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1. Introduction

Let f ¼ ½ f1; . . . ; fnþ1� be a holomorphic curve from C into the n-dimensional
complex projective space PnðC Þ with a reduced representation

ð f1; . . . ; fnþ1Þ : C ! C nþ1 � f0g;

where n is a positive integer. We use the following notations:

k f ðzÞk ¼ ðj f1ðzÞj2 þ � � � þ j fnþ1ðzÞj2Þ1=2

and for a vector a ¼ ða1; . . . ; anþ1Þ A C nþ1 � f0g

kak ¼ ðja1j2 þ � � � þ janþ1j2Þ1=2; ða; f Þ ¼ a1 f1 þ � � � þ anþ1 fnþ1;

ða; f ðzÞÞ ¼ a1 f1ðzÞ þ � � � þ anþ1 fnþ1ðzÞ:

The characteristic function of f is defined as follows (see [14]):

Tðr; f Þ ¼ 1

2p

ð2p

0

logk f ðreiyÞk dy� logk f ð0Þk:

It is known ([1]) that for UðzÞ ¼ max1ajanþ1j fjðzÞj

Tðr; f Þ ¼ 1

2p

ð2p

0

log UðreiyÞ dyþOð1Þ:ð1Þ

We suppose throughout the paper that f is transcendental; that is to say,

lim
r!y

Tðr; f Þ
log r

¼ y

and that f is linearly non-degenerate over C ; namely, f1; . . . ; fnþ1 are linearly
independent over C . It is well-known that f is linearly non-degenerate over C if

111

Received June 8, 2006; revised October 10, 2006.



and only if the Wronskian W ¼ Wð f1; . . . ; fnþ1Þ of f1; . . . ; fnþ1 is not identically
equal to zero.

We call the quantity:

rð f Þ ¼ lim sup
r!y

log Tðr; f Þ
log r

the order of f .
For meromorphic functions in the complex plane we use the standard

notation of the Nevanlinna theory of meromorphic functions ([4, 7]).
For a A C nþ1 � f0g, we write

mðr; a; f Þ ¼ 1

2p

ð2p

0

log
kak k f ðreiyÞk
jða; f ðreiyÞÞj dy; Nðr; a; f Þ ¼ N r;

1

ða; f Þ

� �
:

We then have the First Fundamental Theorem ([14, p. 76]):

Tðr; f Þ ¼ mðr; a; f Þ þNðr; a; f Þ þOð1Þ:
We call the quantity

dða; f Þ ¼ 1� lim sup
r!y

Nðr; a; f Þ=Tðr; f Þ ¼ lim inf
r!y

mðr; a; f Þ=Tðr; f Þ

the deficiency (or defect) of a with respect to f . We have 0a dða; f Þa 1.
Let nðcÞ be the order of zero of ða; f ðzÞÞ at z ¼ c and for a positive integer k

nkðr; a; f Þ ¼
X
jcjar

minfnðcÞ; kg:

We put for r > 0

Nkðr; a; f Þ ¼
ð r

0

nkðt; a; f Þ � nkð0; a; f Þ
t

dtþ nkð0; a; f Þ log r

and put
dkða; f Þ ¼ 1� lim sup

r!y
Nkðr; a; f Þ=Tðr; f Þ:

Then, it is easy to see that
(1.a) the sequemce fdkða; f Þgyk¼1 is decreasing;
(1.b) for any k,

0a dða; f Þa dkða; f Þa 1:

We denote by Sðr; f Þ the quantity satisfying

Sðr; f Þ ¼ Oðlog rÞ ðr ! yÞ if rð f Þ < y

Oðlog Tðr; f Þ þ log rÞ ðr ! y; r B EÞ if rð f Þ ¼ y;

�

where E is a subset of ð0;yÞ of finite linear measure.
Let X be any subset of C nþ1 � f0g in N-subgeneral position satisfying

