N. KOIKE
KODAI MATH. J.
30 (2007), 280-296

A CHEVALLEY TYPE RESTRICTION THEOREM FOR A PROPER
COMPLEX EQUIFOCAL SUBMANIFOLD

Naoyukl KOIKE

Abstract

In this paper, we prove a Chevalley type restriction theorem for a proper complex
equifocal submanifold. The proof is performed by showing the same type restriction
theorem for an infinite dimensional proper anti-Kaehlerian isoparametric submanifold
and using it.

1. Introduction

In 1985, C. L. Terng ([T1]) proved that the ring of all polynomials over a
Euclidean space which are constant along parallel submanifolds of a given iso-
parametric submanifold in the space is isomorphic to that of all polynomials over
a section of the submanifold which are invariant with respect to the associated
Coxeter group. In fact, the restriction map to the section gives an isomorphism
between these rings. This fact is similar to the so-called Chevalley restriction
theorem for semi-simple Lie groups (see [W] for example). Also, in 1989, C. L.
Terng ([T2]) proved that the ring of all C*-functions over a Hilbert space which
are constant along parallel submanifolds of a given isoparametric submanifold
in the space is isomorphic to that of all C*-functions over a section of the
submanifold which are invariant with respect to the associated affine Coxeter
group. From this result, she showed a similar restriction theorem for equifocal
submanifolds in a symmetric space of compact type through a Riemannian
submersion of a Hilbert space onto the symmetric space. For non-compact sub-
manifolds in a symmetric space of non-compact type, the equifocality is a rather
weak condition. So, we [K1] introduced the stricter condition of the complex
equifocality. Furthermore, we [K2] introduced the notion of an infinite dimen-
sional anti-Kaehlerian isoparametric submanifold and showed that the inves-
tigation of a complete, real analytic and complex equifocal submanifold is
replaced by that of an infinite dimensional anti-Kaehlerian isoparametric sub-
manifold. In the sequel, we assume that all complex equifocal submanifolds are
complete and real anlytic. On the other hand, Heintze-Liu-Olmos [HLO] has
recently introduced the notion of an isoparametric submanifold with flat section
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in a general Riemannian manifold. Isoparametric submanifolds with flat section
in a symmetric space of non-compact type are complex equifocal and conversely,
all complex equifocal submanifolds satisfying certain condition are isoparametric
one with flat section (see Theorem 15 of [K2]). Also, we ([K2], [K3]) introduced
the notions of an infinite dimensional proper anti-Kachlerian isoparametric sub-
manifold and a proper complex equifocal submanifold, where we note that prin-
cipal orbits of Hermann type actions (i.e., the actions of (not necessarily compact)
symmetric subgroups of G) on a symmetric space G/K of non-compact type are
proper complex equifocal (see [K3]). We [K4] defined the notion of the complex
Coxeter groups associated with these submanifolds. In the sequel, we assume
that all infinite dimensional proper anti-Kaehlerian isoparametric submanifolds
are complete. In this paper, we first prove the slice theorem for an infinite di-
mensional proper anti-Kaehlerian isoparametric submanifold, which states that the
intersections of the submanifold with suitable finite dimensional anti-Kaehlerian
affine subspaces are finite dimensional anti-Kaehlerian isoparametric ones. Also,
we prove the Chevalley type restriction theorem for a finite dimensional proper
anti-Kaehlerian isoparametric submanifold, which states that the ring of complex
polynomials over the ambient space which are constant along parallel sub-
manifolds of a given finite dimensional proper anti-Kaehlerian isoparametric
submanifold is isomorphic to that of all complex poylnomials over a section of
the submanifold which is invariant with respect to the associated complex Coxeter
group. In fact, the restriction map to the section gives an isomorphism between
these rings. By using these theorems, we prove the following Chevalley type
restriction theorem for an infinite dimensional proper anti-Kachlerian isopara-
metric submanifold.

THEOREM A. Let M be a infinite dimensional proper anti-Kaehlerian iso-
parametric submanifold in an anti-Kaehlerian space V, X be a section of M and W
be the complex Coxeter group (which acts on X) associated with M. Assume that
a foliation & (which may have singular leaves) consisting of parallel submanifolds
of M is defined on the whole of V. Then the restriction map r: C*(V,C)® —
C*(Z,C)" is an isomorphism, where C*(V,C)% is the ring of all complex-valued
C*-functions on V which are constant along leaves of § and C* (X, C)W is that
of all W-invariant complex-valued C*-functions on X.

The main theorem of this paper is the following Chevalley type restriction
theorem for a proper complex equifocal submanifold.

THEOREM B. Let M be a proper complex equifocal submanifold in a sym-
metric space G/K of non-compact type, ¥ be a section of M and W be the
complex Coxeter group (which acts on the extrinsic complexification £¢ of X)
associated with M. Let § (resp. §°) be a foliation (which may have singular
leaves) consisting of parallel submanifolds of M (resp. the extrinsic complexification
M€ of M). Assume that § is defined on the whole of the anti-Kaehlerian sym-
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metric space G¢/K€ associated with G/K (hence §& is defined on the whole of
G/K) and G® is simply connected. Then the reslrzctzon map r: C*(G/K)® —
C* ()" is an isomorphism, where C*(G/K)® is the ring of all (real-valued)
C*-functions on G/K which are constant along leaves of § and C*(X) e s
that of all (real-valued) C*-functions on X which are invariant with respect to
Ws :=<{{R|g|Re W s.t. R(Z)=2X}) ({x): the group generated by the set x).

Remark 1.1. The principal orbits of the Hermann type action (in the sense
of [K3]) on a symmetric space of non-compact type are proper complex equifocal
submanifolds satisfying the conditions of Theorem B.

