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1. Introduction

Let (M,®) be a complex n-dimensional Kéhler manifold with Kahler form
w, and let M be a real n-dimensional manifold. Then an immersion x : M — M
is called Lagrangian if x*w =0 on M. Y. G. Oh defined [8] that a Lagrangian
submanifold M in M is Hamiltonian minimal (or H-minimal) if the volume of
M is stationary for any compactly-supported Hamiltonian deformation of the
Lagrangian immersion. The Hamiltonian minimality is characterized as the
harmonicity of mean curvature form duy = 0 by the first variational formula. It
is important to study either minimal or H-minimal Lagrangian submanifolds in
complex projective spaces CP”.

This paper is concerned with Lagrangian submanifolds in CP” which are
solutions of above variational problem, with some symmetry. Namely, we
consider Lagrangian submanifolds which are obtained as a 1-parameter family
of totally geodesic RP"~' in CP". To do that let .#, be the set of totally
geodesic RP"~! in CP”. Since the unitary group U(n+ 1) acts on .#, tran-
sitively, .#, is a homogeneous space of U(n+ 1). From a curve y: 1 — .#,, we
can construct a real n-dimensional submanifold A (which may have some
singularities) with 1-parameter family of totally geodesic y(¢) = RP"~' in CP".
First we will show that M is a Lagrangian submanifold on the open subset of
regular points if and only if the corresponding curve y in .#, is horizontal with
respect to the natural fibration .#, — CP" (Proposition 3.1).

Using this argument, we will see that minimal Lagrangian submanifold with
1-parameter family of totally geodesic RP"~! in CP" is totally geodesic (Theorem
4.1). Next we will show that for a Lagrangian submanifold with 1-parameter
family of totally geodesic RP"~! in CP”", its Hamiltonian minimality is expressed
as a system of 2nd order ODE’s for curves in S® (Proposition 4.1). As a special
solution, if we take a curve y in .#, as an orbit of l-parameter subgroup of
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U(n+1), then we have neither totally geodesic nor minimal Lagrangian sub-
manifolds M" in CP" satisfying doy = 0 (cf. Theorem 4.2). When n >3, M"
must have some singularities, but when n = 2, M? is everywhere regular and flat,
and the mean curvature vector H # 0 is parallel with respect to the normal
connection. Such Lagrangian surface in CP? was studied by Ogata [7].

The author would like to express his gratitude to the referee for careful
reading, valuable suggestions and comments.

2. Preliminaries

First we recall about Hamiltonian deformation of Lagrangian submanifolds in
Kéhler manifolds, defined by Oh [8]. Let M be a complex n-dimensional Kéhler
manifold with Kéhler form , Riemann metric <, », and complex structure J. Let
X: M — M be a Lagrangian immersion from a real n-dimensional manifold M to
M, ie., o|;, =0. For a vector field V' along x, we define a 1-form oy on M as
oy = IV, Dy Smooth family of embeddings 7, : M — P is called Hamilto-
nian deformation if for the variational vector field V', the 1-form o) is exact. A
Lagrangian submanifold M is Hamiltonian minimal (or H-minimal) if M is
stationary for any Hamiltonian deformation. Oh [8] showed that when M is
compact, M is H-minimal if and only if ay is co-closed, i.e., doy = 0 where H
is the mean curvature vector field of M. We have

(1) ooy =0« divJH = 0.

Next we recall the Fubini-Study metric on the complex projective space CP”
(cf. [2, 4]). The Euclidean metric ¢,» on C""! is given by (z,w)» = Re(‘z) for
z,we C""!. The unit sphere S¥*! in C"*! is the principal fiber bundle over
CP" with the structure group S' and the Hopf fibration 7 : S*"*! — CP". The
tangent space of S*! at a point z is

.87 = {we C" | (z,w) =0}
Let
T!={we C""[{z,w) = iz, w) = 0}.

