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SCHWARZ-PICK INEQUALITIES FOR CONVEX DOMAINS
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Abstract

Let Q and IT be two simply connected domains in the complex plane C, which are
not equal to the whole plane C, and let 4(Q,II) denote the set of functions f : Q — II
analytic in Q. Define the quantities C,(Q,II) by

_ @ in(£(2)
GO = S Gy 0 "N

where Ag and /A are the densities of the Poincaré metric in Q and II, respectively.
We derive sharp upper bounds for | /") (z)| (ze Q) and C,(Q,1I) if 2<n <8 and Q is
a convex domain. The detailed equality condition of the estimate on |f)(z)] is also
given.

1. Introduction

Let Q and IT be two simply connected domains in the complex plane C,
which are not equal to the whole plane C, and let A(Q,II) denote the set of
functions f : Q — II analytic in Q. We consider the quantities C,(Q,IT) defined
by

2)ln(/(2)

C,(Q,IT) := sup sup - 7
ol ) fed(QI) zeQ n!(4a(z))

AR
!

for ne N, where 1o and A are the densities of the Poincaré metric in Q and
I1, respectively. Many papers in geometric function theory are devoted to the
problem of determining |/ (z)| or C,(Q,TI) for n e N (see Avkhadiev and Wirths
[1, 2, 3]). Since Jp = (1—|z|*)" for ze A:={zeC:|z| <1}, the classical
Schwarz-Pick lemma indicates that C;(A,A) = 1. The generalized Schwarz-Pick
lemma assures that the sharp estimate

(1) o< 228 o

n(f(2)’
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is valid for all f e A(Q,IT). This in turn shows that
(1.2) C(Q,II) =1

for any pair (Q,IT) of simply connected domains. For n > 2, Ruscheweyh [10,
11] and Yamashita [12] showed that

2n—1
13 G =2 Gan =2 ad GEa (")
n

where A :={zeC:Re(z) >0} and X := C\(—o0,—1/4]. Recently, Avkhadiev
and Wirths [1] proved that

(i) Cu(A,TI) =2"! for any convex domain IT and n > 2;

(i) C,(Q,TI) < 4"~ for all simply connected domains Q and IT in C and

n>2.

Equality holds in (ii) if and only if Q and IT are equal to £ up to similarity.

In [1], Avkhadiev and Wirths formulated the following two conjectures.

CONJECTURE 1. C,(Q,I1) > 2" for all simply connected domains Q and T1
in C.

CONJECTURE 2. C,(Q,IT) = 2""! if and only if Q and TI are convex.

Motivated by the above conjectures, in the present paper we shall generalize
the above known results by giving the sharp upper bounds for |f")(z)| (z € Q)
and C,(Q,IT) in the case when 2 < n < 8 and Q is convex. The detailed equality
condition of the estimate on |f"(z)| is also given.

2. Main theorems and their consequences

THEOREM 1. Let Q and T1 be two convex domains in C. If f(z) € A(Q,1I),
then

~1 (4a(2))"

2.1 M (2)] < n2" 1(7, zeQ

2 el in(/(2)

holds for 2 <n <8 Equality holds in (2.1) at a point z = zy € Q if and only if
the following conditions are satisfied: (1) Q and I1 are both half-planes, (2) f is
a Mibius transformation mapping Q onto 1 with f(o0) # oo, and (3) the line
segment joining zo and f~'(o0) is perpendicular to Q.

Proof. For the convex domains Q and II, let w = f(z) € A(Q,I1), zp € Q
and wo = f(z0) e II. Denote by ®q (resp. @) the conformal map of A onto Q
(resp. IT) with ®q(0) =zo (resp. @r(0) = wy) and @ (0) = 1/4a(zp) > 0 (resp.
®f(0) = 1/2n(wo) > 0). Then the functions
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Da({) — Pa(0)

(2.2) z=ho(0) = o} (0) , (eA
_ _ Pn(l) —Pn(0)

(2.3) w=hp({) := o7 (0) , (eA
are normalized convex functions. Let
(2.4) (hg!(2)* = f:Bn,,cz", keN.

n=k
Then Bi =1 (keN) and

-1 k = Bn,k _ n
(2.5) (Pg (2)" = 2 —(fl)g'l(O))" (z—120)", keN.
Consider the function g € A(A,II) defined by
(2.6) 90) = f(@a(0) =Y alt, CeA.
k=0

We have
(2.7) fE) = flz0) =) a(®@'(2)", zeQ

or from (2.5)

= = o (5(0)"
0 n Boi
= A 1 n (Z Z) ’
Zl{k (@5,(0)) } ’
which yields
f(n)(ZO) - 1 n
(2.9) 7l == ((I)éz(()))nkZ;akB”‘k

We shall estimate |ax| and |B, | respectively.
First note that g(A) = II. The function

% - zw: 1 (wo)aC*

k=1

defined in accordance with (2.6) is subordinate to the convex function /().
The subordination principle and Theorem 6.4 on page 195 in [6] imply

(2.10) In(wo)lak] <1, keN.
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Equality in (2.10) holds for all £k =1,2,...,n with n > 2 if and only if
{
(2.11) 9(0) = rn(0) 75z +9(0), 7deC i=ll=1 leA.