2. Basic notions and facts

In this section, we first recall the notion of a proper complex equifocal
submanifold. Let M be an immersed submanifold with abelian normal bundle
in a symmetric space N = G/K of non-compact type. Denote by 4 the shape
tensor of M. Letve T:M and X € TxM (x = gK). Denote by y, the geodesic
in N with 7,(0) = v. The Jacobi field ¥ along y, with Y(0) = X and Y'(0) =
—A,X is given by

Y(s) = (P,  o(D®—sDoA,))(X),

”/L-|[n, 5]

where Y'(0) =V, 7, P, ., is the parallel translation along y,|j 4,

0.5
Dy = g. ocos(V—1ad(sg, 'v)) o g
and

sin(v/—1 ad(sg;'v)) 0!
VoTad(sgle)

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii
of M along y, are obtained as real numbers sy with Ker(Dgs, — soD, o 4,) # {0}.
So, we call a complex number zo with Ker(DS, —zoDJ, o AS) # {0} a com-
plex focal radius of M along 7, and call dimKer(D, —Z()D;_Yév 0 AS) the mul-
tiplicity of the complex focal radius zg, where D{, (resp. D:Sb) implies

the complexification of a map (g, ocos(v/—1z ad(g* v))og;! Nrar  (resp.
sin(vV—1zp ad(g;'v))

g« © g,
V—1zy ad(g;'v) .

focal radius zy of M along y,, we call zov (€ T-M®) a complex focal normal
vector of M at x. Furthermore, assume that M has globally flat normal
bundle. Let v be a parallel unit normal vector field of M. Assume that the
number (which may be 0 or oo) of distinct complex focal radii along y; is
independent of the choice of xe M. Furthermore assume that this number

s
Dy =g,o0

) from T .M to T,N€. Also, for a complex
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is not equal to 0. Let {r;(|i=1,2,...} be the set of all complex focal radii
along y; , where [r; | < |riy1,x] or “|ri | = [rip1,x] & Rerix > Rerip,,” or “lrj | =
|ri+1,x| & Re Tix = Re Titl,x & Im Tix — Im Fitl,x > 0”. Let ri (l = 1,2, .. ) be
complex valued functions on M defined by assigning r; , to each x e M. We call
these functions r; (i = 1,2,...) complex focal radius functions for 5. We call r;p
a complex focal normal vector field for v. 1If, for each parallel unit normal vector
field v of M, the number of distinct complex focal radii along y; is independent
of the choice of x € M, each complex focal radius function for © is constant on
M and it has constant multiplicity, then we call M a complex equifocal sub-
manifold. Let ¢ : H°(]0,1],g) — G be the parallel transport map for G (see [K1]
about this definition) and n: G — G/K be the natural projection. It is shown
that M is complex equifocal if and only if each component of (7o ¢) ' (M) is
complex isoparametric (see [K1] about this definition). In particular, if each
component of (zo¢) ' (M) is proper complex isoparametric (see [K1] about this
definition), then we call M a proper complex equifocal submanifold.

Next we recall the notion of an infinite dimensional anti-Kaehlerian iso-
parametric submanifold. Let M be an anti-Kaehlerian Fredholm submanifold
in an infinite dimensional anti-Kaehlerian space V' and A be the shape tensor
of M. See [K2] about the definitions of an infinite dimensional anti-Kaehlerian
space and anti-Kachlerian Fredholm submanifold. Denote by the same symbol
J the complex structures of M and V. Fix a unit normal vector v of M. If
there exists X (#0)e TM with A,X =aX + bJX, then we call the complex
number a4 bv/—1 a J-eigenvalue of A, (or a complex principal curvature of
direction v) and call X a J-eigenvector for a+ bv/—1. Also, we call the space of
all J-eigenvectors for a + bv/—1 a J-eigenspace for a +bv/—1. The J-eigenspaces
are orthogonal to one another and each J-eigenspace is J-invariant. We call the
set of all J-eigenvalues of A, the J-spectrum of A, and denote it by Spec; A,.
The set Spec, 4,\{0} is described as follows:

Spec; A\{0} ={4:|i=1,2,...}
|}-1| > Mi+1| or “l/li| = |}Li+1| & Re ;> Re ;L[+1,’
or “|)Ll'| = |)V,'+1| & Re ;\,l’ = Re }v,ur] & Im ii —Im /1,'+1 > 0”

Also, the J-eigenspace for each J-eigenvalue of A4, other than 0 is of finite
dimension. We call the J-eigenvalue /; the i-th complex principal curvature of
direction v. Assume that M has globally flat normal bundle. Fix a parallel
normal vector field © of M. Assume that the number (which may be o) of
distinct complex principal curvatures of direction o, is independent of the choice
of xe M. Then we can define functions 4; (i =1,2,...) on M by assigning the
i-th complex principal curvature of direction ¢, to each xe M. We call this
function A; the i-th complex principal curvature function of direction v. We con-
sider the following condition:

(AKI) For each parallel normal vector field #, the number of distinct complex
principal curvatures of direction o, is independent of the choice of x € M, each
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complex principal curvature function of direction v is constant on M and it has
constant multiplicity.

