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SUBMANIFOLDS IN THE SPACE OF CONSTANT CURVATURE*
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Abstract

For the compact submanifold M immersed in the standard Euclidean sphere Snþp or

the Euclidean space Rnþp, we obtain Simons-type inequalities about the first eigenvalue

l1 and the squared norm of the second fundamental form S respectively. In particular,

for the case of the ambient space is Snþp, we need not the assumption that M is

minimal. Following which, we obtain the estimate about the lower bound for S if it is

constant respectively.

1. Introduction and main results

In this paper we shall be concerned with the Simons-type inequalities about
the first eigenvalue l1 and the squared norm of the second fundamental form
S for the compact submanifold immersed in the space with nonnegative
constant curvature. Further, we obtain a lower bound for S provided that S is
a constant. For the ambient space being the Euclidean space or the standard
Euclidean sphere, we state as follows respectively.

For the compact orientable submanifold M immersed in the standard
Euclidean sphere Snþp, if M is minimal, we know the famous Simons inequalities

([12]):
Ð
M
S½ð2� 1=pÞS � n� dVM b 0. If 0aSa

n

2� 1

p

, then S ¼ 0 (M is to-

tally geodesic) or S ¼ n

2� 1

p

. Later, Chern, do Carmo and Kobayashi [3]

further showed that the Veronese surface in S4 and the submanifold Sm

ffiffiffiffi
m

n

r� �
�

Sn�m

ffiffiffiffiffiffiffiffiffiffiffiffi
n�m

n

r� �
in Snþ1 are the only compact minimal submanifolds of dimen-

sion n in Snþp satisfying S ¼ n

2� 1

p

.
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Simons inequalities and its corollary make people try to improve the estimate
of the upper bound for S and study the rigidity of the associated submanifolds.
For the well-known results about the above questions, we refer to [11] and [7].
Towards the other direction, there is a natural question about the distribution of
values for S. That is, for the compact minimal submanifold M immersed in
Snþp, if the squared norm of the second fundamental form S of M is a constant,
then whether the set of values for S is discrete? What is the next value for S?
These questions have not been resolved completely (c.f. [9] or [13]). The known
result due to Leung ([5]) showed that Sb n� l1, where l1 stands for the first
non-zero eigenvalue of the Laplacian operator s on M. Recently, Barbosa and
Barros [1] improved Leung’s gap for compact minimal hypersurface MHSnþ1 by

showing that there is a rational constant k A
n

n� 1
; n

� �
depending either on h or

on the first eigenfunction of s such that Sb k
n� 1

n
ðn� l1Þ.

In this paper, without assuming that M is minimal, we obtain a Simons-type
integral inequality concerning the squared norm of the second fundamental form
S of the submanifold M immersed in the standard Euclidean sphere Snþp and the
first non-zero eigenvalue l1 of the Laplacian operator s on M and the gradient
of the associated eigenfunction f . Further, under the assumption that S is a
constant, we obtain a lower bound for S. It should be noted that our results
need not provide that M is minimal and extends the results of [1] to the higher
codimension. Our proof still make use of Bochner formula similar to [1], but we
use di¤erent method to estimate the Ricci curvature of submanifold M, it is in
this process that we drop the assumption for M to be minimal. Now we will
announce our result according to the next theorem.

Theorem 1.1. Let M be an n-dimensional compact orientable submanifold
immersed in the standard Euclidean sphere Snþp. Let f be an eigenfunction
associated to l1, then

ð
M

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

2
S � ðn� 1Þðn� l1Þ

n

" #
j‘f j2 dVM b 0:

In particular, if S is a constant, then Sb
2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ðn� l1Þ
n

.

Coming into the case of the ambient space being the Euclidean space Rnþp,
denote also the squared norm of the second fundamental form of M by S, the
Laplacian operator on the functions space CyðMÞ by s, the associated first non-
zero eigenvalue by l1. Reilly [10] obtained a Simons-type integral inequality
concerning S and l1:

Ð
M
ðS � l1Þ dVM b 0, using Newton inequality and Hsiung-

Minkowski formula. In this paper we give a very concise proof with the spectral
resolution. The result is re-stated as follows:
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Theorem 1.2. Let x : M ! Rnþp be an isometric immersion. Denote by
S, l1 the squared norm of the second fundamental form and the first non-zero
eigenvalue respectively, then we haveð

M

ðS � l1Þ dVM b 0:

In particular, if S is a constant, then Sb l1.