This shows that f is a conformal map and II is equal to A up to similarity.
Next we estimate |B,x|. Let B, =B, (neN). Then we can write
(hg'(2))* as follows,

k o0 J 0
e == > (1) <ZBHZ"1> =3 B,

n=2 n=k

j=0
which yields

k k k
(2.12) Bk+1,k:<l)327 Bk+2,k=(1>B3+<2>B§a
k k k\ .,
Bk+3k—(1)B4+2(2>B2B3+<3>Bza
k k k
Bk+4,k:<l)35+( )(2BZB4+B§)+3(3>B§B3+<4)B§,
k
Bk+5k=(I)Bé+2(2)(3235+3334)+3< )(B§B4+B§Bz)
k k
+4<4)B§B3+<5>B§,
k k 5
Brisk = 1 B7 + > (2B236+B4 +2B3B5)
k
+ <3 ) (B3 +3B3Bs + 6B,B3By) + 2( ) (2B3B4 + 3B3B3)
k k
+5<5>B§B3+<6>B§,
k k
Bk =1 | Bg +2 5 (B2B7 + B3Bg + By Bs)
k 2 2 2
+3 3 (3236 + 2B,B3Bs + BB + B3B4)
k
+ 4(4)(132335 +3B3B3By + ByB3)
k

k k
+5<5)(B§B4+2B§B§) +6<6>B§'B3+(7)B§,

where ( ) are the binomial coefficients.
J
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For the convex function z = hg({) of (2.2), we have
(2.13) B, <1 (n=2,3,....8),

and this bound is sharp. See Libera and Zlotkiewicz [8, 9] and Campschroer
[4]. Hence we deduce from the above expression (2.12) that

B e (M), o < (F) o (K (K
k+1,k| = 1 ) k+2,k| = 1 2 - k—1 ’

st = (1) +2(3) < (5) = (1)

meat= (i) () () (0) = (5)

sal= () +4(5)ro(3)+4() + (5) - (G 20)

sant= () 03(5) +10(5) +10(5)
=(5)(e)- (1)

sunat= () +o(5 ) w15 )+ 0 () +15(5)
“o6)+(5)- ()

that is,
-1
(2.14) |B,,,k|s(z_1>, (n=kk+1,... k+7).
Equality in (2.14) holds if and only if
_ _ ¢ _
(215) Z_hQ(C)_?gC, EEC, |8|—1,CEA.

This shows that Q is equal to A up to similarity.
It follows from (2.9), (2.10) and (2.14) that for 2 <n <8,

.(n) z n
(2.16) VG < Gz el Bad
: k=1
(Aa(20))" ~(n—1
= In f(Zo));<k— 1)
_ Ga20)" s
n(fGo) "

which yields (2.1) for 2 <n <8.



SCHWARZ-PICK INEQUALITIES FOR CONVEX DOMAINS 257

Finally we shall deal with the equality condition of the estimate (2.1) in
detail.

If the equality holds in (2.1) at a point z =12y Q and for an n with
2<n <8, then (2.11) and (2.15) hold, which yield

(2.17) Q={zeC:Re(Qz+R) > —1/2},
M= {weC:Re(Qw+R) > —1/2}
with the complex constants Q #0, Q0 #0, R and R given by

& _ 8@9(0) o 1~{ _ 5f(20)

(2.18) Q:%(O), R= o0 ° Q:ycpﬁ(())’ 7@ (0)

This first shows that Q and IT are both half-planes.
Next, it follows from (2.9) that

(n)Z _ (;”Q(ZO))n % k-1 n—1 _ \n—k
(2.19) 1) = RS (k_1)< )

with [ (z9)] = n'2""1(1a(z0))"/n(f(z0)) and 2 <n < 8. Hence for 2 <n <8

i(Z:D(_&e)k

k=1

2n71 _ _ ‘(l —(Sé)n_l‘

which gives 0 = —e. Consequently, for z € Q, we obtain from (2.11), (2.15) and
(2.18) that
—(R R
(220) f(z) :go(DS_)l(z) — ( +QZ> _5’
O(14+2R+20z) QO

which shows that f is a Mobius transformation mapping Q onto I1 with
f(0) # .

