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ON A KOBAYASHI HYPERBOLIC MANIFOLD N MODULO A

CLOSED SUBSET DN AND ITS APPLICATIONS

Yukinobu Adachi

Abstract

We show that the degeneration locus of the Kobayashi pseudodistance on a

complex manifold is always a pseudoconcave set of order 1. We give some results

cocerning the degeneration locus of the Kobayashi pseudodistance. Next we prove a

generalization of the little Picard theorem relevantly. Finally, we consider the case

N ¼ DN .

0. Introduction

We introduced the degeneration locus SMðXÞ of the Kobayashi pseudo-
distance on a complex manifold M in some complex manifold X in [3] and we
proved that SMðX Þ is a pseudoconcave set of order 1 in X . By using this results,
we generalized the big Picard theorem in [1] and Montel’s theorem in [2] of a two
dimensional case. In this paper, we study the degeneration locus of a complex
manifold N and modify some results concerning it in [7, Chaper 3-2]. For
example, Theorems 1.12, 1.13, 2.3, 2.5 and Corollary 2.6. Next we study an
example of hyperbolic manifold modulo a closed subset DN (Theorem 3.8) and
prove Proposition 4.2 and Theorem 4.4 which are types of the little Picard
theorem. In the last section, we study examples such that DN ¼ N.

1. Degeneration locus of the Kobayashi pseudodistance on a manifold N

In what follows, we call a manifold if it is a connected complex one. Let N
be a manifold of dimension n ðnb 2Þ and dN the Kobayashi pseudodistance on
N. For its definition, see [7, p. 50].

Definition 1.1 (cf. [7]). We denote that

DN ¼ fp A N; dNðp; qÞ ¼ 0 for some q A N such as q0 pg
and for p A DN
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DNðpÞ ¼ fq A N; dNðp; qÞ ¼ 0g.
By the same reason in the proof of Lemma 1.2 in [1], the following two

propositions are proved by the Schwarz lemma essentially.

Proposition 1.2. If p A DN and every closed coordinate neighborhood UðpÞ
of N which is biholomorphic to the closed unit ball in Cn, then there is a point
q A qU such that dNðp; qÞ ¼ 0.

Proposition 1.3. If q A DNðpÞ and every closed coordinate neighborhood
UðqÞ of N which is biholomorphic to the closed unit ball in Cn, then there is a
point r A qU such that dNðp; rÞ ¼ 0.

Since dN : N �N ! R is a continuous function (see Proposition (3.1.13) in
[7]), we have the following propositions:

Proposition 1.4. The set DNðpÞ is a closed set of N.

Proposition 1.5 (cf. Proposition 1.3 in [1]). The set DN is a closed set of N.

Definition 1.6 (cf. [10] and [4]). A closed subset E of N will be called a
pseudoconcave set of order 1, if for any coordinate neighborhood

U : jz1j < 1; . . . ; jznj < 1

of N and any positive number r, s with 0 < r; s < 1 such that U � VE ¼ j, one
obtains U VE ¼ j, where

U � ¼ fp A U ; jz1ðpÞja rgU fp A U ; sa max
2aia n

jziðpÞjg.

Remark 1.7. In the case where dimension of N equals 2, every pseudo-
concave set of order 1 is a pseudoconcave set, that is, the complement of a
pseudoconvex set.

Proposition 1.8 ([10], pp. 282–286). The set E of N is a pseudoconcave
set order 1, if and only if, for every point p A E, for every coordinate neigh-
borhood jz1j < 1; . . . ; jznj < 1 such that p corresponds to the origin ð0; . . . ; 0Þ and
fz1 ¼ 0gVE ¼ fð0; . . . ; 0Þg, and for every x1 with jx1j < r, there are xi with
jxij < r ði ¼ 2; . . . ; nÞ such that ðx1; x2; . . . ; xnÞ A E for every 1 > r > 0 and for
some su‰cientry small r > 0.

