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1. Introduction

Let ð ~MM;oÞ be a complex n-dimensional Kähler manifold with Kähler form
o, and let M be a real n-dimensional manifold. Then an immersion x : M ! ~MM
is called Lagrangian if x�o ¼ 0 on M. Y. G. Oh defined [8] that a Lagrangian
submanifold M in ~MM is Hamiltonian minimal (or H-minimal ) if the volume of
M is stationary for any compactly-supported Hamiltonian deformation of the
Lagrangian immersion. The Hamiltonian minimality is characterized as the
harmonicity of mean curvature form daH ¼ 0 by the first variational formula. It
is important to study either minimal or H-minimal Lagrangian submanifolds in
complex projective spaces CPn.

This paper is concerned with Lagrangian submanifolds in CPn which are
solutions of above variational problem, with some symmetry. Namely, we
consider Lagrangian submanifolds which are obtained as a 1-parameter family
of totally geodesic RPn�1 in CPn. To do that let Mn be the set of totally
geodesic RPn�1 in CPn. Since the unitary group Uðnþ 1Þ acts on Mn tran-
sitively, Mn is a homogeneous space of Uðnþ 1Þ. From a curve g : I ! Mn, we
can construct a real n-dimensional submanifold M (which may have some
singularities) with 1-parameter family of totally geodesic gðtÞ ¼ RPn�1 in CPn.
First we will show that M is a Lagrangian submanifold on the open subset of
regular points if and only if the corresponding curve g in Mn is horizontal with
respect to the natural fibration Mn ! CPn (Proposition 3.1).

Using this argument, we will see that minimal Lagrangian submanifold with
1-parameter family of totally geodesic RPn�1 in CPn is totally geodesic (Theorem
4.1). Next we will show that for a Lagrangian submanifold with 1-parameter
family of totally geodesic RPn�1 in CPn, its Hamiltonian minimality is expressed
as a system of 2nd order ODE’s for curves in S3 (Proposition 4.1). As a special
solution, if we take a curve g in Mn as an orbit of 1-parameter subgroup of
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Uðnþ 1Þ, then we have neither totally geodesic nor minimal Lagrangian sub-
manifolds Mn in CPn satisfying daH ¼ 0 (cf. Theorem 4.2). When nb 3, Mn

must have some singularities, but when n ¼ 2, M 2 is everywhere regular and flat,
and the mean curvature vector H0 0 is parallel with respect to the normal
connection. Such Lagrangian surface in CP2 was studied by Ogata [7].

The author would like to express his gratitude to the referee for careful
reading, valuable suggestions and comments.

2. Preliminaries

First we recall about Hamiltonian deformation of Lagrangian submanifolds in
Kähler manifolds, defined by Oh [8]. Let ~MM be a complex n-dimensional Kähler
manifold with Kähler form o, Riemann metric h ; i, and complex structure J. Let
x : M ! ~MM be a Lagrangian immersion from a real n-dimensional manifold M to
~MM, i.e., ojTM ¼ 0. For a vector field V along x, we define a 1-form aV on M as
aV ¼ hJV ; �ijTM . Smooth family of embeddings it : M ! P is called Hamilto-
nian deformation if for the variational vector field V , the 1-form aV is exact. A
Lagrangian submanifold M is Hamiltonian minimal (or H-minimal ) if M is
stationary for any Hamiltonian deformation. Oh [8] showed that when M is
compact, M is H-minimal if and only if aH is co-closed, i.e., daH ¼ 0 where H
is the mean curvature vector field of M. We have

daH ¼ 0 , div JH ¼ 0:ð1Þ
Next we recall the Fubini-Study metric on the complex projective space CPn

(cf. [2, 4]). The Euclidean metric h ; i on Cnþ1 is given by hz;wi ¼ Reð tzwÞ for
z;w A Cnþ1. The unit sphere S2nþ1 in Cnþ1 is the principal fiber bundle over
CPn with the structure group S1 and the Hopf fibration p : S2nþ1 ! CPn. The
tangent space of S2nþ1 at a point z is

TzS
2nþ1 ¼ fw A Cnþ1 j hz;wi ¼ 0g:

