ON A KOBAYASHI HYPERBOLIC MANIFOLD N MODULO A CLOSED SUBSET Δ_{N} AND ITS APPLICATIONS

Yukinobu Adachi

Abstract

We show that the degeneration locus of the Kobayashi pseudodistance on a complex manifold is always a pseudoconcave set of order 1 . We give some results cocerning the degeneration locus of the Kobayashi pseudodistance. Next we prove a generalization of the little Picard theorem relevantly. Finally, we consider the case $N=\Delta_{N}$.

0. Introduction

We introduced the degeneration locus $S_{M}(X)$ of the Kobayashi pseudodistance on a complex manifold M in some complex manifold X in [3] and we proved that $S_{M}(X)$ is a pseudoconcave set of order 1 in X. By using this results, we generalized the big Picard theorem in [1] and Montel's theorem in [2] of a two dimensional case. In this paper, we study the degeneration locus of a complex manifold N and modify some results concerning it in [7, Chaper 3-2]. For example, Theorems $1.12,1.13,2.3,2.5$ and Corollary 2.6. Next we study an example of hyperbolic manifold modulo a closed subset Δ_{N} (Theorem 3.8) and prove Proposition 4.2 and Theorem 4.4 which are types of the little Picard theorem. In the last section, we study examples such that $\Delta_{N}=N$.

1. Degeneration locus of the Kobayashi pseudodistance on a manifold N

In what follows, we call a manifold if it is a connected complex one. Let N be a manifold of dimension $n(n \geq 2)$ and d_{N} the Kobayashi pseudodistance on N. For its definition, see [7, p. 50].

Definition 1.1 (cf. [7]). We denote that

$$
\Delta_{N}=\left\{p \in N ; d_{N}(p, q)=0 \text { for some } q \in N \text { such as } q \neq p\right\}
$$

and for $p \in \Delta_{N}$

$$
\Delta_{N}(p)=\left\{q \in N ; d_{N}(p, q)=0\right\} .
$$

By the same reason in the proof of Lemma 1.2 in [1], the following two propositions are proved by the Schwarz lemma essentially.

Proposition 1.2. If $p \in \Delta_{N}$ and every closed coordinate neighborhood $\bar{U}(p)$ of N which is biholomorphic to the closed unit ball in \mathbf{C}^{n}, then there is a point $q \in \partial \bar{U}$ such that $d_{N}(p, q)=0$.

Proposition 1.3. If $q \in \Delta_{N}(p)$ and every closed coordinate neighborhood $\bar{U}(q)$ of N which is biholomorphic to the closed unit ball in \mathbf{C}^{n}, then there is a point $r \in \partial \bar{U}$ such that $d_{N}(p, r)=0$.

Since $d_{N}: N \times N \rightarrow \mathbf{R}$ is a continuous function (see Proposition (3.1.13) in [7]), we have the following propositions:

Proposition 1.4. The set $\Delta_{N}(p)$ is a closed set of N.
Proposition 1.5 (cf. Proposition 1.3 in [1]). The set Δ_{N} is a closed set of N.
Definition 1.6 (cf. [10] and [4]). A closed subset E of N will be called a pseudoconcave set of order 1, if for any coordinate neighborhood

$$
U:\left|z_{1}\right|<1, \ldots,\left|z_{n}\right|<1
$$

of N and any positive number r, s with $0<r, s<1$ such that $U^{*} \cap E=\emptyset$, one obtains $U \cap E=\emptyset$, where

$$
U^{*}=\left\{p \in U ;\left|z_{1}(p)\right| \leq r\right\} \cup\left\{p \in U ; s \leq \max _{2 \leq i \leq n}\left|z_{i}(p)\right|\right\} .
$$

Remark 1.7. In the case where dimension of N equals 2 , every pseudoconcave set of order 1 is a pseudoconcave set, that is, the complement of a pseudoconvex set.