For the function f of (2.20), which is given in A(Q,IT), where Q and IT are
given by (2.17), we have

ey (=1)"n2"'0" - 2
221) f (Z)_Q(1+2R+2Qz)”“’ 'IQ(Z)_Re(1+2R+2QZ)7
10| _|OI1+2R 420z

n(f(2)) =

Re(1 +2R+20f(z)) Re(1+2R+20Qz)"
Hence we see from (2.21) that

1 (Ga(2)"
0)(5)) = o1 Po(2)”
e In(fG)
if and only if |1+2R+2Qz|=Re(l +2R+2Qz) or Im(l +2R+2Qz)=0.
That is, for the function f € 4(€Q,IT) of (2.20) and for the Q and IT of (2.17), the
equality holds in (2.1) at each point of the half-line
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(2.22) L={zeQ:Im(l +2R+20Qz) =0}

and for each n > 2, whereas the inequality (2.1) is strict at each point of Q\L and
for each n > 2. Geometrically, the half-line L intersects 0Q = {z e C: Re(l +
2R +2Qz) =0} perpendicularly at the point f~'(o0), this shows that if the
equality holds in (2.1) at a point z = zy € Q, then the line segment joining zy and
f~!(o0) is perpendicular to 0Q. Thus the conditions (1), (2) and (3) are fulfilled.

Conversely, under these conditions, the above discussion shows that the
equality holds in (2.1) at the point z =z € Q. This completes the proof of
Theorem 1. O

The above proof of Theorem 1 also yields the following.

THEOREM 2. Let Q be a convex domain and T1 be a simply connected domain
in C. If f(z) e A(Q,I1), then

. () < -2 ()"
(2.23) /()] < (m+1)12 )’ zeQ
holds for 2 <n <8. Equality holds in (2.23) at a point z = zy € Q if and only if
the following conditions are satisfied: (1) Q is a half-plane and 11 is the complex
plane slit along a ray S, (2) f is a conformal mapping of Q onto I1 which sends
w0 to the tip of the ray S, and (3) the line segment joining zo and f~'(o0) is
perpendicular to 0Q.

Proof. With the same notation as above, we see that if I is a simply connected
domain, then the function w = Ap({) defined by (2.3) is a normalized univalent
function. Since de Branges’ celebrated proof of the Bieberbach conjecture
implies the Rogosinski conjecture (see [5] [6, p. 196]), this leads to the inequalities

(2.24) /11'[(Wo)|ak| <k, keN
instead of (2.10).
Equality in (2.24) holds for all £k =1,2,...,n with n > 2 if and only if

4
(2.25)  g({) = a®;(0) 7(1 07 +¢(0), o,feC, laf=I=1,,eA.
This shows that f is a conformal map and IT is equal to ¥ up to similarity.
It follows from (2.9), (2.14) and (2.24) that for 2 <n <8,

(2.26) V2 < Gz el Bad
k=1

!
(/19(20))” L n— 1
< UG 2 (k— 1)

_ (AQ(ZO))n (l’l—i— 1)211727

~ n(f(20))
which yields (2.23) for 2 <n < 8.
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The equality in this case gives (2.15) and (2.25). Hence the same discussion
yields

(2.27) Q={zeC:Re(Qz+R)>—1/2},
MN={weC:Qw+ReX},

and
o] _—(R—i—Qz)(l—&-R-i—Qz)_E
e®) e =geaqn =G T T
where
: _ &De(0) - B = Pg(0) _
=g *T 0 Twepo KT Twepo P

This shows that (1) Q is a half-plane and IT is the complex plane slit along a ray
S, and (2) f is a conformal mapping of Q onto IT which sends oo to the tip of
the ray S.

For such f e A(Q,IT) of (2.28) and for such Q and IT of (2.27),

(=1)"(n+ 1)1272Q" in(f(2)) = |0][1 +2R + 20z
O(1 + 2R +2Qz)" "’ Re(l +2R+20z)
and Aq(z) is unchanged as in (2.21). Then the equality holds in (2.23) at each
point of the half-line L given by (2.22) and for each n > 2, whereas the inequality

(2.23) is strict at each point of Q\L and for each n > 2.
This gives the desired conclusion in the same manner as Theorem 1. O

(229) f0(z) =

Note that, it follows from the above discussion on the equality condition that
one can give many concrete examples. For instance, let Q = A and let IT be
the complex plane slit along a ray Sy,, where Sy, = {te’® : —o0 < ¢ < —1/4} and
0o eR. The function f:Q — II defined by f(z) =e™(z7> —4)/16 is a con-
formal mapping of Q onto IT which sends co to the tip —e'” /4 of the ray
Sp,- For this function, the equality holds in (2.23) for z=x>0 and n > 2.
However, the function f:Q — I1 defined by fy(z) =e™(z2 —1/4) is also a
conformal mapping of Q onto IT but sends co to co. For this function fy(z), the
inequality (2.23) is always strict for ze Q and n > 2.