By Einbettungszats in [9] and Proposition 1.8, it is easy to see the following:

Proposition 1.9 ([10], p. 282). An analytic curve S of N, that is, an analytic
subset of pure dimension 1 of N, is a pseudoconcave set of order 1.

By Theorem IV in [10] and Proposition 1.8, it is easy to see the following
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Proposition 1.10. If the nonempty set E is a pseudoconcave set of order 1 of
N and is contained in an analytic curve S of N, then E consists of some irreducible
components of S.

Proposition 1.11 (Lenmma of T. Ueda in [5]). The subset E of N is a
pseudoconcave set of order 1, if and only if, for every point p A E and every strictly
plurisubharmonic function j with jðpÞ ¼ 0, E V fq A U ; jðqÞ > 0g0j, where U is
a coordinate neighborhood of p.

Theorem 1.12. The set DN is a pseudoconcave set of order 1 of N.

Proof. It is easy to see that for every point p A DN , Theorem 1U in [3] holds
good. By Proposition 1.11, our theorem is proved by the same method in the
proof of Theorem 2 in [3]. r

According to the same method of the proof of the above theorem, the
following theorem is proved.

Theorem 1.13. The set DNðpÞ is a pseudoconcave set of order 1 of N.

By the triangle inequality, the following proposition is proved easily.

Proposition 1.14. For every points q; r A DNðpÞ, dNðq; rÞ ¼ 0.

Remark 1.15. In general, there is no nonconstant holomorphic map
j : C ! DNðpÞ. For example, there is a manifold N (which is not Stein) such as
an Example (3.6.6) in [7, p. 104] which is not hyperbolic, that is, DNðpÞ0j and
there is no nonconstant holomorphic map j : C ! N, that is, Brody hyperbolic.

Remark 1.16. The set DN is not always an analytic curve. The following
example N is such a manifold. Let N ¼ fðx; yÞ A C� Dð1Þ; jxj < e�jðyÞg where
Dð1Þ ¼ fy A C; jyj < 1g, jðyÞ is a subharmonic function on Dð1Þ such that
fjðyÞ ¼ �yg ¼ fy ¼ aig where faigi¼1;2;... are discrete points converging to
fy ¼ 0g and jðyÞ is continuous elsewhere of faig (For constructing j, see
Example (3.1.26) in [7]). It is easy to see that fy ¼ aigHDN . For a B faig
there is a small neighborhood UðaÞ which does not contain the points
faig. Since ðC�UðaÞÞVN is a bounded domain in C2, we can prove that

6y
i¼1

fy ¼ aig ¼ DN by the same method of the proof of Theorem 3.6. It is easy
to see that DN is not analytic curve in N. Since jxjejðyÞ is plurisubharmonic in
C� Dð1Þ, N is pseudoconvex, and, by Oka’s theorem, N is a Stein manifold.

Remark 1.17. There is a case where the set DN contains an open sub-
set. Let N ¼ fðx; yÞ; jyj < e�jxj þ 1g. Then it is easy to see that N is a Stein
manifold and DN ¼ fðx; yÞ A C2; jyja 1g by the same reason of the discussion of
Remark 1.16.
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Remark 1.18. Let M be a relatively compact subdomain of a manifold
of X . We extend dM onto the closure of M of M (extended dM is not the
pseudodistance (cf. [2, p. 386])) and we denote the set of the degeneracy points of
dM on M by SMðXÞ in [1]. It is trivial by the definition that SMðX ÞjM ¼ DM .

2. Theorems of a hyperbolic manifold modulo a closed set D

Definition 2.1 ([7], p. 68). Let N be a manifold and D a closed subset of
N. We say that N is hyperbolic modulo D if for every pair of distinct points p,
q of N we have dNðp; qÞ > 0 unless both are contained in D.

Remark 2.2. It is easy to see from Proposition 1.5 that if N is hyperbolic
modulo D, we can take DN as the smallest D.