2N � nþ 2aaX ay, where N is an integer satisfying Nb n. We say that X
is in general position when X is in n-subgeneral position.
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Cartan ([1], N ¼ n) and Nochka ([8], N > n) gave the following

Theorem 1.A (see [3, Corollary 3.3.9]). For any q elements aj ð j ¼ 1; . . . ; qÞ
of X ð2N � nþ 1a q < yÞ, we have the following inequalities:

(I) ðq� 2N þ n� 1ÞTðr; f Þa
Pq

j¼1 Nnðr; aj; f Þ þ Sðr; f Þ;
(II) (the truncated defect relation)

Pq
j¼1 dnðaj; f Þa 2N � nþ 1.

Let a be any vector in C nþ1 � f0g. We say that
‘‘a has multiplicity m if ða; f Þ has at least one zero and all the zeros of the

function ða; f ðzÞÞ have multiplicity at least m, while at least one zero has
multiplicity m.’’

When ða; f Þ has no zero, we set m ¼ y.
Then, as a corollary of Theorem 1.A(II), Cartan ([1], N ¼ n) and Nochka

([8], N > n) gave the following theorem:

Theorem 1.B. For any a1; . . . ; aq A X , let aj have multiplicity mj. Then,

Xq

j¼1

1� n

mj

� �
a 2N � nþ 1;

where 2N � nþ 1a q < y (see [3, Theorem 3.3.15]).

As the numbers ‘‘1� n=mj’’ are not always non-negative in this theorem, we
gave a new defect in [12, Definition 4.1] (see also [6, p. 171]). More generally we
give the following

Definition 1.1. For a A C nþ1 � f0g with multiplicity m and for a positive
integer k we put

mkða; f Þ ¼ 1� k

m

� �þ
¼ 1� k

maxðm; kÞ ;

where aþ ¼ maxða; 0Þ for any real number a.

We call mkða; f Þ the mk-defect of a with respect to f . It is easy to see that
the sequence fmkða; f Þg

y
k¼1 is decreasing. Later we shall see that for any a A X

and for any positive integer k

mkða; f Þa dkða; f Þ
(Corollary 2.2).

From Theorem 1.B we have the following defect relation for mnða; f Þ:

Theorem 1.C (see [6, Corollary (3.B.46)]). For any a1; . . . ; aq A X ðq < yÞ,
we have the following inequality:

Xq

j¼1

mnðaj ; f Þa 2N � nþ 1:
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We call this inequality the mn-defect relation for f over X . In Section 6 we
shall give an example of holomorphic curve f from C into PnðC Þ and a subset X
of C nþ1 � f0g in N-subgeneral position such that if k < n then

X
a AX

mkða; f Þ ¼ þy:

In [12] we gave some results on mnða; f Þ when afa A X j mnða; f Þ ¼ 1g is
large. For example,

Theorem 1.D. Suppose that N > nb 2. If there exist nþ 1 linearly in-
dependent vectors a1; . . . ; anþ1 A X satisfying mnðaj ; f Þ ¼ 1 ð j ¼ 1; . . . ; nþ 1Þ, then

(I) ([12, Theorem 4.2]) For any a A X satisfying mnða; f Þ > 0, mnða; f Þ ¼ 1.
(II) ([12, Theorem 4.3])

P
a AX mnða; f ÞaN þN=n.

Remark 1.1. N þN=n < 2N � nþ 1 when N > nb 2.

We are interested in a holomorphic curve f for which the mn-defect relation
is extremal.

The purpose of this paper is to give several results on the mn-defect relation
for f and on mnða; f Þ when the mn-defect relation is extremal.

2. Preliminaries and lemma

Let f ¼ ½ f1; . . . ; fnþ1�, X , etc. be as in Section 1 and q an integer satisfying
2N � nþ 1a q < y. We put Q ¼ f1; 2; . . . ; qg. Let faj j j A Qg be a subset
of X . For a non-empty subset P of Q, we denote by VðPÞ the vector space
spanned by faj j j A Pg and by dðPÞ the dimension of VðPÞ. We put

O ¼ fPHQ j 0 <aPaN þ 1g:

Lemma 2.1 (see [3, (2.4.3), p. 68]). If P A O, then aP� dðPÞaN � n.