Proposition 1.8 ([10], pp. 282-286). The set E of N is a pseudoconcave set order 1 , if and only if, for every point $p \in E$, for every coordinate neighborhood $\left|z_{1}\right|<1, \ldots,\left|z_{n}\right|<1$ such that p corresponds to the origin $(0, \ldots, 0)$ and $\left\{z_{1}=0\right\} \cap E=\{(0, \ldots, 0)\}$, and for every ξ_{1} with $\left|\xi_{1}\right|<\rho$, there are ξ_{i} with $\left|\xi_{i}\right|<r(i=2, \ldots, n)$ such that $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in E$ for every $1>r>0$ and for some sufficientry small $\rho>0$.

By Einbettungszats in [9] and Proposition 1.8, it is easy to see the following:
Proposition 1.9 ([10], p. 282). An analytic curve S of N, that is, an analytic subset of pure dimension 1 of N, is a pseudoconcave set of order 1 .

By Theorem IV in [10] and Proposition 1.8, it is easy to see the following

Proposition 1.10. If the nonempty set E is a pseudoconcave set of order 1 of N and is contained in an analytic curve S of N, then E consists of some irreducible components of S.

Proposition 1.11 (Lenmma of T. Ueda in [5]). The subset E of N is a pseudoconcave set of order 1 , if and only if, for every point $p \in E$ and every strictly plurisubharmonic function φ with $\varphi(p)=0, E \cap\{q \in U ; \varphi(q)>0\} \neq \emptyset$, where U is a coordinate neighborhood of p.

Theorem 1.12. The set Δ_{N} is a pseudoconcave set of order 1 of N.
Proof. It is easy to see that for every point $p \in \Delta_{N}$, Theorem 1_{U} in [3] holds good. By Proposition 1.11, our theorem is proved by the same method in the proof of Theorem 2 in [3].

According to the same method of the proof of the above theorem, the following theorem is proved.

Theorem 1.13. The set $\Delta_{N}(p)$ is a pseudoconcave set of order 1 of N.
By the triangle inequality, the following proposition is proved easily.
Proposition 1.14. For every points $q, r \in \Delta_{N}(p), d_{N}(q, r)=0$.
Remark 1.15. In general, there is no nonconstant holomorphic map $\varphi: \mathbf{C} \rightarrow \Delta_{N}(p)$. For example, there is a manifold N (which is not Stein) such as an Example (3.6.6) in [7, p. 104] which is not hyperbolic, that is, $\Delta_{N}(p) \neq \emptyset$ and there is no nonconstant holomorphic map $\varphi: \mathbf{C} \rightarrow N$, that is, Brody hyperbolic.

Remark 1.16. The set Δ_{N} is not always an analytic curve. The following example N is such a manifold. Let $N=\left\{(x, y) \in \mathbf{C} \times \Delta(1) ;|x|<e^{-\varphi(y)}\right\}$ where $\Delta(1)=\{y \in \mathbf{C} ;|y|<1\}, \varphi(y)$ is a subharmonic function on $\Delta(1)$ such that $\{\varphi(y)=-\infty\}=\left\{y=a_{i}\right\}$ where $\left\{a_{i}\right\}_{i=1,2 \ldots .}$ are discrete points converging to $\{y=0\}$ and $\varphi(y)$ is continuous elsewhere of $\left\{a_{i}\right\}$ (For constructing φ, see Example (3.1.26) in [7]). It is easy to see that $\left\{y=a_{i}\right\} \subset \Delta_{N}$. For $a \notin\left\{a_{i}\right\}$ there is a small neighborhood $U(a)$ which does not contain the points $\left\{a_{i}\right\}$. Since $(\mathbf{C} \times U(a)) \cap N$ is a bounded domain in \mathbf{C}^{2}, we can prove that $\bigcup_{i=1}^{\infty}\left\{y=a_{i}\right\}=\Delta_{N}$ by the same method of the proof of Theorem 3.6. It is easy to see that Δ_{N} is not analytic curve in N. Since $|x| e^{\varphi(y)}$ is plurisubharmonic in $\mathbf{C} \times \Delta(1), N$ is pseudoconvex, and, by Oka's theorem, N is a Stein manifold.