Let
T 0
z ¼ fw A Cnþ1 j hz;wi ¼ hiz;wi ¼ 0g:

The distribution T 0
z defines a connection in the principal fiber bundle

S2nþ1ðCPn;S1Þ, because T 0
z is complementary to the subspace fizg tangent to

the fibre through z, and invariant under the S1-action. Then the Fubini-Study
metric g of constant holomorphic sectional curvature 4 is given by gðX ;YÞ ¼
hX �;Y �i, where X ;Y A TxCP

n, and X �, Y � are respectively their horizontal lifts
at a point z with pðzÞ ¼ x. The complex structure on T 0 defined by multipli-
cation by

ffiffiffiffiffiffiffi
�1

p
induces a canonical complex structure J on CPn through p�.

3. Lagrangian submanifolds with 1-parameter family of totally geodesic
RPn�1 in CPn

Let CPn be the complex projective space with Fubini-Study metric of
constant holomorphic sectional curvature 4 as §2. We will construct Lagrangian
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submanifolds Mn in CPn with codimension 1 totally geodesic foliation such that
each leaf is a part of totally geodesic ðn� 1Þ-dimensional real projective space
RPn�1, from a curve in

Mn ¼ fRPn�1 HCPn: totally geodesicg:ð2Þ
In [5] we showed that the space of totally geodesic RPn in CPn is naturally
identified with Riemannian symmetric space SUðnþ 1Þ=SOðnþ 1Þ. Since
Uðnþ 1Þ acts on Mn transitively, Mn is identified with the homogeneous space
Uðnþ 1Þ=K , where

K ¼ eiy
g1 0

0 g2

� �
; g1 A OðnÞ; g2 A Uð1Þ; y A R

� �
:

We define a bi-invariant Riemannian metric ð ; Þ on Uðnþ 1Þ as

ðA;BÞ ¼ Reðtrace AtBÞ=4; A;B A uðnþ 1Þ:

Then Uðnþ 1Þ-invariant Riemannian metric g on Mn is defined naturally such
that the projection p̂p : Uðnþ 1Þ ! Mn is a Riemannian submersion.

The Lie algebra k of K is written as

k ¼ A 0

0 0

� �����A A oðnÞ
� �

l
ffiffiffiffiffiffiffi
�1

p aEn 0

0 b

� �����a; b A R

� �
;

where En denotes n� n identity matrix. If we put

p ¼
ffiffiffiffiffiffiffi
�1

p
B z

�z� 0

� �����B A Symðn;RÞ; trace B ¼ 0; z A Cn

� �
;

where Symðn;RÞ denotes the set of n� n real symmetric matrices, then
uðnþ 1Þ ¼ kþ p is a direct sum decomposition of the Lie algebra of Uðnþ 1Þ.

Let g : I ! Mn be a regular curve and let g : I ! Uðnþ 1Þ be a lift of g,
where I HR denotes an interval. Then g is horizontal with respect to the
Riemannian submersion p̂p : Uðnþ 1Þ ! Mn if and only if for each t A I ,
gðtÞ�1

g 0ðtÞ A p. We define a map ~FF : I � Sn�1 ! S2nþ1 HCnþ1 as

~FFðt; xÞ ¼ gðtÞ x

0

� �
; ðx A Sn�1 HRn; 0 A RÞ;ð3Þ

where g is a horizontal lift of g. Then F : I � RPn�1 ! CPn is defined by

Fðt; ½x�Þ ¼ ½~FFðt; xÞ� ¼ gðtÞ x

0

� �� �
;ð4Þ

where ½x� (resp. ½~FFðt; xÞ�) denotes the image of the projection Sn�1 ! RPn�1

(resp. Hopf fibration S2nþ1 ! CPn). We note that the image of F is the union
of 1-parameter family of totally geodesic RPn�1 and independent of a choice of
horizontal lift gðtÞ of gðtÞ. The pullback of Maurer-Cartan form on Uðnþ 1Þ by
g is written as
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gðtÞ�1
g 0ðtÞ ¼