Theorem 2.3. Let N be a manifold of dimension n ðnb 2Þ such that hy-
perbolic modulo proper subset DN. Let M be a manifold of dimension n and
suppose that is a holomorphic map F : M ! N with the Jacobian of FD 0.
Then, M is hyperbolic modulo T ¼ fF�1ðDNÞgU fJF ¼ 0g where JF is the
Jacobian of F, that is, DM HT.

Proof. Let p; q A M with p0 q and suppose that they are not both
contained in T . If FðpÞ0FðqÞ, dNðFðpÞ;FðqÞÞ > 0 because FðpÞ and FðqÞ are
not both contained in DN . Hence we set FðpÞ ¼ FðqÞ ¼ r. By the assumption,
both p, q are not contained in F�1ðDNÞ, r B DN . Unless both p, q are contained
in fJF ¼ 0g, we may assume that p B fJF ¼ 0g. Then there are coordinate
neighborhood UðrÞ of N � DN and VðpÞ of M which are biholomorphic to each
other. If we assume that dMðp; qÞ ¼ 0, then p A DM and for every closed
neighborhood V 1ðpÞ which is biholomorphic to the closed unit ball in Cn such
as VðpÞUV 1ðpÞ there is a point p 0 A qV 1 with dMðp; p 0Þ ¼ 0 by Proposition
1.2. This is a contradiction because FðpÞ;Fðp 0Þ B DN and then 0 ¼ dMðp; p 0Þb
dNðFðpÞ;Fðp 0ÞÞ > 0. Thus dMðp; qÞ0 0. r

Remark 2.4. In the same situation of above theorem in the case n ¼ 2, DM

is contained in an analytic curve of M if DN is an analytic curve. Therefore DM

is also an analytic curve of M or j by Proposition 1.10.

Let p : ~NN ! N be a covering manifold of a manifold N of dimension
n ðnb 2Þ.

Theorem 2.5 (cf. Theorem (3.2.32) in [7]). D ~NN ¼ p�1ðDNÞ.

Proof. (1) If p A DN , there is a closed coordinate neighborhood UðpÞ which
is biholomorphic to the closed unit ball in Cn and every connected component
of p�1ðUðpÞÞ is biholomorphic to UðpÞ by p. Then there is a point q A qUðpÞ
such that dNðp; qÞ ¼ 0 by Proposition 1.2. Let Vð~ppÞ be a connected component
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of p�1ðUðpÞÞ which contains ~pp where ~pp is an arbitrary point of p�1ðpÞ. By
Theorem (3.2.8) in [7], 0 ¼ dNðp; qÞ ¼ inf ~qq A p�1ðqÞ d ~NNð~pp; ~qqÞ. If ~pp B D ~NN , that is,
there is not a point ~rr A qVð~ppÞ such that d ~NNð~pp; ~rrÞ ¼ 0, then d ~NNð~pp; ~qqÞb d ¼
d ~NNð~pp; qVÞ > 0. This contradicts to above equation.

(2) If ~pp A D ~NN , there is a point ~qq0 ~pp such as d ~NNð~pp; ~qqÞ ¼ 0. Then 0 ¼
d ~NNð~pp; ~qqÞb dNðpð~ppÞ; pð~qqÞÞ ¼ dNðp; qÞ. If p0 q, then p A DN . Hence we will say
that there is a ~qq such that p0 q. We take a su‰cient small closed coordinate
neighborhood Vð~ppÞ of ~pp, where Vð~ppÞV fp�1ðpÞg ¼ f~ppg and Vð~ppÞ is biholo-
morphic to the closed unit ball in Cn. By Proposition 1.2, there is a point
~qq A qVð~ppÞ such that d ~NNð~pp; ~qqÞ ¼ 0 and p0 q. r

Corollary 2.6. Let p : ~NN ! N be a covering manifold of N of dimension
2. If D ~NN is an analytic curve, then DN is an analytic curve.

