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GENERALIZED KINKELIN’S FORMULAS
NoBUSHIGE KUROKAWA AND HIROYUKI OcHIAT*

1. Introduction

Around 150 years ago, Kinkelin [K] (Crelle J. 57 (1860), which was submitted
in 1856 July) defined his generalized gamma function G(x) as an integral of the
logarithm of the usual gamma function I'(x):

G(x) =exp (Lx log T'(¢) dr + @ - g log(2n)> :

See the formula (7) in [K, p. 124]. A motivation of Kinkelin seems to be the
formula

x+1 1
J log T'(¢) dt = x log x — x +§ log(2n)

due to Raabe [R] (Crelle J. 28 (1844)) as indicated in [K, p. 124]. Kinkelin
proved basic properties such as

G(0) = G(1) =1,
G(x+1) =G(x)x* for x>0,
and
Gn+1)=1'22...n" for integers n > 1.

Note that G(1) =1 is equivalent to

1

1
J log T'(¢) dt = = log(2x)
0 2

coming from Raabe at x =0, and that the formula G(x+ 1) = G(x)x* is
equivalent to Raabe’s formula. Moreover, Kinkelin calculated integrals con-
taining trigonometric functions. Especially he obtained his famous formula

(K) L log(2 sin 7t) dt = log %
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for 0 < x <1 (see the formula (24) in [K, p. 135]). We notice that this formula
includes

1/2
J log(2 sin zt) dt = 0
0

by setting x = 1/2, which is equivalent to the famous “tricky integral”

1/2 1
J log(sin nt) dt = — 3 log 2
0

or

n/2 7_[
J log(sin x) dx = — 5 log 2
0

of Euler [E] (p. 130). We notice that Euler’s formula is equivalent to Raabe’s

1
J log IT'(¢) dt = % log(27)
0

via the reflection formula

o (f) — T
sin(zt) = NOINEE

In 1987, Kinkelin’s formula (K) is used to calculate the gamma factor of the
Selberg zeta function of a Riemann surface by Sarnak [S] and Voros [V]. This
is the case of a two-dimensional locally symmetric space, and we refer to [Ku]
[KK] for the case of the Selberg zeta function of a general dimensional locally
symmetric space.

Kinkelin’s function G(x) is the firstly discovered generalized gamma func-
tion. Around 1900, it was modified and extended by Barnes [B] to a general
order gamma function. Unfortunately, a suitable generalization of Kinkelin’s
formula (K) seems to be missing still now. Moreover, Kinkelin [K, §1] indicates
that his (E})mction G(x) would be generalized to a more generalized gamma

function I' (x) (Kinkelin’s notation) satisfying

(k)

r()=1,

(k) ®
I'(x+1)=T(x)x* for x>0,
(k)

F(n+1)=1"22"...n"" for integers n> 1

0) )
&i)ith I'(x) =T'(x) and I (x) = G(x). Later, Milnor [Mi] also suggested to study

I'(x). In a recent paper [KOW] we described a theory to realize Milnor’s
suggestion.
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The purpose of this paper is to give a generalization for Kinkelin’s formula
(K) together with a theory of the generalized gamma and the generalized sine
function of BM (Barnes-Milnor) type suited to our generalized (K). This is a
generalization of the gamma function of Barnes [B] and the gamma function of
Milnor [Mi] (see [KOW]) both.

BM
B<>M
K

To construct our theory we start from the theory of the multiple Hurwitz
zeta function

é'r(sax7 (wla"'awl‘)) = Z (7’11601 +'“+nrwr+x)7s
Ay ey y =0

introduced by Barnes [B]. In this paper we restrict to the case wy,...,w, >0
and x >0 for simplicity. We recall that {.(s,x, (w1,...,®,)) converges abso-
lutely in Re(s) > r and it has an analytic continuation to all s C as a mer-
omorphic function. Frequently we omit (1,...,1), so we write

Gy, (1,00, 1)) = (s, x)
simply. Barnes [B] (1904) defined the multiple gamma function

I (x,(o1,...,0)) =exp (% Co(s, x, (o1, . .. 7cor))|30) )

We refer Manin [Ma] for a survery. The case r = I reduces to the usual gamma

function
r (ﬁ)
I'xow)= NG yxlo=1/2

V2n
by the formula of Lerch [L] (1894) since

Cl (S7 X, C()) = wisc <Sa ;C))

for the usual Hurwitz zeta function

o0

sox) = D+ 2)7 = Gils,x, 1),

n=0
We notice that Lerch’s formula says

g g LX) _
ac(sa x)|s:0 - IOg m - 10g rl (x)
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Combining this formula with

1
£(0,x) :§—x7

we get the above formula for I'i(x,w). There exists an associated multiple sine
function

S, (x, (w1,...,0,)) = To(x, (@1,...,0.) Tl + - + o — x, (01, ..., w,) V.