Remark 1.17. There is a case where the set Δ_{N} contains an open subset. Let $N=\left\{(x, y) ;|y|<e^{-|x|}+1\right\}$. Then it is easy to see that N is a Stein manifold and $\Delta_{N}=\left\{(x, y) \in \mathbf{C}^{2} ;|y| \leq 1\right\}$ by the same reason of the discussion of Remark 1.16.

Remark 1.18. Let M be a relatively compact subdomain of a manifold of X. We extend d_{M} onto the closure of \bar{M} of M (extended d_{M} is not the pseudodistance (cf. [2, p. 386])) and we denote the set of the degeneracy points of d_{M} on \bar{M} by $S_{M}(X)$ in [1]. It is trivial by the definition that $\left.S_{M}(X)\right|_{M}=\Delta_{M}$.

2. Theorems of a hyperbolic manifold modulo a closed set Δ

Definition 2.1 ([7], p. 68). Let N be a manifold and Δ a closed subset of N. We say that N is hyperbolic modulo Δ if for every pair of distinct points p, q of N we have $d_{N}(p, q)>0$ unless both are contained in Δ.

Remark 2.2. It is easy to see from Proposition 1.5 that if N is hyperbolic modulo Δ, we can take Δ_{N} as the smallest Δ.

Theorem 2.3. Let N be a manifold of dimension $n(n \geq 2)$ such that hyperbolic modulo proper subset Δ_{N}. Let M be a manifold of dimension n and suppose that is a holomorphic map $\Phi: M \rightarrow N$ with the Jacobian of $\Phi \not \equiv 0$. Then, M is hyperbolic modulo $T=\left\{\Phi^{-1}\left(\Delta_{N}\right)\right\} \cup\{J \Phi=0\}$ where $J \Phi$ is the Jacobian of Φ, that is, $\Delta_{M} \subset T$.

Proof. Let $p, q \in M$ with $p \neq q$ and suppose that they are not both contained in T. If $\Phi(p) \neq \Phi(q), d_{N}(\Phi(p), \Phi(q))>0$ because $\Phi(p)$ and $\Phi(q)$ are not both contained in Δ_{N}. Hence we set $\Phi(p)=\Phi(q)=r$. By the assumption, both p, q are not contained in $\Phi^{-1}\left(\Delta_{N}\right), r \notin \Delta_{N}$. Unless both p, q are contained in $\{J \Phi=0\}$, we may assume that $p \notin\{J \Phi=0\}$. Then there are coordinate neighborhood $U(r)$ of $N-\Delta_{N}$ and $V(p)$ of M which are biholomorphic to each other. If we assume that $d_{M}(p, q)=0$, then $p \in \Delta_{M}$ and for every closed neighborhood $\bar{V}_{1}(p)$ which is biholomorphic to the closed unit ball in \mathbf{C}^{n} such as $V(p) \ni \bar{V}_{1}(p)$ there is a point $p^{\prime} \in \partial \bar{V}_{1}$ with $d_{M}\left(p, p^{\prime}\right)=0$ by Proposition 1.2. This is a contradiction because $\Phi(p), \Phi\left(p^{\prime}\right) \notin \Delta_{N}$ and then $0=d_{M}\left(p, p^{\prime}\right) \geq$ $d_{N}\left(\Phi(p), \Phi\left(p^{\prime}\right)\right)>0$. Thus $d_{M}(p, q) \neq 0$.

Remark 2.4. In the same situation of above theorem in the case $n=2, \Delta_{M}$ is contained in an analytic curve of M if Δ_{N} is an analytic curve. Therefore Δ_{M} is also an analytic curve of M or \emptyset by Proposition 1.10.