If M satisfies this condition (AKI), then we call M an anti-Kaehlerian
isoparametric submanifold. Let {e;};2, be an orthonormal system of T.M.
If {e;}2,U{Je;}2, is an orthonormal base of 7. M, then we call {¢;}, a
J-orthonormal base. 1If there exists a J-orthonormal base consisting of J-
eigenvectors of A4,, then A4, is said to be diagonalized with respect to the J-
orthonormal base. If M is anti-Kaehlerian isoparametric and, for each ve T+ M,
the shape operator A, is diagonalized with respect to a J-orthonormal base,
then we call M a proper anti-Kaehlerian isoparametric submanifold. For arbi-
trary two unit normal vector v; and v, of a proper anti-Kaehlerian isoparametric
submanifold, the shape operators A4, and A, are simultancously diagonalized
with respect to a J-orthonormal base. Note that the notion of a proper anti-
Kaehlerian isoparametric submanifold in a finite dimensional anti-Kachlerian
space is defined similarly. Let M be a proper anti-Kaehlerian isoparametric
submanifold in an infinite dimensional anti-Kaehlerian space V. Let {E;|ie I}
be the family of distributions on M such that, for each xe M, {E;(x)|iel}
is the set of all common J-eigenspaces of A,’s (ve T M). The relation
T.M =@),_, E; holds. Let 4; (iel) be the section of (T*M)" ® C such that
A, = Re 4;(v) id + Im 4;(v)J on E;(n(v)) for each ve T-M, where n is the
bundle projection of T-M. We call A; (iel) complex principal curvatures of
M and call distributions E; (i € I) complex curvature distributions of M. 1t is
shown that there uniquely exists a normal vector field v; of M with A(-) =
(vj,-> —V/—=1{Jv;,-> (see Lemma 5 of [K2]). We call v; (iel) the complex
curvature normals of M. Note that v; is parallel with respect to the normal
connection V*+. The focal set of (M,x) (xe M) coincides with the sum
Uiel(i,-);l(l) of the complex hyperplanes (4,);'(1) (i€ I). The Coxeter group
generated by te complex reflections of order two with respect to (i,»);l( 1) eI)
is discrete (see Proposition 3.7 of [K4]). We call this group the complex Coxeter
group associated with M at x and denote it by W,. This group is independent
of the choice of xe M up to isomorphism. Hence we simply denote it by
w.

Let M be a submanifold with globally flat and abelian normal bundle in a
symmetric space N = G/K of non-compact type. We assume that G admits the
complexification G¢. In [K2], we defined the extrinsic complexification M€ of M
as an anti-Kaehlerian submanifold in the anti-Kaehlerian symmetric space G¢/K*¢
associated with G/K. Let ¢¢: H°([0,1],g%) — G® be the parallel transport map
for G¢ (see [K2] about this definition) and 7¢: G* — G¢/K* be the natural pro-
jection. Let M® be the complete extension of (7€ o ¢¢) ™' (M*€). It is shown that
M is a proper complex equifocal one if and only if each component of M€ is a
proper anti-Kaehlerian isoparametric one. Let W be the complex Coxeter group
associated with M¢. We call W the complex Coxeter group associated with M.
Here we note that W is determined by only complex focal datas of M without
the use of M°.
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3. The associated complex Coxeter groups

Let M be a proper anti-Kaehlerian isoparametric submanifold in a finite
dimensional anti-Kaehlerian space V. Denote by the same symbol J the com-
plex structures of M and V. Let {1;|iel} (resp. {v;|iel}) be the set of all
complex principal curvatures (resp. the set of all complex curvature normals) of
M and E; (iel) be the complex curvature distribution for ;. Let T be the
complex reflection of order two with respect to the complex hyperplane /* :=
(/1,-)_;1( ) of T-M, which is an affine transformation of T} M. When T,‘ is
regarded as a llnear transformation of T M, we denote it by R* Also, when [
is rgarded as a linear subspace of T LM we denote it by the same symbol . x
The complex Coxeter group W assoc1ated with M is generated by T;"’s (i e I ).
Let WL be the group generated by R*’s (i € I). According to Proposmon 3.7 of
[K4], it is shown that W is discrete and hence W is finite. Also, we can show
the following fact.

PROPOSITION 3.1. The group W is isomorphic to WT.

Proof. Let LE be the leaf of E; through x € M, which is a complex sphere
in V (see [K2]). Let o, be the center of the complex sphere LE. Define a
diffeomorphism ¢; of M by assigning the antipodal point of x in the complex
sphere LZ to each xe M. Then we have {Ej(x)|jel} ={E(¢;(x))|jel}
(iel) as a family of linear subspaces of V7 (see Section 3 of [K4]). Let
(Ej)gx) = (Eg(j))y- According to Lemma 3.2 in [K4], we have (%),

i i(X)

ai())x , (Vo)) S
- , that is, (v;), o = . For simplicity,
1= (Z6,0j))(¢i(x) — x) P01 — (D) ((4:(x) — )
we denote T} (resp. RY) by T; (resp. R;). We have ¢,(x) = T:(x). Hence we

Uai(j))x
have (vj)7) = . In more general, we can show
T T — (2 ) o Ti(x) = )

(¥, 00, ><j>)x

(31) ( ) 0---0 l - :
P T)0) = T (i oamy ) (T 00 T3) (x) — x)

((i1,...,i,) € I"), where r is an arbitrary positive integer. On the other hand, it
is clear that
(3.2) (Uj)(TiIO-uon,.)(X) = (Riy oo R)((19),)-
Assume that R;, o--- o R; =id. Then, by using (3.2), we can show (E‘)(qﬁ, oo ) (%)
= (Ej),. On the other hand we have (E )(r/> onofy ) (¥) = = (E(s, o Ogll)(j))x. Hence
we have g; o --- 00, =id, thatis, g;, o--- 00, =id. Furthermore, it follows from

(3.1) and (3.2) that <(vj),, (T 0---0 T,-,)( )—x»=0. Since M is contained
in the affine subspace x+ T M @ Span{(v;),|iel} and (T; o0---oT;)(x)—
xe T+M, it follows from the arbitrariness of j that (7} o---o T;)(x) = x, which
implies 7; o---o T; =id. Conversely, it is clear that T; o---o T; = id implies
Rjo---oR;, =id. Since M is of finite dimension, 7 is finite. Hence W (resp.
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WZL) is finitely generated by 7;s (resp. R;’s). These facts imply that W is
isomorphic to WL q.ed.