From Theorems 1 and 2, we have the following corollaries which give partial
solution to the conjecture of Avkhadiev-Wirths.

COROLLARY 1. For any convex domains Q and Il in C, the assertion
(2.30) Co(Q, 1) < 2!

is valid for 2 <n <8.

COROLLARY 2. For any convex domain Q and any simply connected domain
IT in C, the assertion
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(2.31) Cy(Q,TI) < (n+ 1)2"2
is valid for 2 <n <8.

For any simply connected domains Q and IT in C whose boundaries contain
sectorial accessible analytic arcs, Avkhadiev and Wirths [1, Theorem 3] proved
that C,(Q,IT) > 2""! for n>2. This combines with Corollary 1 gives the
following.

COROLLARY 3. For any convex domains Q and 11 in C whose boundaries
contain sectorial accessible analytic arcs, the assertion

(2.32) C,(Q, 1) = 2!

is valid for 2 <n <8.

3. Concluding remarks

The estimates |B,| < 1 in (2.13) provide the best way to deduce (2.14) from
(2.12). However, the counterexample

9/10
(3.1) z=h() :%{Gﬂ;) —1}, LeA

with

given by Kirwan and Schober [7] illustrates that (2.13) is not true for n > 10.
Hence we cannot obtain (2.14) from (2.13) in the case when n > 10, and (2.14)
is false in the case when k=1 and n>10. Since B, is a polynomial of
By, B3, ..., B,_x+1 with positive coefficients (see (2.12)), we can write

(3.2) Biijx = p(B2, B3, ..., Bjy1)
k k _
= (7 )Bii+2(, ) BB+ B(Ba, By, By)

for each given j = 3,4,..., where p(xi,x2,...,x;) and p(x1,X2,...,Xj—2) are two
multivariable polynomials with positive coefficients depending only on k. The
proved inequality (2.14) is just

|Bk+j,k| Sp(l,l,...,l) for j=1,2,...,7.

This inequality will not hold anymore for j > 9. However, we see from (3.2)
that one can deal with the remanent case by applying the following observa-

tion. That is, to prove the inequality
k k
< 2
<(1)()

k k
()25 )mn
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instead of proving |B;| <1 and |B;1| < 1. For example, in the case when j =7,
we can obtain (2.14) from (2.12) by applying

o [(pea(eel= (1))

and |B,| <1 (n=2,3,...,6). That is, the inequalities |Bg| < 1 and |B;| < 1 can
be replaced by (3.3) in the process of getting

k+6
| Bres7,k| < <k— 1)-

Whether the inequality |Bg| <1 is true remains a question for at least two
decades. The above observation may give us a way independent of the unknown
inequality |Bg| <1 to deal with (2.14) in the case when n =k + 8.

It should be pointed out that (2.14) does not hold for each k and
n>6+4k. To see this, we first note that for the function (3.1),

10/9
(= hil(z) (92/5 ks 1)10 9 ZBHZ ,
9z/5+1)'° 41

n=1

which yields B; =1 and
1
(3.4) B, = E{Pn —p1But —p2Biy— - — pu B}, (n=2)

where (1492/5)"° =1+ > paz" and

1 n—
(3.5) Pn = SH'Hm ok), (n=1).

We then see that

(3.6) Z B, 12" = <ZBn rZ ) <Z 2 )

n=k+1 n=k 1

which gives
(3.7) Buis1 = ZB,an,, m>k+1,k=1,2,..)

Hence, with some computation, one can obtain from (3.4), (3.5) and (3.7) that

(33) Bl > ()

holds for each k=1,2,... and n > 6 + 4k.
Even though the inequality (2.14) is not true in general, all we need is that it
holds on average, namely that
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n n n_l
3.9 k|Borl < k = (n+1)2"2
(39) SULAED SRR

k=1

n n n_l a1
(3.10) ;;lB"’k‘ < 2 (k_ 1) =2

hold for all n>2. We have proved the inequalities (3.9) and (3.10) for
2 <n <8 We thus conjecture that (3.9) and (3.10) as well as Theorems 1 and 2
should be true for all n > 2.

Acknowledgements. 1 am indebted to the referees for their valuable sug-
gestions.
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