we have

N r;
1

g� a

� �
ð4:29Þ

¼ N2Þ r;
1

g� a

� �
þ SðrÞ

¼ Nðr; g ¼ð1Þ a ¼ f Þ þNðr; g ¼ð2Þ a ¼ f Þ þN2Þðr; g ¼ a0 f Þ þ SðrÞ

¼ N1Þ r;
1

f � a

� �
þNðr; g ¼ð2Þ a ¼ f Þ þN2Þðr; g ¼ a0 f Þ þ SðrÞ;

where SðrÞ ¼ Sðr; f Þ ¼ Sðr; gÞ and the notation Nðr; g ¼ðkÞ a ¼ f Þ for k ¼ 1; 2
denotes the counting function of those common zeros of f � a and g� a

with multiplicity k for g (each common zero in Nðr; g ¼ðkÞ a ¼ f Þ is counted k

times), Nðr; g ¼ðkÞ a ¼ f Þ denotes the corresponding reduced counting function, and
N2Þðr; g ¼ a0 f Þ denotes the counting function of those points satisfying both
f � a0 0 and g� a ¼ 0 with multiplicity less than or equal to 2 (each zero z� of
g� a is counted p times if z� is a zero of g� a with multiplicity p). From (4.28)
and (4.29), we have

Nðr; g ¼ð2Þ a ¼ f Þ þN2Þðr; g ¼ a0 f Þ ¼ SðrÞ:ð4:30Þ
By (4.30) and Lemma 2, we can deduce that the counting function of the multiple

zeros of g� a is SðrÞ, i.e., N r;
1

g� a

� �
¼ N1Þ r;

1

g� a

� �
þ SðrÞ. Moreover, we

can see from (4.30) and Lemma 2 that the counting function of those points
satisfying both g� a ¼ 0 and f � a0 0 is also SðrÞ. From this and (4.12) we
deduce that f and g share aðzÞ ‘‘CM’’.

If a1 c0, where c0ð0 0; 1;�1; 1=2; 2Þ is a constant, then we set

F1 :¼
1

2c0 � f
; G1 :¼

1

2c0 � g
:ð4:31Þ

From (4.31) and the hypothesis of Theorem 2, it follows that F1 and G1 share
1

2c0
,

1

2c0 � 1
, 0 CM, and share

1

c0
‘‘CM’’.
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If a is not a constant, then from (4.31) we see that F1 and G1 share
1

2c0 � a
ð2yÞ ‘‘CM’’. Now we have shown that F1 and G1 always satisfy the

hypothesis of Theorem B whether a is a constant or not. Thus from Theorem C
we deduce that f and g must assume one of the cases (v)–(x) of the conclusion of
Theorem 2. But these are impossible because aðzÞ2�1; 1=2; 2. This completes
the proof of Theorem 2.
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