From this proposition, we can show the following fact.

PROPOSITION 3.2, The set (), ;[ is not empty.
Proof. Since W' is finite, so is also W by Proposition 3.1. Let a:=

1
Wzgewg(x), where |W| is the order of W. Clearly we have g(a) = a for

X

each ge W. Hence we have ae (), _, I

This completes the proof. g.e.d.

4. Basic results

In this section, we prepare basic results to prove Theorem A. We first
prepare the following slice theorem for a proper anti-Kaehlerian isoparametric
submanifold.

THEOREM 4.1. Let M be a proper anti-Kaehlerian isoparametric submanifold
in an infinite dimensional anti-Kaehlerian space V, A; (i € I) be its complex princi-
pal curvatures, v; (i € I) be its complex curvature normals and E; be its complex
curvature dzstrlbzitllons Let I' be a subset of I with ﬂ - .‘O\Ulel\l,l\o # 0,
where [ := (4;) ' (1). Then the following statements (i)~ (iii) hold:

(i) @IG o Eiis integrable,

(ii) The leaf L of @, , Ei through xq is contained in the complex affine
subspace Vi := xo + (@iew(Ei)xo) ©® Span, {(v:),, | i € I'}, where Span,(x) implies
the complex subspace of V spanned by (x),

(iii) Li{; is a proper anti-Kaehlerian isoparametric submanifold in Vi and
its complex Coxeter group Wy is generated by the complex reflections of order
two with respect to the complex hyperplanes [ (\Span,{(v;), |iel'} (jel') in

Span;{(vi),, [iel'}.

Proof. Let Np :=Span;{v;|iel'}. Take wvye (), le\Ulel\I, X0 and
let v be the parallel normal vector field of M with vy, =wvy. Define a sub-
mersion 7, : M — V by n,(x) :=x+v, (xe M). Set M, :=mn,(M) and F}° :=
n, ' (ne(x0)). Easily we can show 7|z = (1 — Z(v)) idg, (i€l), where idg, is
the identity transformation of E;. Hence we have Ker 7, = (—Bie ; Ei, which
implies that (P),_,, E; is integrable and that L! = F;®. Thus the statement (i) is
shown. Denote by 4 (resp. V*) the shape tensor (resp. the normal connection)
of M and denote by A4’ (resp. Vl’) the shape tensor (resp. the normal connec-
tion) of L" (in V). For we T*M © Ny, we have AW|E =0 (jel') and hence
A\¢|TL1’ = 0 That is, we have 4] =0. Hence the first normal space of on
is contalned in Ny. For any Xe TLY, we have Vyu; e TL’0 (iel’), that is,
VX v; = 0. This implies that Ny/| Ly is parallel with respect to V*'. Therefore,
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it follows from the reduction theorem that L’ is contained in the complex
affine subspace xo + TWL)‘Z0 ® (Nr),, (= V). Thus the statement (i) is shown.
Since A4,,(TLY) = @, Au(E) = TL’ (iel), we have Ayl|p = A (iel).
Hence A [; = (v )1dE (i,jel), where we note that A is regarded as the
shape operator of L in V.. Thus we see that LI is a proper anti-Kaehlerian
isoparametric submamfold in V7 and that {4y, \zel } is the set of all the
complex principal curvatures of L1 Since (4; |N (1) = [N (Np),, (iel’),

the complex Coxeter group Wp assocrated with L;O is given as in the statement
(iif). q.e.d.

Thus an infinite dimensional proper anti-Kaehlerian isoparametric sub-
manifold is multi-foliated by finite dimensional proper anti-Kaehlerian isopa-
rametric ones. Hence the study of the finite dimensional proper anti-Kaehlerian
isoparametric submanifold leads to that of the infinite dimensional proper anti-
Kaehlerian isoparametric one. Next, by imitating the proof (see Section 3 of
[T1]) of Theorem C of [T1], we shall prove the following Chevalley type re-
striction theorem for a finite dimensional proper anti-Kaehlerian isoparametric
submanifold.

THEOREM 4.2. Let M be a finite dimensional proper anti-Kaehlerian iso-
parametric submanifold in a finite dimensional anti-Kaehlerian space V, ¥ be a
section of M and W be the complex Coxeter group (which acts on X) associated
with M. Assume that a foliation & (which may have singular leaves) consisting
of parallel submanifolds of M is defined on the whole of V. Then the restriction
map r: Pole(V)® — Polo(2)" is an isomorphism, where Polo(V)% is the ring of all
complex polynomials on V which are constant along leaves of § and Polc(Z)W
is that of all W-invariant complex polynomials on Z.

Remark 4.1. Let G/K be a symmetric space of non-compact type and H be
a symmetric subgroup of G, where G can be assumed to be a connected semi-
simple Lie group and have its complexification, and K can be assumed to be a
maximal compact subgroup of G. Then principal orbits of the P(G¢, H¢ x K¢)-
action on H°([0,1],g¢) are infinite dimensional proper anti-Kaechlerian isopa-
rametric submanifolds (see Theorems 1, 3 of [K2] and Theorem B of [K3]) and
those slices as in Theorem 4.1 are finite dimensional proper anti-Kaehlerian iso-
parametric ones satisfying the assumptions of Theorem 4.2, where G¢, K¢ and
H¢ are the complexifications of G, K and H, respectively, P(G*, H® x K¢) :=
{ge H'(0,1],G%)| (9(0),g(1)) € H® x K*} and g is the Lie algebra of G°.