The distribution 7, defines a connection in the principal fiber bundle
SZH(CP", S1), because T! is complementary to the subspace {iz} tangent to
the fibre through z, and invariant under the S'-action. Then the Fubini-Study
metric g of constant holomorphic sectional curvature 4 is given by g(X,Y) =
(X*,Y*> where X,Y € T,CP”", and X*, Y* are respectively their horizontal lifts
at a point z with n(z) = x. The complex structure on 7T’ defined by multipli-
cation by v/—1 induces a canonical complex structure J on CP” through 7..

3. Lagrangian submanifolds with 1-parameter family of totally geodesic
RP"! in CP"

Let CP” be the complex projective space with Fubini-Study metric of
constant holomorphic sectional curvature 4 as §2. We will construct Lagrangian



40 MAKOTO KIMURA

submanifolds M" in CP" with codimension 1 totally geodesic foliation such that
each leaf is a part of totally geodesic (n — 1)-dimensional real projective space
RP""!, from a curve in

(2) M, = {RP""! = CP": totally geodesic}.

In [5] we showed that the space of totally geodesic RP” in CP” is naturally
identified with Riemannian symmetric space SU(n+1)/SO(n+1). Since
U(n+1) acts on .4, transitively, .#, is identified with the homogeneous space
U(n+1)/K, where

; 0
K:{e’0<g1 );gleO(n),gzeU(l),HeR}.
0 9
We define a bi-invariant Riemannian metric (,) on U(n+ 1) as
(A, B) = Re(trace A'B)/4, A,Beu(n+1).

Then U(n+ 1)-invariant Riemannian metric g on .#, is defined naturally such
that the projection #: U(n+ 1) — .#, is a Riemannian submersion.
The Lie algebra f of K is written as

A e} ()

where E, denotes n x n identity matrix. If we put

{7

C(7ﬂ€R}7

> ‘B € Sym(n,R),trace B=0,z € C"},

where Sym(n,R) denotes the set of nxn real symmetric matrices, then
u(n+1)=1+p is a direct sum decomposition of the Lie algebra of U(n+ 1).

Let y: I — .4, be a regular curve and let g: 7 — U(n+ 1) be a lift of y,
where I = R denotes an interval. Then ¢ is horizontal with respect to the
Riemannian submersion #: U(n+ 1) — 4, if and only if for each rel,

g())'g'(1)ep. We define a map @ : 1 x §"1 — §2t!1 = "1 a5

(3) B(t,x) :g(t)(z), (xeS"! < R"0€eR),

where ¢ is a horizontal lift of 3. Then ®:7 x RP""! — CP”" is defined by
- X

@ (1. 1x) = 1900 = o) )|

where [x] (resp. [@(t,x)]) denotes the image of the projection S"~! — RP"!
(resp. Hopf fibration S**! — CP"). We note that the image of ® is the union
of 1-parameter family of totally geodesic RP"~! and independent of a choice of
horizontal lift g(¢) of y(z). The pullback of Maurer-Cartan form on U(n + 1) by
g 1s written as
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5) o' (1) = (“j(gﬁ’) ““Yew

Then the differential map of @ is given by
. X V—1B(t)x
ab(o/on =03 ) = a0 (Y 1EOX).

(©) . —z(1)"x
4o =00

The horizontal part #X of X e T,CP" with respect to the Hopf fibration
S+l CP" is given by #X = X — (X,v/—1z)>v/—1z. Hence we have

V—1(B(1)x — {(B(1)x, x>x))

—z()"x

), (X e T, S" 1.

o H dD(0/0t) = g(l)<

H dD(X) = dO(X).

With respect to the complex structure J on CP”, ® is a Lagrangian immersion
on the open subset of regular points of @ if and only if J# d®(d/0t) L dO(X)
for any X eTyS"'. By (6) and (7), this condition is equivalent to
B(t)x = {(B(t)x,x) for any xe S"!. Since B(f) is a symmetric matrix and
trace B(t) = 0, we see that ® is a Lagrangian immersion on the open subset of
regular points if and only if B(¢) = 0.