Let $\pi: \tilde{N} \rightarrow N$ be a covering manifold of a manifold N of dimension $n(n \geq 2)$.

Theorem 2.5 (cf. Theorem (3.2.32) in [7]). $\Delta_{\tilde{N}}=\pi^{-1}\left(\Delta_{N}\right)$.
Proof. (1) If $p \in \Delta_{N}$, there is a closed coordinate neighborhood $\bar{U}(p)$ which is biholomorphic to the closed unit ball in \mathbf{C}^{n} and every connected component of $\pi^{-1}(\bar{U}(p))$ is biholomorphic to $\bar{U}(p)$ by π. Then there is a point $q \in \partial \bar{U}(p)$ such that $d_{N}(p, q)=0$ by Proposition 1.2. Let $\bar{V}(\tilde{p})$ be a connected component
of $\pi^{-1}(\bar{U}(p))$ which contains \tilde{p} where \tilde{p} is an arbitrary point of $\pi^{-1}(p)$. By Theorem (3.2.8) in [7], $0=d_{N}(p, q)=\inf _{\tilde{q} \in \pi^{-1}(q)} d_{\tilde{N}}(\tilde{p}, \tilde{q})$. If $\tilde{p} \notin \Delta_{\tilde{N}}$, that is, there is not a point $\tilde{r} \in \partial \bar{V}(\tilde{p})$ such that $d_{\tilde{N}}(\tilde{p}, \tilde{r})=0$, then $d_{\tilde{N}}(\tilde{p}, \tilde{q}) \geq \delta=$ $d_{\tilde{N}}(\tilde{p}, \partial \bar{V})>0$. This contradicts to above equation.
(2) If $\tilde{p} \in \Delta_{\tilde{N}}$, there is a point $\tilde{q} \neq \tilde{p}$ such as $d_{\tilde{N}}(\tilde{p}, \tilde{q})=0$. Then $0=$ $d_{\tilde{N}}(\tilde{p}, \tilde{q}) \geq d_{N}(\pi(\tilde{p}), \pi(\tilde{q}))=d_{N}(p, q)$. If $p \neq q$, then $p \in \Delta_{N}$. Hence we will say that there is a \tilde{q} such that $p \neq q$. We take a sufficient small closed coordinate neighborhood $\bar{V}(\tilde{p})$ of \tilde{p}, where $\bar{V}(\tilde{p}) \cap\left\{\pi^{-1}(p)\right\}=\{\tilde{p}\}$ and $\bar{V}(\tilde{p})$ is biholomorphic to the closed unit ball in \mathbf{C}^{n}. By Proposition 1.2, there is a point $\tilde{q} \in \partial \bar{V}(\tilde{p})$ such that $d_{\tilde{N}}(\tilde{p}, \tilde{q})=0$ and $p \neq q$.

Corollary 2.6. Let $\pi: \tilde{N} \rightarrow N$ be a covering manifold of N of dimension 2. If $\Delta_{\tilde{N}}$ is an analytic curve, then Δ_{N} is an analytic curve.

Proof. If $\Delta_{\tilde{N}}$ is an analytic curve of $\tilde{N}, \pi\left(\Delta_{\tilde{N}}\right)$ is a locally analytic curve in N. Since $\pi\left(\Delta_{\tilde{N}}\right)=\Delta_{N}$ by Theorem 2.5 and Δ_{N} is a closed set in N by Proposition 1.5, Δ_{N} is an analytic curve in N.

3. An example of hyperbolic manifold N modulo Δ_{N}

Let $P(x, y)$ be a nonconstant polynomial. We say that an irreducible component of a level curve of P is of (g, n) type if its genus is g and its boundaries are n points (counting n by the normalization of such a level curve). It is well-known that every irreducible components of almost all level curves are same type and nonsingular except finite ones. We call that P is a polynomial of type (g, n) if irreducible components of general level curves are of (g, n) type. If an irreducible component of exceptional level curves is of $\left(g^{\prime}, n^{\prime}\right)$ type, $g^{\prime} \leq g$ and $g^{\prime}+n^{\prime} \leq g+n$ (cf. Theorem I in [8]).