The proof of Theorem C of [T1] is written too smartly. Since we need to
prove Theorem 4.2 carefully, we shall give the proof in detail comparatively by
dividing into some lemmas. Let M, V, W, § and X be as in the statement of
Theorem 4.2. Let n:=dim; M and m :=dim; V. Fix xo e MNX. We identify
¥ with Ty M through exp". Let D be a contractible open neighborhood of xo
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in T, LM contained in a fundamental domain of the complex Coxeter group W
contamlng xo and B be a tubular neighborhood of the 0-section of the normal
bundle 7+ M obtained by parallel translating D with respect to the normal con-
nection. First we prepare the following lemma.

Lemma 4.3. Let u be a W-invariant holomorphic function over L. Then
there uniquely exists a holomorphic function f over exp:(B) such that f =u on
expt(B)NE and that f is constant along each leaf of §|p.

Proof. Define a function f over exp'(B) by f(exp(v)) := u(vy,) (ve B),
where © is the parallel normal vector field of M with o, = v (x: the base point
of v). It is clear that f satisfies two conditions in the statement. Since exp’|,
is an embedding, ”§|exp ) posseses no smgular leaf. From this fact, the holo-
morphicity of f follows The uniqueness is trivial. g.e.d.

Take a J-orthonormal base &,J¢, ..., ¢u_n, JEp_p Of TLM with <(&,,&,> =
1 (a=1,....om—n)and ae (), Where {li};c; is the famlly of all focal com-
plex hyperplanes of (M, xo). Let a=3y""(a,¢, + b, JE,). Identify X (= T M)

with C™" under the correspondence >/ '(x,&, + y.JE,) < ((x1 — a1) +

vV=1(y1=b1),. .., Xm-n — @m—n) + V=1 Ym-n — by—p)). In similar to the state-
ment (ii) of Lemma 3.3 of [T1], we have the following fact.

LemMmA 4.4. Let u:%X — C be a W-invariant homogeneous (complex) poly-
nomial of degree k and f :expt(B) — C be the extension of Ulexpr (pyns @S in
Lemma 4.3. Then {grad f,grad )¢ is an extension (as in Lemma 4.3) of the
restriction of a W-invariant homogeneous polyomial of degree 2(k — 1) over T to
expt(B)NZ.

Proof. Let &, (x=1,...,m—n) be a parallel unit normal vector field on
M with (fa)x() = ¢&,. Define a unit vector field &, (x=1,...,m —n) on exp™(B)
by (fa)expL = (Su)n(w) (v € B), where 7 is the bundle pI'O]eCtIOIl of T*M. Easily
we can show Afexp (v ((fz)exp )) = duvm((fa) ) (a=1,...,m—n), where ve B
and v is as in the proof of Lemma 4.3. From'this relatlon and the fact that f is
constant along each leaf of |, (5, we have {(grad f)q,. (), (grad f )expL o)’ =
{(grad u); ,(grad u); »>¢. Thus {grad f,grad /)¢ is an extens1on (as in Lemma
4.3) of the Testriction of a W-invariant homogeneous polynomial {grad u, grad u)¢
of degree 2(k — 1) over X to expt(B)NZ. q.e.d.

Also, we prepare the following lemma.

Lemma 4.5. Let u and [ be as in Lemma 4.3. Then we have

g m;{(grad u); ,( ,')x(]>c
() exp () = (B)(5) + D e
i=1 o
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(ve B), where Af is defined by Af =3 3" ep(Ve,(Ve,f) — Vg . f) (Vi the
connection of 'V, {el,.. ;e }: an orlhonormal base of V, ep:= <e§;,63>) Au is
also defined similarly, ¥ is as in the proof of Lemma 4.3, {J;|i=1,... g} is the set
of all complex principal curvatures of M, m; ::% dirn E; (E: lhe complex cur-
vature distribution for ;) and v; is the complex curvature normal for ;.

Proof. Take an arbitrary x; € M. Let U be a contractible open set of M
containing xo and xi, {ef,Je{,... e}, ,Je} } be a J-orthonormal frame field of
Eily (i=1,...,9). Take ve B,(:= BDTLM) (xe U). Let c:(—&e) — U be
a curve with ¢(0) = (e]?),c and ¥ be a parallel normal vector field along ¢ with
9(0) = v. Define a vector field &/ on exp: F(Bly) bY (€])exp: () = €xp; (9(0))

J
(veB|y). It is clear that [ J{ {el,Je'17 e Je 1s a tangent frame field of

leaves of 8;|expi<3| ). Also, let &, (a=n+1,...,m) be unit vector fields on
exp(B) as in the ‘proof of Lemma 4.4, which are normal to leaves of ey (p)-
Let ve B, (xe U). Let y, be the normal geodesm of M with p,(0) =v. Since
¢j|, is the Jacobi field along y, satisfying Viél = —A,(e}), = —i(v)(e}),, we have

(éjl)/l (s) (1 - S/l ( ))(e]l)\ dnd hen0e /

(41) (Af)(expl(l))) + Z Z (V,-é!')if)expi(v)’
i=1 /:l 1 - /L )) 57
where (-), is the normal component (to leaves of Tg\exp l,)) of (). On the other

hand we have ((Ve’e]) )expi( ) = Zm ! ((éo() )( - (Uxo))(gz)expL(v): where we
use (V;; f“)expL (V é,{)x, 2i(v) = 2i(y,) and VJ = 0. Substituting this relation

into (4.1, we have (Af)(expt(v)) = (Au)(iy) + 30 1%<(gradu) :

(vi),,>¢, where #; is the vector field on exp™(B|y) arising from v;[;. g.e.d.