Proof. If D ~NN is an analytic curve of ~NN, pðD ~NNÞ is a locally analytic curve
in N. Since pðD ~NNÞ ¼ DN by Theorem 2.5 and DN is a closed set in N by
Proposition 1.5, DN is an analytic curve in N. r

3. An example of hyperbolic manifold N modulo DN

Let Pðx; yÞ be a nonconstant polynomial. We say that an irreducible
component of a level curve of P is of ðg; nÞ type if its genus is g and its
boundaries are n points (counting n by the normalization of such a level curve).
It is well-known that every irreducible components of almost all level curves are
same type and nonsingular except finite ones. We call that P is a polynomial of
type ðg; nÞ if irreducible components of general level curves are of ðg; nÞ type. If
an irreducible component of exceptional level curves is of ðg 0; n 0Þ type, g 0 a g and
g 0 þ n 0 a gþ n (cf. Theorem I in [8]).

Definition 3.1. When Pðx; yÞ is a plynomial of ðg; nÞ type, we say that it is
a general type if 2g� 2þ n > 0 and it is exceptional type if 2g� 2þ na 0.

Definition 3.2. We call that Pðx; yÞ is a primitive polynomial if almost all
level curves are irreducible except finite ones.

The following proposition is well-known.

Proposition 3.3. For every polynomial Pðx; yÞ, there is a primitive poly-
nomial P0ðx; yÞ and a plynomial pðzÞ such that P ¼ p � P0.

Theorem 3.4 (Gri‰ths [6]). Let Ur ¼ fz A C; jz� bj < r; b A C; r > 0g and
for every a A Ur, fPðx; yÞ ¼ ag is irreducible, nonsingular and of ðg; nÞ type where
2g� 2þ n > 0. We set N0 ¼ fðx; yÞ A C2;Pðx; yÞ ¼ a; a A Urg. Then universal
covering manifold ~NN0 of N0 is a bounded Bergman domain in C2.

The following corollary follows from Theorem 2.5.
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Corollary 3.5. The manifold N0 is hyperbolic, that is, DN0
¼ j.

Theorem 3.6. Let Pðx; yÞ be a primitive general type polynomial and set
N1 ¼ fðx; yÞ A C2;Pðx; yÞ0 a; bg where a and b are arbitrary di¤erent complex
number. Then DN1

HS, where S is the exceptional level curves of P in N1.

Proof. We assume that p; q A N1 with p0 q and both p, q are not
contained in S. We will prove that dN1

ðp; qÞ > 0. In case p, q are not
both contained in a same level curve, it is easy to see that dN1

ðp; qÞb
dC2�fa;bgðPðpÞ;PðqÞÞ > 0. We assume that p, q are both contained in a same
level curve fPðx; yÞ ¼ bg. Let U2s ¼ fz A C; dC�fa;bgðb; zÞ < 2s; s > 0g. We take
a number s su‰cientry small such that 2s ¼ r where r satisfies the condition
in Theorem 3.4. Then N0 ¼ fðx; yÞ A C2;Pðx; yÞ ¼ a; a A U2sg is hyperbolic by
Corollary 3.5. We take positive number r ðr < 1Þ su‰ciently small such
that dDð1Þð0; zÞ < s for every z A DðrÞ where DðrÞ ¼ fz A C; jzj < rg. Thus if
f : Dð1Þ ! N1 is holomorphic and Pð f ð0ÞÞ A Us, then f ðDðrÞÞHN0.

Let fi : Dð1Þ ! N1 be holomorphic mappings and ai, bi be points of Dð1Þ
such that p ¼ f1ða1Þ; f1ðb1Þ ¼ f2ða2Þ; . . . ; fkðbkÞ ¼ q. By homogenity of Dð1Þ we
may assume that ai ¼ 0 for all i. By inserting extra terms in this chain if
necessary, we may assume also that bi A Dðr=2Þ for all i ¼ 1; . . . ; k. Choose
c > 0 such that dDð1Þð0; aÞb c � dDðrÞð0; aÞ for every a A Dðr=2Þ. We set p0 ¼
p; p1 ¼ f ðb1Þ; . . . ; pk ¼ fkðbkÞ ¼ q.