Definition 3.1. When $P(x, y)$ is a plynomial of (g, n) type, we say that it is a general type if $2 g-2+n>0$ and it is exceptional type if $2 g-2+n \leq 0$.

Definition 3.2. We call that $P(x, y)$ is a primitive polynomial if almost all level curves are irreducible except finite ones.

The following proposition is well-known.
Proposition 3.3. For every polynomial $P(x, y)$, there is a primitive polynomial $P_{0}(x, y)$ and a plynomial $\pi(z)$ such that $P=\pi \circ P_{0}$.

Theorem 3.4 (Griffiths [6]). Let $U_{\rho}=\{z \in \mathbf{C} ;|z-\beta|<\rho, \beta \in \mathbf{C}, \rho>0\}$ and for every $\alpha \in U_{\rho},\{P(x, y)=\alpha\}$ is irreducible, nonsingular and of (g, n) type where $2 g-2+n>0$. We set $N_{0}=\left\{(x, y) \in \mathbf{C}^{2} ; P(x, y)=\alpha, \alpha \in U_{\rho}\right\}$. Then universal covering manifold \tilde{N}_{0} of N_{0} is a bounded Bergman domain in \mathbf{C}^{2}.

The following corollary follows from Theorem 2.5.

Corollary 3.5. The manifold N_{0} is hyperbolic, that is, $\Delta_{N_{0}}=\emptyset$.
Theorem 3.6. Let $P(x, y)$ be a primitive general type polynomial and set $N_{1}=\left\{(x, y) \in \mathbf{C}^{2} ; P(x, y) \neq a, b\right\}$ where a and b are arbitrary different complex number. Then $\Delta_{N_{1}} \subset S$, where S is the exceptional level curves of P in N_{1}.

Proof. We assume that $p, q \in N_{1}$ with $p \neq q$ and both p, q are not contained in S. We will prove that $d_{N_{1}}(p, q)>0$. In case p, q are not both contained in a same level curve, it is easy to see that $d_{N_{1}}(p, q) \geq$ $d_{\mathbf{C}^{2}-\{a, b\}}(P(p), P(q))>0$. We assume that p, q are both contained in a same level curve $\{P(x, y)=\beta\}$. Let $U_{2 s}=\left\{z \in \mathbf{C} ; d_{\mathbf{C}-\{a, b\}}(\beta, z)<2 s, s>0\right\}$. We take a number s sufficientry small such that $2 s=\rho$ where ρ satisfies the condition in Theorem 3.4. Then $N_{0}=\left\{(x, y) \in \mathbf{C}^{2} ; P(x, y)=\alpha, \alpha \in U_{2 s}\right\}$ is hyperbolic by Corollary 3.5. We take positive number $r(r<1)$ sufficiently small such that $d_{\Delta(1)}(0, z)<s$ for every $z \in \Delta(r)$ where $\Delta(r)=\{z \in \mathbf{C} ;|z|<r\}$. Thus if $f: \Delta(1) \rightarrow N_{1}$ is holomorphic and $P(f(0)) \in U_{s}$, then $f(\Delta(r)) \subset N_{0}$.