By identifying TLM with X through exp*, we regard 4; |TL u as a C-linear
function over X.

LemMMmA 4.6. The function (grad u, (v;), »¢ over X is a homoge-

V=il v
neous polynomial of degree (k —2) as'the function over C™" identified with
X =Ty M as stated in this section.

Proof. Assume that v € (4|1 MY1 (1). Since the complex reflection of order
%

two with respect to (4if7. 5)" '(1) is an element of the complex Coxeter group W

of M and u is W- 1nvar121nt we have {(grad u),, (v;), > =0. This implies that

(grad u, (v;), > is divisible by 1 — ;7. ,,. Hence the statement follows.
X0

g.e.d.

Furthermore, we can show the following fact.
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Lemma 4.7. The function Y
invariant.

9 — 1 (gradu, (vi),>¢ over T is W-
1= Jil7s v
X0

m;{grad u, (v;), >¢
Proof. For simplicity, let @:=>7, <8 (0

and denote Tix"
1 — Ailge '

(resp. R") by T; (resp. R;), where 7;° and R are’ as in Section 3. Take
veX(=TyM). Since u is W-invariant, we have

9 m; d u),, Ri((vi),,)>¢
) AT =3 <(gr?_/1)i(7{f(§;()))0)>

i=1

Take ae (), [*, where we note that ()/_, [ # 0 by Proposition 3.2. The
complex reflection 7} is expressed as 7; = P, o Rj o P_,, where P, is defined by
Piyv)=vta (veZ=TyM). Let ¢; and g; (j=1,...,9) be as in Section
3. Since Ri((v;). )= (v;), . and (/4 = AULEY , we have
(0] = @y 204 By =TG5 (g v0) —v0)
_ (;“‘Tf(i))xo(v) -1
1 = (Zg()) x, (#;(x0) — X0)

0O c_ 1 (ia,'(i))xo((grad u)v)
n the other hand, we have ((grad u),, R;((v;),,)>* = 2T-0 ) (600) —%0)
9j(1) ) xo \¥j

Substituting this relation and (4.3) into (4.2), we have u(7T;(v))=>7,"
mi()“l')xo((grad u)l/)
21 = (i), (v))

(4.3) 2i(T;(v)) + 1.

= u(v), where we note mg, ;) =m;. Thus @ is W-invariant.

g.e.d.
From Lemmas 4.5, 4.6 and 4.7, we have the following fact.

LemmA 4.8. Let u and f be as in Lemma 4.3. Then Af is an extension (as
in Lemma 4.3) of the restriction of a W-invariant homogeneous polynomial of
degree (k —2) over X to expt(B)NZ.

Proof.  According to Lemma 4.5, Af is an extension of (Au +@)|e (pnss
where # is as in the proof of Lemma 4.7. According to Lemmas 4.6 and 4.7, @
is a W-invariant homogeneous polynomial of degree (k —2). Also, it is clear
that so is also Au. Hence the statement follows. q.e.d.

By using Lemmas 4.4 and 4.8, we shall prove Theorem 4.2.

Proof of Theorem 4.2. 1t is clear that the restriction map r: Polc(V)% —
Polc(Z)W is an injective homomorphism. By the induction for the degree, we
shall show that r is surjective. It is clear that all elements of degree zero of
Pol.(2)" belong to the image of r. Assume that all elements of degree at most
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(k —1) of Pol.(2)" belong to the image of . Take an element u of degree k of
Pol(2)". From Lemmas 4.4 and 4.8, we can show that u belongs to the image
of r by imitating the proof of Theorem C of [T1]. Therefore, by the induction,
we see that r is surjective. g.e.d.

Let 7 be a finite dimensional anti-Kaehlerian space and f = (fi,..., f):
V' — C* be a polynomial map. In this paper, we call /' a proper anti-Kaehlerian
isoparametric polynomial map if it satisfies the following conditions:
(i) f has a regular point,
(i) <grad f;, grad f;>“ (1 < i <k, 1 < j < k)and Af; (1 < i < k) are
functions of fi,..., fi,
(iii) [grad f;, grad f;]° (1 < i < k, 1 < j < k) are linear combinations of
grad fl,...,grad fr having functions of fi,..., fi as the coefficients,
where grad f; is the complex vector field defined by grad f; := grad(f;)g + \/_
grad(fi); ((fi)g (resp. (fi);): the real (resp. imaginary) part of f;), {,)“ is the
complexification of the non-degenerate symmetric bilinear form <{,» of V and
[,]€ is that of the bracket product [,]. By using Theorem 4.2, we can prove the
following fact for existence of a proper anti-Kaehlerian isoparametric polynomial
map having a given proper anti-Kaehlerian isoparametric submanifold as a reg-
ular level set.

THEOREM 4.9. Let M, V, X and W be as in Theorem 4.2. Then there exists
a proper anti-Kaehlerian isoparametric polynomial map f = (fi,..., fx): V — o
satisfying the following conditions:

(i) f has M as a regular level set,

(i) the focal set of M coincides with the set of all critical points of f,
(iii) f(V)=f(Z),
(iv) for ve X, v is a regular point of f if and only if v is a W-regular point.