For RP"!e.#,, there exists unique complex projective hyperplane
CP""!'(c CP") which contains RP""! and we have a Riemannian submersion

(8) #: .M, — CP", RP" ! CP"!

where we identify a complex line in C"™' and its dual complex projective
hyperplane in CP". 1If y(¢) be a regular curve in .#, and if g(¢) is its horizontal
lift to U(n+ 1), then y is horizontal with respect to the fibration .#, — CP" if
and only if B(f) =0 in (5). From the above argument, we obtain

ProposiTION 3.1.  Let y: I — M, be a regular curve and let g : I — U(n+ 1)
be a horizontal lift with respect to the Riemannian submersion U(n+ 1) — M,
Then the map ®: I x RP""' — CP" is a Lagrangian immersion on the subset
of regular points if and only if y is horizontal with respect to the fibration
. M, — CP".

4. Results

Let y(s) be a regular curve in .#, with unit speed and suppose that y is
horizontal with respect to the fibration (8) 7 : .#, — CP". Then for a horizontal
lift g(s) of y to U(n+ 1), according to Proposition 3.1 we have

o) 00700 = (e " )en agestec
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In this case the vector tangent to @,
~ 0
10 d®(0/0s) = —
(10) /059 =~06) (1o, )
in (6) is horizontal with respect to the Hopf fibration 7 :S**! — CP". We
define a quadratic form G(s,-) on R” as
G(s,x) = |z(s)"x)* = 'x(Re(z(s)z(s)*))x.

Then the metric on 7 x RP"! which is induced by ®:7 x RP""!' — CP”" is
written as

0/0s,0/0sy = G(s,x),

(11)
<0/ds,X» =0, (XeTyRP"")

and for tangent vectors in T[X]RP”_I, the induced metric ®*<, > is same as the
standard metric on RP"~!.  Hence ® is regular at (s, [x]) € I x RP""! if and only
if G(s,x) #0. By (6), (7) and (10), on a regular point (s, [x]) of ®, the normal
space is written by

Tas (I x RP") = {dn(g(s)<fOTX>) ’X e TXS"I}

ourta{uo( )

Let ¢ be the second fundamental tensor of the Lagrangian immersion ® on

the open subset of regular points in 7 x RP"~!. Since RP"~! is totally geodesic
in CP", we have

(12) o(X,Y)=0 for X,Y e TyRP" .
By (9) and (10), we obtain
1) Dy 4000/ =00 - ) =105 )

— g ("),
where D denotes the Euclidean covariant differentiation on C"'. Also (3)
implies that
D yip(aye5) AD(9/05) L V=1 (s, %)
and is horizontal with respect to the Hopf fibration S>*! — CP”. By taking the

normal component of (13), we get

. —tm(a(s)a(s) )
(14) a(0/0s,0/0s) = dn<\/—_1g(s) ( . Im(z’(s)z(s))x/’z(s)x))'
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THEOREM 4.1. Let y: 1 — M, be a regular curve and suppose that 7y is
horizontal with respect to the fibration 7 : M, — CP". If the corresponding map
®: I x RP"' — CP" is a minimal Lagrangian immersion on the reqular points,
then ®© is totally geodesic.

Proof. By (11), (12) and (14), ®:I xRP"! - CP" is a minimal
immersion on the regular points if and only if Im(z(s)z(s)*) =0 and
x Im(z'(s)z(s)*)x =0 hold for any xeS"!. The former equation yields
that z(s) = V" 10)y(s) for some 6:1—S' and y:I— S"!<R”. Then
Im(z'(s)z(s)") = 0'(s)y(s)'y(s) and latter equation implies that 0(s) is con-
stant. By (3), we can see that ®(/ x RP"™') « RP" and ® is totally geodesic.

O

Next to study the condition for which @ : I x RP"~! — CP” is Hamiltonian
minimal, we will calculate div JH in terms of (1). By (11) and (14), the mean
curvature vector of ® is H = G(s,x) '6(0/ds,/0s) and the tangent vector field
JH along ® is written as

1 Im(z(s)z(s)")x
d .
560 (90 (o oo
For a real n x n matrix 4, we denote a quadratic form on R” as

(16) 0(4,x) = 'xAx.
Then by using (13), we get

(Vosas(JH), 0/ 05y = —{Dyio/ey) dD(0/05),dD(IH))
= G(s,x) " {Q(Im(z"(s)z(s)"), x) + Q(Im(2'(5)2'(5) "), X)
+ O(Re(z(s)2(s) "), x) Q(Im(z(s)z(s) ), ) }
—3G(5,%) Q(Re(2'(s)z(5)"), x) Q(Im(2' (s)z(s) "), x),

where V denotes the Levi-Civita connection on 7 x RP"' induced by
®:1xRP"!' — CP". For X e T[yRP""', we obtain

(Vx(JH), X > = —2G(s,x) *{'x Re(z(s)z(s)") X' X Im(z(s)z(s)*)x}
+ G(s,x) """ X Im(z(s)z(s) ") X.