Let $f_{i}: \Delta(1) \rightarrow N_{1}$ be holomorphic mappings and a_{i}, b_{i} be points of $\Delta(1)$ such that $p=f_{1}\left(a_{1}\right), f_{1}\left(b_{1}\right)=f_{2}\left(a_{2}\right), \ldots, f_{k}\left(b_{k}\right)=q$. By homogenity of $\Delta(1)$ we may assume that $a_{i}=0$ for all i. By inserting extra terms in this chain if necessary, we may assume also that $b_{i} \in \Delta(r / 2)$ for all $i=1, \ldots, k$. Choose $c>0$ such that $d_{\Delta(1)}(0, a) \geq c \cdot d_{\Delta(r)}(0, a)$ for every $a \in \Delta(r / 2)$. We set $p_{0}=$ $p, p_{1}=f\left(b_{1}\right), \ldots, p_{k}=f_{k}\left(b_{k}\right)=q$.

We have two cases to consider. Consider the first case where at least one of the $P\left(p_{i}\right)$'s is not contained in U_{s}. Then it is easy to see

$$
\sum_{i=1}^{k} d_{\Delta(1)}\left(0, b_{i}\right) \geq \sum_{i=1}^{k} d_{N_{1}}\left(f_{i}(0), f_{i}\left(b_{i}\right)\right) \geq \sum_{i=1}^{k} d_{\mathbf{C}-\{a, b\}}\left(P\left(f_{i}(0)\right), P\left(f_{i}\left(b_{i}\right)\right)\right) \geq s
$$

Consider the next case where all $P\left(p_{i}\right)$'s are in U_{s}. Then

$$
\sum_{i=1}^{k} d_{\Delta(1)}\left(0, b_{i}\right) \geq c \sum_{i=1}^{k} d_{\Delta(r)}\left(0, b_{i}\right) \geq c \sum_{i=1}^{k} d_{N_{0}}\left(p_{i-1}, p_{i}\right) \geq c \cdot d_{N_{0}}(p, q)>0
$$

This shows that $d_{N_{1}}(p, q) \geq \min \left\{s, c \cdot d_{N_{0}}(p, q)\right\}>0$. Thus N_{1} is hyperbolic modulo S, that is, $\Delta_{N_{1}} \subset S$.

Example 3.7. Set $N_{1}=\left\{(x, y) \in \mathbf{C}^{2} ; y^{2}-x^{3} \neq 0,1\right\}$. Then N_{1} is hyperbolic by Theorem 3.6.

Theorem 3.8. Let $P(x, y)$ be a general type polynomial. Then, for $N=\left\{(x, y) \in \mathbf{C}^{2} ; P(x, y) \neq a, b\right\} \quad \Delta_{N} \subset S$, where S is a curve consists of the exceptional level curves of $P(x, y)$ in N.

Proof. From Proposition 3.3, there is a primitive polynomial $P_{0}(x, y)$ and a polynomial $\pi(z)$ such that $P=\pi \circ P_{0}$. Hence there is an injection $i: N \rightarrow N_{1}$
where N_{1} is the same in Theorem 3.6 and we take P_{0} instead of P, a point of $\pi^{-1}(a)$ instead of a and a point of $\pi^{-1}(b)$ instead of b. From Theorem 2.3, $\Delta_{N} \subset S$.

Remark 3.9. In the same notation of Theorem 3.8, Δ_{N} is an algebraic curve or \emptyset by Proposition 1.10.

4. A generalization of the little Picard theorem

It is easy to see the following:
Proposition 4.1. Let N_{1} and N_{2} be manifolds of dimension $n(n \geq 2)$. If a holomorphic map $F: N_{1} \rightarrow N_{2}$ is nondegenerate, that is, $F\left(N_{1}\right)$ contains an open set in N_{2}, if and only if $J F \not \equiv 0$.

Proposition 4.2. Let N be a manifold of dimension 2 and $d_{N} \equiv 0$. Let $F: N \rightarrow \mathbf{C}^{2}$ be a holomorphic map such that $P \circ F \neq a, b$, where $P(x, y)$ is a polynomial and a, b are different complex numbers. Then F is a degenerate map.