Proof. Let W be the complex Coxeter group associated with M. Accor-
ding to the theorem of Chevalley [Ch] for the ring of all polynomials on K™
(K: a field of characteristic zero) which are invariant with respect to a finite
reflection group, we can show that the ring of all W-invariant (complex) poly-
nomials on X(= C™™") is generated by (m — n) pieces of generators uy, ..., Uy, .
Let f1,..., fu_n be their extended polynomials on V', whose existences are assured
by Theorem 4.2. Let f:=(fi,...,fmn)(:V — C""). According to Lemma
4.4, the polynomial (grad f;, grad f;> is the extension of a W-invariant poly-
nomial u on X. Let u=3}; , kl Jop Ui -ufron . Then it is clear that

Cgrad fi,grad fi> =34 4 Cyd f1 o+ fko Thus (grad f;, grad f;>¢ is
a function of fi,..., fju_y. Similarly, by using Lemma 4.8, we can show that
Af; 1s a function of fi,..., fi—n. Also, since f;’s are polynomials, it is shown
that [grad f;, grad f;]’s are linear combinations of grad fi,...,grad f,,_, having
functions of fi,..., fi,_n as the coefficients. Thus f is a proper anti-Kaechlerian
isoparametric polyomial map. Furthermore, it is easy to show that f satisfies
the conditions (i)~(v). This completes the proof. g.e.d.
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5. Proofs of Theorems A and B

In this section, we prove Theorems A and B. First we prove Theorem A.
For its purpose, we prepare the following lemma.

Lemma 5.1. Let G be a compact subgroup of the affine transformation group
(0(2n) N GL(n,C)) x C" of C"(=R™").

(i) The ring Pol.(C") S of all G-invariant complex polynomials over C" is finitely
generated.

(i) Any G-invariant complex-valued C*-function f over C" is expressed as
f=d¢o(ul,...,ux) in terms of some complex-valued C*-function ¢ on C*, where
uy,..., ur are generators of Polc(C”)G.

Proof. The statement (i) is trivial. Let uX (resp. u/) be the real (resp.
imaginary) part of u; (i=1,...,k). It is clear that uft,uf,... ,uf u} are gen-
erators of the ring Polg(R?)¢ of G-invariant real-valued polynomials over
R (=C"). Let fR (resp. f') be the real (resp. imaginary) part of f. Since
f® and f7 are G-invariant, it follows from the Schwarz’s theorem [Sc| that they
are expressed as fR =g ol ul,...;uf,ul) and f1=¢,0 wf ul,..., uf uf)
in terms of real-valued C*-functions ¢, and ¢, over R? respectively. Under
the identification of R* and C*, we regard ¢, + vV—1¢, as the complex-valued
C”-function over C*. Then we have f = (¢; +V—1¢y) 0 (ur,...,u;). qed.

By imitating the proof of Theorem 10.1 of [T2], we prove Theorem A, where
we use Theorems 4.1, 4.2 and the above lemma.

Proof of Theorem A. Let xoe MNX. Then we have X = exp™(T;M),
where exp’ is the normal exponential map of M and Txl0 M is the normal space
of M at xo. We identify ¥ with T>M. Tt is clear that the restriction map
r in the statement is injective. We shall show that r is surjective. Take
feC®(x,C)". Since f is W-invariant, it is uniquely extended to the function
on V which is constant along each leaf of §. Denote by f its extension. We
have only to show that f is of class C*. First we shall show that f is of
class C* at a non-focal point p; of M. Let A be a fundamental domain of
W containing xo and A° be its interior, where we note that the choice of A is
not unique. Define a map ® of M x A” into V by ®(x,v) :=x+d, ((x,0) €
M x A®), where # is the global parallel normal vector field of M with ¢, = v.
It is easy to show that ®(M x A®) is open and dense in ¥ and that @ is a
C*-diffeomorphism of M x A° onto ®(M x A”). We may assume that p, e

®(M x A%) by retaking A if necessary. Since (fo®)(x,v)=f(v) ((x,v)e€
M x A%), fo® is a C*-function over M x A", Hence f is of class C* over
®O(M x A). In particular, f is of class C* at py. Next we shall show that f

is of class C* at a focal point p; of M. Let py=x;1+v (xje M,ve TVLIM) and
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v be the global parallel normal vector field of M with o, =v. The focal map
5 M — V is defined by np(x):=x+ 0, (xe M) and the focal submanifold
M; is defined by Mj;:=n;(M). Let o be a section of n; through x; over a
neighborhood U of p; in Mj;. Let O be the complex Banach space of all
compact operators of V' which are commutative with the complex structure J
of V' and O;(V) be the Banach group of all linear isometries of 7 which are
commutative with J. The action of O;(V) on O is defined by B-C:=Bo
CoB ' (Be0;(V),CeD). Foreachxe M, we define 4; eDbyA,,\ o = As,
and A \TL w =0, where A4 is the shape tensor of M. Since M is proper anti-
Kaehlerian isoparametric, for any x € M, A4;_ belongs to the O, (V)-orbit through
A,. The orbit map vy : O;(V) — O;(V)- A, is defined by y(B) = Bo A, o B
(Be 0y(V)). Take a C*-section y of y through the identity transformation idy
of ¥ over a neighborhood of A, in O;(V)- A, containing {4 | x € U}, where
we shrink U if necessary. Let {4;|ie I} be the set of all complex principal
curvatures of M and E (i e I') be the complex curvature distribution for 4;. Set
I, ={iell|ve (L), '(1)}, which is finite. Define a map ¥ : U x TEM x
(@ie]p(E,')xl) — TLM lv by W(p,u,w) = tly() + 7(A4s,,,)(w). The map ¥ is a
bundle isomorphism. Take a tubular neighborhood 7 of the O0-section of
T+ Mj|,, such that the restriction exp*|; of the normal exponential map of M; to
T is a diﬁeomorphism. Since (f oexp* o ¥)(p,u,w) = (f oexp’ o ¥)(p1,u,w)
((p,u w)e W 1(T)), we have only to show that f is of class C* over
exp' (TN T, M;) in order to show that it is class C* over exp™(T) (hence
at pp). We shall show that f is of class C* over V' := exp (TpilMl;). Since I,

is finite, we have dim V' < co. According to Theorem 4.1, 7;!(p;) is a proper
anti-Kaehlerian isoparametric submanifold in V’. Let & be a foliation (which
have singular leaves) consisting of parallel submanifolds and focal submanifolds
of n;'(p1). Since the foliation & in the statement is defined on the whole of V
by the assumption and leaves of ¥’ are the intersections of those of & with V', &'
is defined on the whole of V’. Let X' :=exp" (7}, M), which is a section of