For faj j j A Qg, let o : Q ! ð0; 1� be the Nochka weight function and y the
reciprocal number of the Nochka constant given in [3, p. 72]. Then they have
the following properties:

Lemma 2.2 (see [3, Theorem 2.4.11], [2]).
(a) 0 < oð jÞya 1 for all j A Q;
(b) q� 2N þ n� 1 ¼ yð

Pq
j¼1 oð jÞ � n� 1Þ;

(c) N=nð*Þ a ya ð2N � nþ 1Þ=ðnþ 1Þ;
(d) If P A O, then

P
j AP oð jÞa dðPÞ.

((*): see [11, Note 2.1]).

Definition 2.1 ([9, Definition 1]). We put
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l ¼ min
P AO

dðPÞ=aP and s : Q ! ð0; 1� such that sð jÞ ¼ l ð j A QÞ:

Then, l and s have the following properties.

Lemma 2.3 ([9, Proposition 2]). (a) 1=ðN � nþ 1Þa la ðnþ 1Þ=ðN þ 1Þ;
(b) For any P A O,

P
j AP sð jÞa dðPÞ.

Remark 2.1. (a) If l < ðnþ 1Þ=ð2N � nþ 1Þ, then l ¼ min1ajaq oð jÞ,
oð jÞ ¼ l and yoð jÞ < 1 ð j A P0Þ for an element P0 A O satisfying l ¼ dðP0Þ=aP0.

(b) If lb ðnþ 1Þ=ð2N � nþ 1Þ, then oð jÞ ¼ 1=y ¼ ðnþ 1Þ=ð2N � nþ 1Þ
ð j ¼ 1; . . . ; qÞ.

(See [11, Remark 2].)

Let h be an entire function. For a A C , let nða; hÞ be the order of zero of
hðzÞ at z ¼ a:

hðzÞ ¼ c1ðz� aÞnða;hÞ þ c2ðz� aÞnða;hÞþ1 þ � � � ; ðc1 0 0Þ:

For aj ð j A QÞ we put Fj ¼ ðaj ; f Þ ð j A QÞ. Then, we have the following

Lemma 2.4 ([3, (3.2.14), p. 102]).

Xq

j¼1

oð jÞðnða;FjÞ � nÞþ a nða;WÞ:

From this inequality we have the following

Lemma 2.5. For a1; . . . ; aq A X ,
(I)

Pq
j¼1 oð jÞfnðr; aj; f Þ � nnðr; aj; f Þga nðr; 1=WÞ.

(II)
Pq

j¼1 oð jÞfðnðr; aj; f Þ � nnðr; aj ; f ÞÞ � ðnð0; aj ; f Þ � nnð0; aj; f ÞÞg
a nðr; 1=WÞ � nð0; 1=WÞ.

Proof. We note that

X
jajar

ðnða;FjÞ � nÞþ ¼
X
jajar

ðnða;FjÞ �minfnða;FjÞ; ngÞ

¼
X
jajar

nða;FjÞ �
X
jajar

minfnða;FjÞ; ng

¼ nðr; aj; f Þ � nnðr; aj ; f Þ;X
jajar

nða;WÞ ¼ nðr; 1=WÞ

and that
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X
0<jajar

ðnða;FjÞ � nÞþ ¼
X

0<jajar

ðnða;FjÞ �minfnða;FjÞ; ngÞ

¼
X

0<jajar

nða;FjÞ �
X

0<jajar

minfnða;FjÞ; ng

¼ nðr; aj; f Þ � nnðr; aj; f Þ � ðnð0; aj; f Þ � nnð0; aj; f ÞÞ;X
0<jajar

nða;WÞ ¼ nðr; 1=WÞ � nð0; 1=WÞ:

By using these equalities we obtain this lemma from Lemma 2.4. r

Lemma 2.6 (see [3, p. 105]). For a1; . . . ; aq A X , we have the inequality

Xq

j¼1

oð jÞfNðr; aj; f Þ �Nnðr; aj; f ÞgaN r;
1

W

� �
ðrb 1Þ:

Proof. This inequality is essentially the same one as that in [3, p. 105].
But there is a little di¤erence between them for a small term. To make sure of it
we give a proof of our lemma. By definition

Nðr; aj; f Þ ¼
ð r

0

nðt; aj; f Þ � nð0; aj ; f Þ
t

dtþ nð0; aj ; f Þ log r;

Nnðr; aj; f Þ ¼
ð r

0

nnðt; aj; f Þ � nnð0; aj; f Þ
t

dtþ nnð0; aj; f Þ log r;

Nðr; 1=WÞ ¼
ð r

0

nðt; 1=WÞ � nð0; 1=WÞ
t

þ nð0; 1=WÞ log r:

For simplicity we put

nðrÞ ¼
Xq

j¼1

oð jÞfnðr; aj; f Þ � nnðr; aj; f Þg:

Then, we have

Xq

j¼1

oð jÞfNðr; aj; f Þ �Nnðr; aj; f Þg ¼
ð r

0

nðtÞ � nð0Þ
t

dtþ nð0Þ log r ¼ ð*Þ:

Put

nð0; 1=WÞ � nð0Þ ¼ co;

which is non-negative by Lemma 2.5(I). Then, by Lemma 2.5(II)
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ð*Þa
ð r

0

nðt; 1=WÞ � nð0; 1=WÞ
t

dtþ nð0; 1=WÞ log r� co log r

¼ Nðr; 1=WÞ � co log raNðr; 1=WÞ ðrb 1Þ:
We have this lemma. r

Lemma 2.7 ([3, Theorem 3.3.8]). For a1; . . . ; aq A X , we have the inequality

Xq

j¼1

oð jÞdnðaj; f Þa nþ 1:

Lemma 2.8 ([10, Lemma 2.4]). Suppose that N > n. For a1; . . . ; aq A X the
maximal deficiency sum

Xq

j¼1

dnðaj; f Þ ¼ 2N � nþ 1

holds if and only if the following two relations hold:
1) ð1� yoð jÞÞð1� dnðaj; f ÞÞ ¼ 0 ð j ¼ 1; . . . ; qÞ;
2)

Pq
j¼1 oð jÞdnðaj; f Þ ¼ nþ 1.

Lemma 2.9. Suppose that there are q elements aj ð j ¼ 1; . . . ; qÞ in X
ð2N � nþ 1a q < yÞ satisfying

Xq

j¼1

dnðaj ; f Þ ¼ 2N � nþ 1:ð2Þ

Then, there is a subset E of ð0;yÞ such that for j ¼ 1; . . . ; q

lim sup
r!y

Nnðr; aj ; f Þ
Tðr; f Þ ¼ lim

r!y; r BE

Nnðr; aj; f Þ
Tðr; f Þ ;

where E is empty when rð f Þ < y and E is of finite linear measure when
rð f Þ ¼ y.

Proof. (a) When rð f Þ < y. Let j be any integer satisfying 1a ja q.
From Theorem 1.A and (2) we obtain the inequality

q� ð2N � nþ 1Þa lim inf
r!y

Nnðr; aj ; f Þ
Tðr; f Þ þ

Xq

k¼1;k0j

lim sup
r!y

Nnðr; ak; f Þ
Tðr; f Þ

a lim sup
r!y

Nnðr; aj; f Þ
Tðr; f Þ þ

Xq

k¼1;k0j

lim sup
r!y

Nnðr; ak; f Þ
Tðr; f Þ

¼ q� ð2N � nþ 1Þ;
which reduces to our lemma.
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(b) When rð f Þ ¼ y. Let j be any integer satisfying 1a ja q. From
Theorem 1.A and (2) there is a subset E of ð0;yÞ of finite linear measure for
which we obtain the inequality