(15) JH =

Hence we obtain
(17)  div(JH) = G(s,x) {Q(Im(z"(s)z(s) "), x) — % O(Im(z(s) 'z(s)z(s)z(s) "), x) }
—3G(s,%) Q(Re(2'(s)2(s) "), x) Q(Im(z'(s)z(s) "), X).

We consider the case n =2. Then the curve z(s) in S° given by (9) and a
vector x in S! given by (3) are respectively written as
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~(=1(s) _ (cos 0
=) x= (o)
for some # € R/2nZ. Then by reducing (17) to a common denominator, we see

that div JH = 0 is equivalent to a homogeneous algebraic equation of order 4
with variables cos § and sin 6 whose coefficients are independent to s. Hence

ProposITION 4.1. Let y:1 — M, be a regular curve and suppose that y is
horizontal with respect to the fibration 7 : M, — CP>. Then on the reqular points,
the first variational formula doy =0 of the corresponding Lagrangian immersion
®: I x RP' — CP? with respect to Hamiltonian deformations is written as a
system of 5 ODE’s of second order for curves z(s) in S>.

Let y: I — #, be a unit speed horizontal curve with respect to .#, — CP".
And let g(s) be a horizontal lift of y(s) to U(n+1). Then y(s) is an orbit of a
I-parameter subgroup of U(n+ 1) if and only if the vector valued function
z:1— S 1 < C" given by (9) is constant. In this case, for z = z(s) we have

(18) o0 =ews( . ¢)

and (17) is written as
—2 div(JH) = G(s,x) > Q(Im(z'zzz"), x).

Now we determine Lagrangian submanifolds given by l-parameter family of
totally geodesic RP"~! in CP" satisfying the first variational formula duy = 0, in
the case that the corresponding curve y in .4, is an orbit of 1-parameter subgroup
of Un+1).

THEOREM 4.2. For ze S ' < C", let g(s) = exp s< Oz* (z)) be a 1-
parameter subgroup of U(n+ 1), and let y(s) be an orbit of g(s) in M,. Then the
corresponding Lagrangian immersion @ : 1 X RP"! — CP" is Hamiltonian min-
imal if and only if z satisfies one of the following conditions:

(i) There exists x € S"! = R" and 0 € R such that z = eV=10x.  In this case,

DI x RP" 1) « RP" and ® is totally geodesic.

(i) z is an isotopic vector, i.e., 'zz = 0.

In fact, Im(z'zzz*) = 0 implies that either (i) Re z and Im z are linearly depen-
dent, or (ii) [Rez|=|Imz| and Rez L Im z.

In (ii) of Theorem 4.2, when n > 3,® always has some singularities and
when n = 2, ® is everywhere regular and the Lagrangian surface ®(/ x RP') has
the following properties: (a) flat, i.e., the Gauss curvature K = 0, (b) the mean
curvature vector field H is parallel with respect to the normal connection, and
H #0. Ogata (Chapter 5 in [7]) proved: (i) Let M?[K] be an oriented 2-
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dimensional Riemannian manifold of constant Gaussian curvature K and let
x : M?[K] — CP? be an isometric immersion such that the mean curvature vector
field H is parallel and not zero. Then x is Lagrangian and K =0. (ii) Let
x: R? = CP? be an isometric immersion with non-zero parallel mean curvature
vector field H. Then x(R?) is an orbit of the Abelian Lie subgroup G of
U(3). So Hamiltonian minimal Lagrangian surfaces in CP? obtained by (ii) of
Theorem 4.2 are included in the examples that were given by T. Ogata’s paper.
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