We have two cases to consider. Consider the first case where at least one of
the PðpiÞ’s is not contained in Us. Then it is easy to see

Xk

i¼1

dDð1Þð0; biÞb
Xk

i¼1

dN1
ð fið0Þ; fiðbiÞÞb

Xk

i¼1

dC�fa;bgðPð fið0ÞÞ;Pð fiðbiÞÞÞb s:

Consider the next case where all PðpiÞ’s are in Us. Then

Xk

i¼1

dDð1Þð0; biÞb c
Xk

i¼1

dDðrÞð0; biÞb c
Xk

i¼1

dN0
ðpi�1; piÞb c � dN0

ðp; qÞ > 0:

This shows that dN1
ðp; qÞbminfs; c � dN0

ðp; qÞg > 0. Thus N1 is hyperbolic
modulo S, that is, DN1

HS. r

Example 3.7. Set N1 ¼ fðx; yÞ A C2; y2 � x3 0 0; 1g. Then N1 is hyper-
bolic by Theorem 3.6.

Theorem 3.8. Let Pðx; yÞ be a general type polynomial. Then, for
N ¼ fðx; yÞ A C2;Pðx; yÞ0 a; bg DN HS, where S is a curve consists of the
exceptional level curves of Pðx; yÞ in N.

Proof. From Proposition 3.3, there is a primitive polynomial P0ðx; yÞ and a
polynomial pðzÞ such that P ¼ p � P0. Hence there is an injection i : N ! N1
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where N1 is the same in Theorem 3.6 and we take P0 instead of P, a point of
p�1ðaÞ instead of a and a point of p�1ðbÞ instead of b. From Theorem 2.3,
DN HS. r

Remark 3.9. In the same notation of Theorem 3.8, DN is an algebraic curve
or j by Proposition 1.10.

4. A generalization of the little Picard theorem

It is easy to see the following:

Proposition 4.1. Let N1 and N2 be manifolds of dimension n ðnb 2Þ. If a
holomorphic map F : N1 ! N2 is nondegenerate, that is, FðN1Þ contains an open
set in N2, if and only if JF D 0.

Proposition 4.2. Let N be a manifold of dimension 2 and dN 1 0. Let
F : N ! C2 be a holomorphic map such that P � F 0 a; b, where Pðx; yÞ is a
polynomial and a, b are di¤erent complex numbers. Then F is a degenerate map.

Proof. For every points p; q A N such as p0 q, 0 ¼ dNðp; qÞb
dC2�fa;bgðP � F ðpÞ;P � FðqÞÞ. Hence P � F ðpÞ ¼ P � FðqÞ. Therefore FðNÞ is
contained in a same level curve. r

Proposition 4.3. Let N be a manifold of dimension 2 such that DN 0j and
let F : N ! C2 is a holomorphic map such that P � F 0 a; b, where Pðx; yÞ is a
polynomial. Then P � FðDNðpÞÞ ¼ a (constant) and DNðpÞ is an analytic curve in
N.

Proof. Since for every q; r A DNðpÞ, dNðq; rÞ ¼ 0 by Proposition 1.14,
FðDNðpÞÞ is contained in a same level curve by the same reason of Proposition
4.2. Since DNðpÞ is contained an analytic cuve of N, DNðpÞ is an analytic curve
of N by Proposition 1.10 and Theorem 1.13. r

Theorem 4.4. Let N be a manifold of dimension 2 and let the nonempty set
DN be not an analytic curve of N. Let F : N ! C2 be a holomorphic map such
that P � F 0 a; b, where Pðx; yÞ be a general type polynomial. Then F is a
degenerate map.