See [KK] for a general theory of the multiple sine function.
As noted before, Milnor [Mi] suggested to study the generalized gamma

function 5
exp (500531

for an integer k > 0 (see [KOW] for details). From our point of view, these
generalized gamma functions of Barnes and of Milnor seem to be insufficient to
describe fully the generalization of Kinkelin’s formula (K). Consequently we
investigate the further generalized gamma function

I (x, (o1, ... ,0,)) =exp (%C,.(s, X, (01, 0p)) ] )
and sine function
Srk(x, (@1,...,0))
=T, k(x, (w1, ... ,co,))_ll“,,k(wl + 4o —x, (0. .. ,a),))(_l)y
of BM type. It will turn out that the generalized cotangent function

Cot, 1 (x, (w1, ...,0,)) = (log S, k(x, (@1, ..., @,)))".

is crucial.
We first reconstruct Kinkelin’s theory from our view point:

TueoreM 1. (1) G(x) =exp([; (log T'1 (1) + (1 — 1)) dr).
(2) G(x) is characterized as

G(0) =1,
%(x) =logT'i(x)+x—=.
(3) G(x) =exp({'(~1,x) = {'(-1))
_ e—C’(—l)rLl(x)
“)
G(0) =G(1) =1,
G(x+1) = G(x)x* for x>0,
Gn+1)=122-..n" for an integer n > 1.
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() 9 = ¢ ¥ VTN (9
() (G(x) v = $5(x0)81(x)"" = S1.1(x).
7
(7) JX log(2 sin nt) dt = log (M)
0 G(x)
or

J“ log S)(7) dt =log S1,1(x).
0

The following result ?hows that T'j 4(x) = [ x(x)e ¢ realizes the gen-

eralized gamma function I (x) suggested by Kinkelin:

TuroreM 2. (1) Ty 4(1) = 1.

()rlk( ):l“lk()x’forx>0.
(3) Tip(n+ 1) =122 .0 for an integer n > 1.
4) T'o(x) =T(x) and 1"171(x) = G(x).

Kinkelin’s construction of G(x) is generalized as folllows:

THEOREM 3. For k > 1, we have

r <log Tyt (t, (1. .. o)) —

0 k"
1 [k(x, (o1,...,0,))

= — 10 . .

k 8T, (0, (@, o)

Lot~k 1. (e ,w,,») di

In the simplest case where r = k = w; = 1, this is the starting point of Kinkelin
(Theorem 1(1) above)

J: <10g Ty(1) - (; a l>> = loe 61

since
I'(7)
I'o(t,1) =T4(t) = —=,
Lo(t, 1) =T (1) o
1
1)==—
Cl<07tv ) 2 ta
T1i(x 1) = G(x)ef' Y,
and

l"lal(O, 1) = 65/(_”.

The generalized cotangent has interesting properties:
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THEOREM 4. Let k > 1.

(1) Cot, k(x, (®1,...,0,)) =k log S, k—1(x, (w1, ..., o))

(2) COt;,k(x7 (CO], cee 7a)i’)) =k COtr,k—l (X, (CO17 v :a)l‘))'

(3) If Coty(x,(w1,...,0,)) = Cot,o(x, (w1,...,w,)) satisfies an algebraic

differential equation, then Cot,(x, (w1, ...,w,)) also satisfies an algebraic
differential equation. Especially, Cot,(x,(wy,...,»,)) satisfies an alge-
braic differential equation if ratios of wi,...,w, are rational numbers.