Proof. For every points $p, q \in N$ such as $p \neq q, \quad 0=d_{N}(p, q) \geq$ $d_{\mathbf{C}^{2}-\{a, b\}}(P \circ F(p), P \circ F(q))$. Hence $P \circ F(p)=P \circ F(q)$. Therefore $F(N)$ is contained in a same level curve.

Proposition 4.3. Let N be a manifold of dimension 2 such that $\Delta_{N} \neq \emptyset$ and let $F: N \rightarrow \mathbf{C}^{2}$ is a holomorphic map such that $P \circ F \neq a, b$, where $P(x, y)$ is a polynomial. Then $P \circ F\left(\Delta_{N}(p)\right)=\alpha$ (constant) and $\Delta_{N}(p)$ is an analytic curve in N.

Proof. Since for every $q, r \in \Delta_{N}(p), d_{N}(q, r)=0$ by Proposition 1.14, $F\left(\Delta_{N}(p)\right)$ is contained in a same level curve by the same reason of Proposition 4.2. Since $\Delta_{N}(p)$ is contained an analytic cuve of $N, \Delta_{N}(p)$ is an analytic curve of N by Proposition 1.10 and Theorem 1.13.

Theorem 4.4. Let N be a manifold of dimension 2 and let the nonempty set Δ_{N} be not an analytic curve of N. Let $F: N \rightarrow \mathbf{C}^{2}$ be a holomorphic map such that $P \circ F \neq a, b$, where $P(x, y)$ be a general type polynomial. Then F is a degenerate map.

Proof. Since $M=\left\{(x, y) \in \mathbf{C}^{2} ; P(x, y) \neq a, b\right\}$ is hyperbolic modulo algebraic curve or \emptyset by Theorem 3.8, Remark 3.9, Remark 2.4, Propositions 4.1 and 4.3, F is a degenerate map.

Remark 4.5. The condition that $P(x, y)$ is a general type polynomial is indispensable for Theorem 4.4. For example, if $N=\mathbf{C} \times(\mathbf{C}-\{a, b\}), F$ is an identity map and $p(x, y) \equiv y$, then $N=\{P \circ F \neq a, b\}$.

5. Examples of a manifold N such that $\Delta_{N}=N$

Problem 5.1. Enumurate the Stein manifold N of dimension 2 such that $\Delta_{N}=N$ or $d_{N} \equiv 0$ specially.

We study the case where a manifold N is a quasi-projective Stein manifold.
Proposition 5.2. Let C be a curve of degree ≤ 2. Then $N=\mathbf{P}^{2}-C$ satisfies $\Delta_{N}=N$ and hence $d_{N} \equiv 0$.

Proof. In the case where degree of C equals $1, N$ is biholomorphic to \mathbf{C}^{2} and the conclusion is trivial.

In the case where the degree of C equals $2, C$ consists of two lines or a conic. The former case, N is biholomorphic to $\mathbf{C} \times \mathbf{C}^{*}$ and the conclusion is trivial. The latter case, for every distinct points p and $q \in N$ the line L through p and q meets with C at most two points. Then $d_{N}(p, q)=0$ because $L-C$ is biholomorphic to \mathbf{C} or \mathbf{C}^{*}.

Proposition 5.3. Let C be a curve of degree equals to 3. Then $N=\mathbf{P}^{2}-C$ satisfies $\Delta_{N}=N$.

Proof. In case C consists of three lines in general position, N is biholomorphic to $\mathbf{C}^{*} \times \mathbf{C}^{*}$ and it is easy to see that $\Delta_{N}=N$ and $d_{N} \equiv 0$.

In case C consists of three lines in particular position, N is biholomorphic to $\mathbf{C} \times(\mathbf{C}-\{a, b\})$ where $a \neq b$. It is easy to see that $\Delta_{N}=N$ and $d_{N} \not \equiv 0$.