Proof. Since M ¼ fðx; yÞ A C2;Pðx; yÞ0 a; bg is hyperbolic modulo alge-
braic curve or j by Theorem 3.8, Remark 3.9, Remark 2.4, Propositions 4.1 and
4.3, F is a degenerate map. r

Remark 4.5. The condition that Pðx; yÞ is a general type polynomial is
indispensable for Theorem 4.4. For example, if N ¼ C� ðC� fa; bgÞ, F is an
identity map and pðx; yÞ1 y, then N ¼ fP � F 0 a; bg.
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5. Examples of a manifold N such that DN ¼ N

Problem 5.1. Enumurate the Stein manifold N of dimension 2 such that
DN ¼ N or dN 1 0 specially.

We study the case where a manifold N is a quasi-projective Stein manifold.

Proposition 5.2. Let C be a curve of degreea 2. Then N ¼ P2 � C
satisfies DN ¼ N and hence dN 1 0.

Proof. In the case where degree of C equals 1, N is biholomorphic to C2

and the conclusion is trivial.
In the case where the degree of C equals 2, C consists of two lines or a

conic. The former case, N is biholomorphic to C� C� and the conclusion is
trivial. The latter case, for every distinct points p and q A N the line L through
p and q meets with C at most two points. Then dNðp; qÞ ¼ 0 because L� C is
biholomorphic to C or C�. r

Proposition 5.3. Let C be a curve of degree equals to 3. Then N ¼ P2 � C
satisfies DN ¼ N.

Proof. In case C consists of three lines in general position, N is biholo-
morphic to C� � C� and it is easy to see that DN ¼ N and dN 1 0.

In case C consists of three lines in particular position, N is biholomorphic to
C� ðC� fa; bgÞ where a0 b. It is easy to see that DN ¼ N and dN D 0.

In case C consists of a conic and a line L, DN ¼ N and dN 1 0. Because
for almost all distinct points p and q A N, tangent line Lp of the conic through
p meets with L at a point, Lp � C is biholomorphic to C or C�. The similar
line Lq meets with Lp with a point r or Lp ¼ Lq. Then in the former case
dNðp; qÞa dNðp; rÞ þ dNðq; rÞ ¼ 0 and in the latter case it is easy to see that
dNðp; qÞ ¼ 0. Since DN is a closed set and dN is continuous, DN ¼ N and
dN 1 0.

In case C is a cubic curve, DN ¼ N and dN 1 0. Because for almost all
distinct points p and q A N, tangent line Lp of C through p meets with C at most
two points, and then Lp � C is biholomorphic to C� or C. The similar line Lq

meets with Lp with a point r or Lp ¼ Lq. Then conclusion is easy to see similary
to the above discussion. r

In the case where the degree of C equals 4, we only raise examples.

Example 5.4. If C consists of four lines in general position, it is well-known
that DN is a diagonal line (cf. Theorem (3.10.27) in [7]).

If C consists of four lines in particular position, N is biholomorphic to
C� ðC� fa; b; cgÞ or C� � ðC� fa; bgÞ. Then Dn ¼ N and dN D 0.
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Example 5.5 (J. Carson, F. Sakai and B. Shi¤man). If C ¼ Ly U fy ¼ x3g
where Ly is the line at infinity, then DN ¼ N and dN 1 0 where N ¼
Cðx; yÞ � fy ¼ x3g. Because F : x ¼ z; y ¼ z3 þ ew is a holomorphic map of C2

onto N.

Problem 5.6. Let N be a Stein manifold with dN 1 0. Then, is there a
nondegenerate holomorphic map of C2 to N?
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281–290.

Yukinobu Adachi

12-29 Kurakuen 2ban-cho

Nishinomiya

Hyogo 662-0082

Japan

E-mail: fwjh5864@nifty.com

139kobayashi hyperbolic manifold