We prove a generalized Kinkelin’s formula in the following form:

THEOREM 5. For k > 1, we have

) _1 Sy (x, (w1,...,0,))
[ e skt oo e oe(GGE)

Especially,

x B Sr1(x, (w1, ...,0,))
[ os teon,om = (G E05)

We notice that the original Kinkelin’s formula (K) is
J log S| (#) dt = log Si1,1(x)
0

as in Theorem 1(7) recalling S;1(0) = 1.
As an application of this formula we obtain some integrals as below:

THEOREM 6. (1) For an odd r

J log S,(x) dx = —2rlog Sy41(1).
0

(2) For an even r

0

TaeOREM 7. (1) jl/z log S>(x) dx = — 7C(2)

(2) j(} log S>(x) dx = 0. 70) 8n

(3) [, log Sa(x) dx = — 3

(4) [21log Sa(x) dx = 0.

THeOREM 8. (1) jol/z log S3(x) dx = — 986(?2’)
((3) "

(2) j(; log S3(x) dx = —==-.
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(3) [/ 1og S3( )dx__3i(j)
(4) [7log Si(x) dx = _%

(5) [ 1og S3(x) d __357(3)
© J3og 5500 = - X

Since the “fundamental domain” of S,(x) is 0 < x < r, foz log S>(x) dx =0 and
3¢(3 .
f03 log S3(x) dx = — ZCLZ) are considered to be analogues to Euler-Raabe formula
n
fol log Sy (x) dx = 0.
2. A reconstruction of Kinkelin’s theory

We prove Theorem 1. (1) follows from the definition of G(x) and the
fact

(2) is obvious from (1).
(3) Let H(x) =exp({'(—=1,x) — ' (=1)). Then

shows that

Hence
H(x+1)=H(x)x".
In particular, H(0) = H(1). Thus
H(0) = H(1) =exp({'(-1) = {'(-1)) = L.
Consequently, from (2), it is sufficient to show that
%/(x) = log T';(x) erf%.

Now, using

0
&C(S, X) = _SC(S+ 1,X),

we have
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H/

() = (log H(x))’

A

0
= aél(_hx)

52
= Osox

= %(—sé(s + 1)y

= ?'(O,X) —{(0,x)
()
=log I'i(x) + <x - ;)

by Lerch’s formula. Hence H(x) = G(x).
(4) As seen in the proof of (3), H(x) satisfies

H(0)=H(1) =1

C(S7 X) |s:—l

and
H(x+1)=H(x)x* for x> 0.
Hence
H(n+1)=1'22...n" for an integer n > 1.

Thus G(x) = H(x) satisfies the formula of (4).
(5) We show that

(s —1,x) =G5, x) + (x — D (s, x).
Then, differentiation at s = 0 implies
[ (x) = Dy(x)0(x)"
Hence, (5) follows from (3). The needed identity is shown as

8

(s—=1,x)=) (n+x)(n+x)"*

b
[}

8

(n+ D)+ (x=1)n+x)"°

3
Il
=

(4 Dn+2) "+ (= 1) S +x)"
n=0

Il
hE

f=]

=

I
I~
—

208, X) + (X - 1)CI(S,X)
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since

Lls,x) = Y (m+m+x)"~

nm =0
=Y (n+Dn+x)"
n=0
(6) From (5),
G(l1-x) Th(1-x)(1-x)"
Gl DO
Here we use the periodicity

1"2(1 — X) = F2(2 —x)F1(1 —x).

We notice that the general periodicity of I',(x, (w,...,®,)) is
I(x+w;,(w,... o))
= rl‘(x7 (601, T a)i‘))rl‘71<x7 (wla sy Wi, Wit ]y - wl‘))_l;

see [KK]. Hence

a1—mzjye—xnu1—m“x
G(x) ()T (%)
= S (x)S1(x)" .

We have also
G(l — X) - r171(1 —x)
G(X) Fl‘l(x)

= S171(X)

from (3).
(7) Since the equality holds at x =0, it is sufficient to show that

(log (G(é(;)x)) >/ = log(2 sin 7x).

From (2), the left-hand side above is calculated as

_g(l_x)_GG/(x):_<10gr1(1_x)+;—x) — <10g1‘1(x)+x—;>

|
=t gr—)
= log(2 sin nx).

This proves Theorem 1. Ul
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3. A generalized gamma function

We prove Theorem 2.
(1) We have

Tii(1) = exp((=k, 1) = {'(—k))
= exp({'(—k) = {'(—k))
=1.

(2) From {(s,x+ 1) ={(s,x) —x* we obtain
=k, x+1) = (—k, x) + x* log x.
Hence
Fri(x+1) = Fia(ox™,
(3) From (1) and (2) we get
Ty (n+1) =Ty e(mn™
— 12t

(4) T10(x) =T(x) by {'(0) = —1 log(2r). The equality ' ;(x) = G(x) is
shown in Theorem 1(3).