2. Proof of Theorem 1.1

We recall now the Bochner formula (c.f. [13]), which states that for any
di¤erentiable function f : M ! R,

1

2
sðj‘f j2Þ ¼ Ricð‘f ;‘f Þ þ h‘f ;‘ðsf Þiþ jHess f j2;ð2:1Þ

where Ric denote the Ricci tensor of M, and for any smooth tangent vector fields
X , Y ,

h‘f ;Xi ¼ X ð f Þ; Hess f ðX ;Y Þ ¼ h‘X ð‘f Þ;Yi; sf ¼ trðHess f Þ:

For a bilinear form T , the norm of T considered here is the Euclidean, which is
given by jT j2 ¼ trðTT tÞ.

Since M is compact and sf þ l1 f ¼ 0, integrating (2.1) on M we getð
M

Ricð‘f ;‘f Þ dVM þ
ð
M

jHess f j2 dVM � l1

ð
M

j‘f j2 dVM ¼ 0:ð2:2Þ

In the following, we will estimate the first and the second parts on the left hand
side of (2.2) respectively.

Considering the Hessian part, let I denotes the identity operator on the
tangent bundle TM of M, for any t A R, we have

jHess f � tfI j2 ¼ jHess f j2 � 2tfsf þ nt2f 2:

Then ð
M

jHess f � tfI j2 dVM ¼
ð
M

jHess f j2 dVM þ 2tþ n

l1
t2

� �ð
M

j‘f j2 dVM :ð2:3Þ

In particular, putting t ¼ � l1

n
into (2.3), we get

ð
M

jHess f j2 dVM ¼
ð
M

Hess f þ l1

n
fI

����
����
2

dVM þ l1

n

ð
M

j‘f j2 dVMð2:4Þ

b
l1

n

ð
M

j‘f j2 dVM :
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Moreover, the equality holds if and only if M is isometric to the sphere

Sn

ffiffiffiffiffi
l1

n

r !
(c.f. [8]).

In order to estimate the Ricci curvature part, we recall a main theorem in
[6]: Let M be an n-dimensional immersed submanifold in ðnþ pÞ-dimensional
Riemannian manifold N. Let Ric, S and H denote the functions that assign to
each point of M the minimum Ricci curvature, the square length of the second
fundamental form, and the mean curvature of M respectively. If all the sectional
curvatures of N are bounded below by a constant c, then

Ricb
n� 1

n
ncþ nH 2 � kjk2 � n� 2ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

ffiffiffiffiffiffiffiffiffi
nH 2

p
kjk

� �
;

where kjk2 ¼ S � nH 2. Therefore, when the ambient space is the standard
Euclidean sphere Snþp we get

Ricb
n� 1

n
nþ nH 2 � kjk2 � n� 2ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

ffiffiffiffiffiffiffiffiffi
nH 2

p
kjk

� �
:

Let us consider the following quadratic form with eigenvalues G
n

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p :

F ðx; yÞ ¼ x2 � n� 2ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p xy� y2:

By using an orthogonal transformation

u ¼ 1ffiffiffiffiffi
2n

p ½ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
Þxþ ð1�

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
Þy�;

v ¼ 1ffiffiffiffiffi
2n

p ½�ð1�
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
Þxþ ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
Þy�;

8>>><
>>>:

ð2:5Þ

we get Fðx; yÞ ¼ F ðxðu; vÞ; yðu; vÞÞ ¼ n

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ðu2 � v2Þ.

Let x ¼
ffiffiffiffiffiffiffiffiffi
nH 2

p
, y ¼ kjk, then x2 þ y2 ¼ S. It follows from (2.5) that

x2 þ y2 ¼ u2 þ v2. Therefore

F ðx; yÞ ¼ n

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ðu2 � v2Þ ¼ � n

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ðv2 þ u2 � 2u2Þ

b� n

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ðv2 þ u2Þ

¼ � n

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p S:

Hence, we have Ricb ðn� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

2
S. Furthermore, we obtain
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ð
M

Ricð‘f ;‘f Þ dVM b

ð
M

ðn� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

2
S

" #
j‘f j2 dVM :ð2:6Þ

Substituting (2.4) and (2.6) into (2.2), we have

0b

ð
M

l1

n
þ ðn� 1Þ �

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

2
S � l1

" #
j‘f j2 dVM ;

that is ð
M

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

2
S � ðn� 1Þðn� l1Þ

n

" #
j‘f j2 dVM b 0;

which completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Before proving the theorem 1.2, we need some necessary preliminaries. We
shall make use of the following convention on the ranges of indices:

1aA;B;C � � �a nþ p; 1a i; j; k � � �a n; nþ 1a a; b; g � � �a nþ p:

We choose a local field of orthonormal frames fei; eag in Rnþp such that,
restricted to M, the vectors feig are tangent to M and the remaining vectors
feag are normal to M. Let Aa denote the shape operator in the direction ea,
ha
ij ¼ hAaei; eji. Let foAg be the field of dual frames. For Rnþp, we have

dx ¼
X
A

oAeA; deA ¼
X
B

oABeB:

Restricted to M, we get

dx ¼
P

i oiei;

dei ¼
P

j oijej þ
P

a oiaea; oia ¼
P

j h
a
ijoj:

(

Let a be a fixed vector in Rnþp, for isometric immersion x : M ! Rnþp, we can
define the height function about a on M, gðqÞ :¼ ha; xðqÞi, q A M, then

dg ¼
X
i

ha; eiioi :¼
X
i

gioi:

Since

X
j

gijoj ¼ dgi þ
X
j

gjoji ¼
X
a; j

ha; eaih
a
ijoj ;
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we have gij ¼
P

a h
a
ijha; eai. Therefore

sg ¼
X
i

gii ¼
X
a; i

ha
iiha; eai ¼ nha; ~HHi:ð3:1Þ

In addition, we denote the Laplacian operator on the functions space
CyðMÞ by s. Then s has discrete eigenvalues (c.f. [13]): 0 ¼ l0 a l1 a l2 a
� � � lk a � � � ! y. For any f A CyðMÞ, denoted by ft the projection of f onto
the eigen-space Vt ¼ f f A CyðMÞ jsf ¼ �lt f g, then we have the L2-spectral
resolution,

f ¼ f0 þ
X
tb1

ft; sft ¼ �lt ft:

Proof of Theorem 1.2. Let x : M ! Rnþp be isometric immersion, consid-
ering the spectral resolution,

x ¼ x0 þ
X
tb1

xt; sxt ¼ �ltxt:

Noticing that for t0 s,
Ð
M
hxt; xsi dVM ¼ 0, and let bt ¼

Ð
M
hxt; xti dVM , thenð

M

hsx; xi dVM ¼ �
X
tb1

ltbt;ð3:2Þ
ð
M

hsx;sxi dVM ¼
X
tb1

l2t bt:ð3:3Þ

Combining (3.2) and (3.3), we obtainð
M

hsx;sxi dVM þ l1

ð
M

hsx; xi dVM ¼
X
tb1

ðlt � l1Þltbt b 0:ð3:4Þ

On the other hand, (3.1) leads to sx ¼ n~HH, soð
M

hsx;sxi dVM ¼ n2
ð
M

H 2 dVM :ð3:5Þ

For the isometric immersion x :M ! Rnþp, we also know
Ð
M
ð1þ hx; ~HHiÞ dVM ¼ 0

(c.f. [2]) and ð
M

hsx; xi dVM ¼
ð
M

hn~HH; xi dVM ¼ �n

ð
M

dVM :ð3:6Þ

Therefore, using (3.4), (3.5), (3.6) and the well-known inequality Sb nH 2 we get
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0a

ð
M

hsx;sxi dVM þ l1

ð
M

hsx; xi dVM

¼ n2
ð
M

H 2 dVM � nl1

ð
M

dVM

a

ð
M

nS dVM � nl1

ð
M

dVM

¼ n

ð
M

ðS � l1Þ dVM ;

which completes the proof of Theorem 1.2.

Final remarks. For the n-dimensional isometric immersed submanifold M in
the hyperbolic space Hnþpð�1Þ, EI Soufi and Ilias ([4]) showed that l1VðMÞa
n
Ð
M
ðH 2 � 1Þ dVM , where VðMÞ stands for the volume of M. Following which,

we immediately obtain that
Ð
M
ðS � n� l1Þ dVM b 0, and if S is a constant, then

Sb nþ l1.
In addition, for the submanifolds in the Euclidean space and the hyperbolic

space, we can still make use of the estimate of Ricci curvature in the proof of
Theorem 1.1. But we can not obtain the similar Simons-type inequalities. Also
the method in the proof of Theorem 1.2 can not be used to deal with the
submanifolds in the sphere and the hyperbolic space. This is the reason why we
prove theorem 1.1 and 1.2 in di¤erent way.
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