q� ð2N � nþ 1Þa lim inf
r!y; r BE

Nnðr; aj; f Þ
Tðr; f Þ þ

Xq

k¼1;k0j

lim sup
r!y; r BE

Nnðr; ak; f Þ
Tðr; f Þ

a lim sup
r!y; r BE

Nnðr; aj; f Þ
Tðr; f Þ þ

Xq

k¼1;k0j

lim sup
r!y; r BE

Nnðr; ak; f Þ
Tðr; f Þ

a lim sup
r!y

Nnðr; aj ; f Þ
Tðr; f Þ þ

Xq

k¼1;k0j

lim sup
r!y

Nnðr; ak; f Þ
Tðr; f Þ

¼ q� ð2N � nþ 1Þ

and for j ¼ 1; . . . ; q, we have the inequality

lim inf
r!y; r BE

Nnðr; aj ; f Þ
Tðr; f Þ a lim sup

r!y; r BE

Nnðr; aj; f Þ
Tðr; f Þ a lim sup

r!y

Nnðr; aj; f Þ
Tðr; f Þ

apriori. From these inequalities we obtain our lemma. r

Corollary 2.1. Under the same assumption as in Lemma 2.9, for any
j ¼ 1; . . . ; q and for any sequence frngyn¼1 H ð0;yÞ � E tending to þy

lim sup
r!y

Nnðr; aj ; f Þ
Tðr; f Þ ¼ lim

n!y

Nnðrn; aj; f Þ
Tðrn; f Þ

;

where E is as in Lemma 2.9.

Lemma 2.10. Let k be a positive integer. For a vector a in C nþ1 � f0g of
multiplicity m with respect to f and for rb 1, we have the inequality

Nkðr; a; f Þa
k

maxðm; kÞNðr; a; f Þa
Nðr; a; f Þ

k

maxðm; kÞTðr; f Þ þOð1Þ:

8<
:

Proof. As this lemma is trivial when m ¼ y or Nðr; a; f Þ ¼ 0, we have only
to prove the following inequality when m < y.

Nkðr; a; f Þa
k

maxðm; kÞNðr; a; f Þ ðrb 1Þ:ð3Þ

(a) When kbm. (3) is trivial.
(b) When k < m. For rb 1, we have the inequality
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Nkðr; a; f Þa kNðr; a; f Þ ¼ kNðr; a; f Þ
Nðr; a; f Þ Nðr; a; f Þ

a
kNðr; a; f Þ
mNðr; a; f Þ

Nðr; a; f Þ ¼ k

m
Nðr; a; f Þ ¼ k

maxðm; kÞNðr; a; f Þ: r

Corollary 2.2. Let k be a positive integer and let a be a vector in
C nþ1 � f0g whose multiplicity with respect to f is m. Then,

(a) We have the inequality

1b dkða; f Þb 1� k

maxðm; kÞ ð1� dða; f ÞÞb dða; f Þ
mkða; f Þ:

�

(b) If mkða; f Þ ¼ dkða; f Þ, then m ¼ y or dða; f Þ ¼ 0.

Proof. (a) From Lemma 2.10 we obtain this proposition immediately.
(b) Suppose that m < y. By the assumption, we obtain from (a) of this

corollary that

1� k

maxðm; kÞ ð1� dða; f ÞÞ ¼ mkða; f Þ;

from which we obtain the equality

k

maxðm; kÞ dða; f Þ ¼ 0:

As m < y, we obtain that dða; f Þ ¼ 0. r

Lemma 2.11. Let u1; . . . ; unþ1 be linearly independent nþ 1 vectors in C nþ1.
Then, there is a subset E of ð0;yÞ for which it holds that

lim sup
r!y; r BE

Nðr; 1=WÞ
Tðr; f Þ a nþ 1�

Xnþ1

j¼1

dðuj; f Þ;

where E is empty when rð f Þ < y and E is of finite linear measure when
rð f Þ ¼ y.