4. Generalized Kinkelin’s formulas
We prove Theorems 3, 4 and 5. To show Theorem 3 we calculate

(log I'y k(x, (01, . ... L))

= % (C(—k,x, (w1,...,0,)))
2

= MCr(Sv X, (wla sy wi’))|s:7k
0
= a(—séjr(s+ Lx, (o1,...,00)))| -k
=k((1 —k,x,(w1,...,0,) — (1 =k, x, (o1,...,0,))
=k 10g 1—‘r,kfl(xa (wla s 7601‘)) - gr(l - k7 (wla s ;wl’))a

where we used

-~

%cr(sa X, (0)1, s 7wr>> = _SCI‘(S+ 1,X, (wlv s 7wr))'

Then we obtain Theorem 3.
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Hence

(log Sy x(x, (w1,...,0,)))
= —(log T4 (x, (w1,...,,)))
+ (=) (log Ty k(w1 + -+ + @ — x, (01, ., @)))’
= —(klog T, 1(x,(@1,...,0,)) = &(1 =k, x, (w1, ..., ®,)))

+ (_1)r+k71 klog 1—‘r,kfl(a)l +--t+w— X, (a)l,...,w,))
7Cr(1 7k7w1 +"'+Q)r7xa(wla"'vwr))

=k log(T, 41 (x, (@1, ..., 0,)) "
X Trp—1(@1 + -+ o — x, (01, . ... 7@))(_1)%7 )
— (=61 =k, x, (01, .. @) + (=1)
x(l—ko1+- -+ o0 —x,(01,...,00)))

=klog Sy —1(x,(wr1,...,0,))
— (=4 (1 =k, x, (o1, ... @) + (= 1)
x{(1—k,or+- +o—x,(01,...,0,))).

Here we use that
=1 =k, x,(w1,...,0,))

+ (=D - ko + o - X (01, 0,) = 0.

205

This vanishing result can be seen by expressing these special values via gener-

alized Bernoulli polynomials. We show a shorter way below. Put
e (_1)r+k*16*t(w1+"'+wr*x)
(1 _e—twl),,,(l _e—lwr) )

fl“.k(ta X, (wla s 7wr)) =

and let

Skt X (@1, 0) = Y e, (@1, )"

mz-r

be the Laurent expansion around ¢ = 0. Then
—5(s,x, (01, 0)) + (=) (s, 01 + -+ o — x, (01, @)

St x, (o1, ... ,wr))t‘y_l dt

“r )

for Re(s) > r. The usual method of the analytic continuation implies that
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(1 =k, x, (@1,...,0)) + (=)0 =k oy + -+ 0, — x, (01, ..., 0,))
1 : : s—1
- WL k(3 @1y o)) il
= (=) "k = Dlee_i (x, (o1, .. ., o).
Now, the equality
f;‘,k(_t7 X, (601, e aa)r)) = (_l)kfl",k(ta X, (wla ey a)r))
shows that
(=1)"em(x, (@1 .., 0,) = (1) en(x, (o1,..., ).
Hence
ck-1(x, (o1, ..., @) = 0.
Thus we have
_Cr(l - k> X, (CL)], s 7(,0,:))
+ (—I)Hk_lcr(l —kor+- 4o —x, (0,...,0,))=0.
Thus we have proved Theorem 4(1) and Theorem 5. Now, Theorem 4(2) follows
from Theorem 4(1), and the former half of Thorem 4(3) comes from Thoerem
4(2). Lastly, we have the latter half of Theorem 4(3) by applying the differential

algebraicity result on the multiple sine function proved in [KW]. Thus we have
proved Theorems 3, 4 and 5. O

Remark 1. From the calculation above we have

X

J’ t Coty. 1 (1, ®) dt = x log Sy j_1(x, ) — J log S, 41 (t, @) dt

0 0
kx
:llog Sr=1(x, )78,k (0, 0) .
k Sr.k(x7 (l))

This is a generalization of the case r=1 and k=1 due to Kinkelin [K] (p.
135):
JJ i cot(nt) dt = x log(2 sin 7x) — J log(2 sin nt) dt
0 0
(2 sin 7x) " G(x)
— log( =222 A
oo G0

which was used by Sarnak [S] and Voros [V]. Kinkelin’s cotangent integral gave
the origin of the theory of the multiple sine functions of Hélder [H] (1886) and
[KK].
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5. Generalized Euler-Raabe integrals

207

We prove Theorems 6, 7 and 8 at the same time. These calculations are

special cases of Theorem 5. In fact, since

)

it remains to obtain S, (x). We show that
Sr1(x) = Spp1(x)"Sp(x)" "
First we notice that
G(s—1,x) =1l 1(s,x) + (x = r){.(s, x).