ffiffiffiffiffiffiffi
�1

p
BðtÞ zðtÞ

�zðtÞ� 0

� �
A p:ð5Þ

Then the di¤erential map of ~FF is given by

d ~FFðq=qtÞ ¼ g 0ðtÞ x

0

� �
¼ gðtÞ

ffiffiffiffiffiffiffi
�1

p
BðtÞx

�zðtÞ�x

� �
;

d ~FFðXÞ ¼ gðtÞ X

0

� �
; ðX A TxS

n�1Þ:
ð6Þ

The horizontal part HX of X A TzCP
n with respect to the Hopf fibration

S2nþ1 ! CPn is given by HX ¼ X � hX ;
ffiffiffiffiffiffiffi
�1

p
zi

ffiffiffiffiffiffiffi
�1

p
z. Hence we have

H d ~FFðq=qtÞ ¼ gðtÞ
ffiffiffiffiffiffiffi
�1

p
ðBðtÞx� hBðtÞx; xixÞ

�zðtÞ�x

� �
;

H d ~FFðXÞ ¼ d ~FFðX Þ:
ð7Þ

With respect to the complex structure J on CPn, F is a Lagrangian immersion
on the open subset of regular points of F if and only if JH d ~FFðq=qtÞ ? d ~FFðX Þ
for any X A TxS

n�1. By (6) and (7), this condition is equivalent to
BðtÞx ¼ hBðtÞx; xi for any x A Sn�1. Since BðtÞ is a symmetric matrix and
trace BðtÞ ¼ 0, we see that F is a Lagrangian immersion on the open subset of
regular points if and only if BðtÞ1 0.

For RPn�1 A Mn, there exists unique complex projective hyperplane
CPn�1ðHCPnÞ which contains RPn�1, and we have a Riemannian submersion

~pp : Mn ! CPn; RPn�1 7! CPn�1;ð8Þ
where we identify a complex line in Cnþ1 and its dual complex projective
hyperplane in CPn. If gðtÞ be a regular curve in Mn and if gðtÞ is its horizontal
lift to Uðnþ 1Þ, then g is horizontal with respect to the fibration Mn ! CPn if
and only if BðtÞ1 0 in (5). From the above argument, we obtain

Proposition 3.1. Let g : I ! Mn be a regular curve and let g : I ! Uðnþ 1Þ
be a horizontal lift with respect to the Riemannian submersion Uðnþ 1Þ ! Mn.

Then the map F : I � RPn�1 ! CPn is a Lagrangian immersion on the subset
of regular points if and only if g is horizontal with respect to the fibration
~pp : Mn ! CPn.

4. Results

Let gðsÞ be a regular curve in Mn with unit speed and suppose that g is
horizontal with respect to the fibration (8) ~pp : Mn ! CPn. Then for a horizontal
lift gðsÞ of g to Uðnþ 1Þ, according to Proposition 3.1 we have

gðsÞ�1
g 0ðsÞ ¼ 0 zðsÞ

�zðsÞ� 0

� �
A p; zðsÞ A S2n�1 HCn:ð9Þ
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In this case the vector tangent to ~FF,

d ~FFðq=qsÞ ¼ �gðsÞ 0

zðsÞ�x

� �
ð10Þ

in (6) is horizontal with respect to the Hopf fibration p : S2nþ1 ! CPn. We
define a quadratic form Gðs; �Þ on Rn as

Gðs; xÞ ¼ jzðsÞ�xj2 ¼ txðReðzðsÞzðsÞ�ÞÞx:
Then the metric on I � RPn�1 which is induced by F : I � RPn�1 ! CPn is
written as

hq=qs; q=qsi ¼ Gðs; xÞ;

hq=qs;Xi ¼ 0; ðX A T½x�RP
n�1Þ

ð11Þ

and for tangent vectors in T½x�RP
n�1, the induced metric F�h ; i is same as the

standard metric on RPn�1. Hence F is regular at ðs; ½x�Þ A I � RPn�1 if and only
if Gðs; xÞ0 0. By (6), (7) and (10), on a regular point ðs; ½x�Þ of F, the normal
space is written by

T?
Fðs; ½x�ÞðI � RPn�1Þ ¼ dp gðsÞ

ffiffiffiffiffiffiffi
�1

p
X

0

� �� �����X A TxS
n�1

� �

lR
ffiffiffiffiffiffiffi
�1

p
dp gðsÞ 0

zðsÞ�x

� �� �
:

Let s be the second fundamental tensor of the Lagrangian immersion F on
the open subset of regular points in I � RPn�1. Since RPn�1 is totally geodesic
in CPn, we have

sðX ;YÞ ¼ 0 for X ;Y A T½x�RP
n�1:ð12Þ

By (9) and (10), we obtain

Dd ~FFðq=qsÞ d
~FFðq=qsÞ ¼ �g 0ðsÞ 0

zðsÞ�x

� �
� gðsÞ 0

z 0ðsÞ�x

� �
ð13Þ

¼ �gðsÞ zðsÞzðsÞ�x
z 0ðsÞ�x

� �
;

where D denotes the Euclidean covariant di¤erentiation on Cnþ1. Also (3)
implies that

Dd ~FFðq=qsÞ d
~FFðq=qsÞ ?

ffiffiffiffiffiffiffi
�1

p
~FFðs; xÞ

and is horizontal with respect to the Hopf fibration S2nþ1 ! CPn. By taking the
normal component of (13), we get

sðq=qs; q=qsÞ ¼ dp
ffiffiffiffiffiffiffi
�1

p
gðsÞ �ImðzðsÞzðsÞ�Þx

tx Imðz 0ðsÞzðsÞÞx= tzðsÞx

� �� �
:ð14Þ
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Theorem 4.1. Let g : I ! Mn be a regular curve and suppose that g is
horizontal with respect to the fibration ~pp : Mn ! CPn. If the corresponding map
F : I � RPn�1 ! CPn is a minimal Lagrangian immersion on the regular points,
then F is totally geodesic.

Proof. By (11), (12) and (14), F : I � RPn�1 ! CPn is a minimal
immersion on the regular points if and only if ImðzðsÞzðsÞ�Þ ¼ 0 and
tx Imðz 0ðsÞzðsÞ�Þx ¼ 0 hold for any x A Sn�1. The former equation yields

that zðsÞ ¼ e
ffiffiffiffiffi
�1

p
yðsÞyðsÞ for some y : I ! S1 and y : I ! Sn�1 HRn. Then

Imðz 0ðsÞzðsÞ�Þ ¼ y 0ðsÞyðsÞ tyðsÞ and latter equation implies that yðsÞ is con-

stant. By (3), we can see that FðI � RPn�1ÞHRPn and F is totally geodesic.
r

Next to study the condition for which F : I � RPn�1 ! CPn is Hamiltonian
minimal, we will calculate div JH in terms of (1). By (11) and (14), the mean
curvature vector of F is H ¼ Gðs; xÞ�1sðq=qs; q=qsÞ and the tangent vector field
JH along F is written as

JH ¼ 1

Gðs; xÞ dp gðsÞ ImðzðsÞzðsÞ�Þx
� tx Imðz 0ðsÞzðsÞÞx= tzðsÞx

� �� �
:ð15Þ

For a real n� n matrix A, we denote a quadratic form on Rn as

QðA; xÞ ¼ txAx:ð16Þ
Then by using (13), we get

h‘q=qsðJHÞ; q=qsi ¼ �hDd ~FFðq=qsÞ d
~FFðq=qsÞ; d ~FFðJHÞi

¼ Gðs; xÞ�1fQðImðz 00ðsÞzðsÞ�Þ; xÞ þQðImðz 0ðsÞz 0ðsÞ�Þ; xÞ
þQðReðzðsÞzðsÞ�Þ; xÞQðImðzðsÞzðsÞ�Þ; xÞg

� 3Gðs; xÞ�2
QðReðz 0ðsÞzðsÞ�Þ; xÞQðImðz 0ðsÞzðsÞ�Þ; xÞ;

where ‘ denotes the Levi-Civita connection on I � RPn�1 induced by
F : I � RPn�1 ! CPn. For X A T½x�RP

n�1, we obtain

h‘X ðJHÞ;Xi ¼ �2Gðs; xÞ�2f tx ReðzðsÞzðsÞ�ÞX tX ImðzðsÞzðsÞ�Þxg

þ Gðs; xÞ�1 tX ImðzðsÞzðsÞ�ÞX :