In case C consists of a conic and a line $L, \Delta_{N}=N$ and $d_{N} \equiv 0$. Because for almost all distinct points p and $q \in N$, tangent line L_{p} of the conic through p meets with L at a point, $L_{p}-C$ is biholomorphic to \mathbf{C} or \mathbf{C}^{*}. The similar line L_{q} meets with L_{p} with a point r or $L_{p}=L_{q}$. Then in the former case $d_{N}(p, q) \leq d_{N}(p, r)+d_{N}(q, r)=0$ and in the latter case it is easy to see that $d_{N}(p, q)=0$. Since Δ_{N} is a closed set and d_{N} is continuous, $\Delta_{N}=N$ and $d_{N} \equiv 0$.

In case C is a cubic curve, $\Delta_{N}=N$ and $d_{N} \equiv 0$. Because for almost all distinct points p and $q \in N$, tangent line L_{p} of C through p meets with C at most two points, and then $L_{p}-C$ is biholomorphic to \mathbf{C}^{*} or \mathbf{C}. The similar line L_{q} meets with L_{p} with a point r or $L_{p}=L_{q}$. Then conclusion is easy to see similary to the above discussion.

In the case where the degree of C equals 4 , we only raise examples.
Example 5.4. If C consists of four lines in general position, it is well-known that Δ_{N} is a diagonal line (cf. Theorem (3.10.27) in [7]).

If C consists of four lines in particular position, N is biholomorphic to $\mathbf{C} \times(\mathbf{C}-\{a, b, c\})$ or $\mathbf{C}^{*} \times(\mathbf{C}-\{a, b\}) . \quad$ Then $\Delta_{n}=N$ and $d_{N} \not \equiv 0$.

Example 5.5 (J. Carson, F. Sakai and B. Shiffman). If $C=L_{\infty} \cup\left\{y=x^{3}\right\}$ where L_{∞} is the line at infinity, then $\Delta_{N}=N$ and $d_{N} \equiv 0$ where $N=$ $\mathbf{C}(x, y)-\left\{y=x^{3}\right\}$. Because $F: x=z, y=z^{3}+e^{w}$ is a holomorphic map of \mathbf{C}^{2} onto N.

Problem 5.6. Let N be a Stein manifold with $d_{N} \equiv 0$. Then, is there a nondegenerate holomorphic map of \mathbf{C}^{2} to N ?

References

[1] Y. Adachi, A generalization of the big Picard theorem, Kodai Math. J. 18 (1995), 408-424.
[2] Y. Adachi, On the relation between tautly imbedded space modulo an analytic subset S and hyperbolically imbedded space modulo S, Publ. RIMS, Kyoto Univ. 33 (1997), 385-392.
[3] Y. Adachi and M. Suzuki, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. sympos. pure math. 52, Amer. Math. Soc., Providence, RI, 1991, 41-51.
[4] O. Fuiita, Sur les familles d'ensemble analytiques, J. Math. Soc. Japan 16 (1964), 379-405.
[5] O. Fuilta, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, J. Math. Kyoto Univ. 30 (1990), 637-649.
[6] P. A. Griffiths, Complex-analytic properties of certain Zariski open sets on algebraic varieties, Ann. Math. 94 (1971), 21-51.
[7] S. Kobayashi, Hyperbolic complex spaces, Die Grundlehren der mathematishen Wissenschaften 318, Springer-Verlag, Berlin-Heidelberg, 1998.
[8] T. Nishino, Nouvelles recherches sur les fonctions entières de plusieurs variables complexes IV, J. Math. Kyoto Univ. 13 (1973), 217-272.
[9] R. Remmert und K. Stein, Über die wesentlichen Singularitäten analytischer Mengen, Math. Annalen 126 (1953), 263-306.
[10] M. Tadokoro, Sur les ensembles pseudononcaves généraux, J. Math. Soc. Japan 17 (1965), 281-290.

Yukinobu Adachi
12-29 Kurakuen 2ban-cho
Nishinomiya
Hyogo 662-0082
Japan
E-mail: fwjh5864@nifty.com