This follows from

€;~(S,X)= Z (n1+...+nr+x)—s

as

Hence, differentiating at s =0 we get
log T, 1(x) = rlog Trp1(x) + (x — r) log T)(x).
Thus
Foi(x) = (%) T(x) "
This gives
Sp1(x) = To(x) " Ty (r — )0

r+1

= (U1 () THx) ") ™ X (T (r = ) T(r = x) )Y
Hence using the periodicity
Fpi(r=x)=T(r+1—x)I(r—x)

we get
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S 1(x) = (Dt (%) To(x) ) % (Dot (r 4+ 1= x) To(r — x) )Y
= (Tt () " Tt (4 1= )7 5 (0 (2) 7T (r = ) )
=S (x)"S(x)"".

Moreover, the periodicity

r+l1

Sra(x 4+ 1) = S (0)S(x) !
(see [KK]) gives
Si1(x) =S (x+ 1)'S(x)™.

Hence
Sr.1(0) = S, (1)"
since S,(x) has a simple zero at x =0 (see [KK]). Thus we get the formula
’ S, 'S
J log S, (¢ log< +1() )
0 r+1

When r is odd,

J(: log S,(x) dx = log <§:11((11’§:>

= —2rlog Sr41(1)

since S,(x) has a simple zero at x = r and S,.1(r) = S,1(1)"" for odd r. If ris
even,

J log S;(x) dx=0
0

trivially from the relation
Sp(r—x) = Sy(x)™"
for even r. Thus we have Theorem 6. In particular
1
log S1(x) dx = =2 log S>(1),
0

2
log S»(x) dx =0
0

and
3

log S3(x) dx = —6 log S4(1).
0

Hence we have Theorem 7(4). We notice that

(1)
(1)

SH(1) =
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gives the Euler-Raabe formula

1
J log S;(x) dx = 0.
0

Now, we see that

= S85(1)
{3
:eXp(4—7z2 :
where the last equality was proved in [KK, Theorem 3.8(c)]. Hence
’ 3¢(3)
1 =— .
Jo og S3(x) dx 72
Thus we have Theorem 8(6). We have proved also that
. 3
J log S»(7) dt = log(S3(x)*S2(x)* %) — ¢3)
0 271'2
and
[ 10g 550 i = togts1() 5307 - 2
0 4-7[2
since

Sy(1) = Si(1) =p(§(—j))

Thus we reach to

(7-1) Lm log Ss(x) dx = log <s3 G)zsz (%)3/2) - %
(7-2) Ll log S»(x) dx = log(S3(1)*S,(1) ™) —%,

(7-3) E/Z log S»(x) dx = log <83 G)zsz @1/2) _ ‘:2(—;2)
(8-1) JOI/Z log S3(x) dx = log <S4 (%)333 G)S/z> - 35 7(;) |

1
2 L log $5(x) d = log(84(1)*55(1) %) ~ 50,
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3/2 3 3 3 -3/2 34,(3)
(8-3) Jo log S3(x) dx = log <S4 (§> Sz (§> et
2
0
and
5/2 5\3 5\"1/2 3¢(3)
(8-5) L log S3(x) dx = log <S4 (2> S; (2> et
Hence we get all the results of Theorems 7 and 8 from the following values:
1
5(3) -2
S (1) =1

Sy <;> = 25/16 exp

)
i) = exn(47)

() on(42)

S4(2) =1,

5 3¢(3
S4<2) —1/16 exp<32(nz)>.

and
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These special values for S>(x) and S3(x) are proved in [KK]. Then, values for
S4(x) are shown as follows:

L6

@) _
G TE:0)

S4(1) - S3<1 )
3 1 1! 3\!/?2
5()-5()2() -56)
I'4(2)
S4(2) = =1,
4(2) a2)
and |
5 3 3\
s(3)=s(s-3)=(5)
Thus we have proved Theorems 6, 7 and 8. O
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