Hence we obtain

divðJHÞ ¼ Gðs; xÞ�2fQðImðz 00ðsÞzðsÞ�Þ; xÞ � 1

2
QðImðzðsÞ tzðsÞzðsÞzðsÞ�Þ; xÞgð17Þ

� 3Gðs; xÞ�3
QðReðz 0ðsÞzðsÞ�Þ; xÞQðImðz 0ðsÞzðsÞ�Þ; xÞ:

We consider the case n ¼ 2. Then the curve zðsÞ in S3 given by (9) and a
vector x in S1 given by (3) are respectively written as
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zðsÞ ¼ z1ðsÞ
z2ðsÞ

� �
; x ¼ cos y

sin y

� �
;

for some y A R=2pZ. Then by reducing (17) to a common denominator, we see
that div JH ¼ 0 is equivalent to a homogeneous algebraic equation of order 4
with variables cos y and sin y whose coe‰cients are independent to s. Hence

Proposition 4.1. Let g : I ! M2 be a regular curve and suppose that g is
horizontal with respect to the fibration ~pp : M2 ! CP2. Then on the regular points,
the first variational formula daH ¼ 0 of the corresponding Lagrangian immersion
F : I � RP1 ! CP2 with respect to Hamiltonian deformations is written as a
system of 5 ODE’s of second order for curves zðsÞ in S3.

Let g : I ! Mn be a unit speed horizontal curve with respect to Mn ! CPn.
And let gðsÞ be a horizontal lift of gðsÞ to Uðnþ 1Þ. Then gðsÞ is an orbit of a
1-parameter subgroup of Uðnþ 1Þ if and only if the vector valued function
z : I ! S2n�1 HCn given by (9) is constant. In this case, for z1 zðsÞ we have

gðsÞ ¼ exp s
0 z

�z� 0

� �
ð18Þ

and (17) is written as

�2 divðJHÞ ¼ Gðs; xÞ�2
QðImðz tzzz�Þ; xÞ:

Now we determine Lagrangian submanifolds given by 1-parameter family of
totally geodesic RPn�1 in CPn satisfying the first variational formula daH ¼ 0, in
the case that the corresponding curve g in Mn is an orbit of 1-parameter subgroup
of Uðnþ 1Þ.

Theorem 4.2. For z A S2n�1 HCn, let gðsÞ ¼ exp s
0 z

�z� 0

� �
be a 1-

parameter subgroup of Uðnþ 1Þ, and let gðsÞ be an orbit of gðsÞ in Mn. Then the
corresponding Lagrangian immersion F : I � RPn�1 ! CPn is Hamiltonian min-
imal if and only if z satisfies one of the following conditions:

(i) There exists x A Sn�1 HRn and y A R such that z ¼ e
ffiffiffiffiffi
�1

p
yx. In this case,

FðI � RPn�1ÞHRPn and F is totally geodesic.
(ii) z is an isotopic vector, i.e., tzz ¼ 0.

In fact, Imðz tzzz�Þ ¼ 0 implies that either (i) Re z and Im z are linearly depen-
dent, or (ii) jRe zj ¼ jIm zj and Re z ? Im z.

In (ii) of Theorem 4.2, when nb 3;F always has some singularities and
when n ¼ 2;F is everywhere regular and the Lagrangian surface FðI � RP1Þ has
the following properties: (a) flat, i.e., the Gauss curvature K ¼ 0, (b) the mean
curvature vector field H is parallel with respect to the normal connection, and
H0 0. Ogata (Chapter 5 in [7]) proved: (i) Let M 2½K � be an oriented 2-
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dimensional Riemannian manifold of constant Gaussian curvature K and let
x : M 2½K � ! CP2 be an isometric immersion such that the mean curvature vector
field H is parallel and not zero. Then x is Lagrangian and K ¼ 0. (ii) Let
x : R2 ! CP2 be an isometric immersion with non-zero parallel mean curvature
vector field H. Then xðR2Þ is an orbit of the Abelian Lie subgroup G of
Uð3Þ. So Hamiltonian minimal Lagrangian surfaces in CP2 obtained by (ii) of
Theorem 4.2 are included in the examples that were given by T. Ogata’s paper.
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