~(p1). Let k := codim M, that is, dim X' = k. Let I’ be the (finite) complex
Coxeter group associated with the proper anti-Kaehlerian isoparametric sub-
manifold 7;!(p;). The ring Polc(X') " of all W'-invariant complex polynomials
over X’ have k pieces of generators uy,...,ur. Since f is constant along leaves
of §', flg is invarinat with respect to W’. According to Lemma 5.1, f s/ 18
expressed as fls = ¢o (ur,...,u) in terms of some complex-valued C* function
¢ over C*. According to Theorem 4.2, each u; (i =1,...,k) is extended to the
complex valued polynomial over V' which is constant along leaves of &'
Denote by @; this extension. Since both f|,, and ¢o (i,...,4) are constant
along leaves of &' and those restrictions to X’ coincide with each other, we have
Sflyy=¢o(m,...,u). Thus f|, is of class C*. Hence so is f|expL (r)- In
particular, f is of class C* at p;. Therefore, f is of class C* over V. This
completes the proof. g.e.d.

Now we prepare the following lemma to prove Theorem B.
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LemMA 5.2. Let M, W and Wy be as in the statement of Theorem B.  Re-
gard ¢ as the section of M* through a fixed point ug € M€. Let {l;|ie I} be the
set of all focal complex hyperplanes (in £ = TLMc) of (M®,uy) and R; (i € I) be
the complex reflection of order two with respect to l;, where we note that W =
HR;i|iel}). Then the following statements (i), (i) and (iii) hold:

(i) Wz =<{Rig|iel s.t. codim(;NX) = 1}) (this group is a Coxeter group),
where codim(/; NX) is the codimension of ;NX in Z,

(ii) each Wz orbit is contained in the intersection of one leaf of § with Z,
where X(=exp™ (T, M)) (xo € MNZ) is identified with Ty M

(iii) the image of the restriction map rs : C*(£)" — C*( ) to X coincides
with C*(2)"*

Proof. Easily we have ;NX =0 or codim(/;NX) e {1,2}. By the elemen-
tary geometric methods, we can show

R(Z)NT =0 (when ;N = 0)
(5.1) R(Z)=ZX (when codim(/;NX) =1)
R(Z)NE=[NXE (when codim(/;NX) =2).

Hence the statement (i) is shown. In case of codim(/;NX) =1, it follows from
R;(X) =X that ;NX is contained in the focal set of (M,x(). Furthermore we
see that the sum of /;N¥’s (i eI s.t. codim(/;NX) = 1) is contained in the focal
set of (M,xp). From this fact, the statement (ii) follows. Next we show the
statement (iii). Clearly we have rs(C*(Z%)") < C*(£)"*. Take an arbitrary
feC®Z)". From (5.1), we see that there exists a fundamental domain A of
W such that ANX is contained in that of Ws. Clearly there exists /e C*(A)
such that f],, rE) = (/0 R)|snp) for all Re W. Furthermore we can take f
as one which can be extended to an element of C*(X°¢ ). Denote by f the
extension. From f|s, f e C*(2)"* and f|MR ) = (f o R)|snre) for all Re W,

we have fly = f that is, f erz( ©(29").  From the arbitrariness of f, we
have rg(C*(Z)") = c*(x)" q.e.d.

Now we prove Theorem B in terms of Theorem A and this lemma.

Proof of Theorem B. Let M€ be the extrinsic complexification of M. Let
¢ H°([0,1],9°) — G° be the parallel transport map for G¢ and #n¢: G —
G¢/K* be the natural projection. Set ¢ :=7¢o0 ¢ and M := ¢~ 1(M“), which
is a proper anti-Kachlerian isoparametric submanifold in H°([0,1],g%) (see
[K2]). Since this foliation F* in the statement is defined on the whole of G¢/K*,
§° is defined on the whole of H([0,1],g°). Accordrng to (ii) of Lemma 5.2,
the image of the restriction map r: C’O(G/ K)® — C*(2) to T is contained in
Cc* ()", Since all leaves of & intersect with X, r is injective. In the sequel, we
shall show that r(C‘”(G/K) )=C*E)"*. Let ¢ be the extrinsic complex-
ification of ¥ and X° be the horizontal lift of £ to some point of M°. The
group W acts on both £¢ and £¢. Take an arbitrary f € C*(2)"*.  According
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to (iii) of Lemma 5.2, there exists f e C*(z%)" with f|y = f+ Under the iden-
tification of £¢ with £¢, we regard f as an element of C’C(E ). According to

Theorem A, f extends to an element of C*(H°(]0,1],g¢))% ,Nwhich we denote by
F. Since G° is simply connected and hence each fibre of ¢° is connected, each
leaf of F° is the inverse image of a leaf of & by ¢°. Hence we see that there
uniquely exists F e C*(G/K*¢ )‘y with Fo¢® = F. Easily we can show F|G x €

C*(G/K)% and F|s = f. Thatis, we have [ = r(F\G/K) e r(C*(G/K)%). From
the arbtrariness of f, we have r(C*(G/K)%) = C*(Z)"*. This completes the
proof. g.e.d.
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