Proof. We put Gj ¼ ðuj; f Þ ð j ¼ 1; . . . ; nþ 1Þ. Then, G1; . . . ;Gnþ1 are lin-
early independent over C and we have the relation

W ¼ Wð f1; . . . ; fnþ1Þ ¼ cW ðG1; . . . ;Gnþ1Þ ðc0 0; constantÞ;

where Wð f1; . . . ; fnþ1Þ is the Wronskian of f1; . . . ; fnþ1.
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Nðr; 1=WÞ ¼ 1

2p

ð2p

0

logjWðreiyÞj dy

¼ 1

2p

ð2p

0

logjWðG1; . . . ;Gnþ1ÞðreiyÞj dyþ logjcj

a
Xnþ1

j¼1

Nðr; uj; f Þ þ Sðr; f Þ;

since

logjWðG1; . . . ;Gnþ1Þj ¼
Xnþ1

j¼1

logjGjj þ log
WðG1; . . . ;Gnþ1Þ

G1 � � �Gnþ1

����
����

a
Xnþ1

j¼1

logjGjj þ logþ
WðG1; . . . ;Gnþ1Þ

G1 � � �Gnþ1

����
����

and

1

2p

ð2p

0

logþ
WðG1; . . . ;Gnþ1Þ

G1 � � �Gnþ1
ðreiyÞ

����
���� dy ¼ Sðr; f Þ

as in [1, pp. 14–15]. Therefore, there is a subset E of ð0;yÞ for which

lim sup
r!y; r BE

Nðr; 1=WÞ
Tðr; f Þ a nþ 1�

Xnþ1

j¼1

dðuj; f Þ;

where E is empty when rð f Þ < y and E is of finite linear measure when
rð f Þ ¼ y.

3. On the mn-defect relation

Let f , X , etc. be as in Section 1 or 2. In this section we shall consider the
mn-defect relation for f over X .

Proposition 3.1. For any vectors a1; . . . ; aq A X ð2N � nþ 1a q < yÞ we
have the inequality

Xq

j¼1

oð jÞmnðaj; f Þa nþ 1:

Proof. As 0a mnða; f Þa dnða; f Þa 1 for any vector a in C nþ1 � f0g by
Corollary 2.2(a) and oð jÞ > 0, this proposition is a direct consequence of Lemma
2.7. r
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We put for any positive integer k

Mþ
k ðX ; f Þ ¼ fa A X j mkða; f Þ > 0g and M 1

k ðX ; f Þ ¼ fa A X j mkða; f Þ ¼ 1g:
It is known that
(3.a) ([12, Theorem 4.1]) aMþ

n ðX ; f Þa ðnþ 1Þð2N � nþ 1Þ;
(3.b) ([12, Proposition 4.2]) aM 1

n ðX ; f ÞaN þN=n.

Note 3.1. As an improvement of (3.a), we have the inequality

aMþ
n ðX ; f Þ þ naM 1

n ðX ; f Þa ðnþ 1Þð2N � nþ 1Þ:

Proof. From the mn-defect relation (Theorem 1.C) we have the inequality
X

a AMþ
n ðX ; f Þ

mnða; f Þ ¼
X

a AMþ
n ðX ; f Þ�M 1

n ðX ; f Þ
mnða; f Þ þ

X
a AM 1

n ðX ; f Þ
mnða; f Þ

¼
X

a AMþ
n ðX ; f Þ�M 1

n ðX ; f Þ
mnða; f Þ þaM 1

n ðX ; f Þa 2N � nþ 1;

from which we obtain the inequality

aðMþ
n ðX ; f Þ �M 1

n ðX ; f ÞÞ=ðnþ 1Þ þaM 1
n ðX ; f Þa 2N � nþ 1ð4Þ

since mnða; f Þb 1=ðnþ 1Þ for a A Mþ
n ðX ; f Þ �M 1

n ðX ; f Þ ([14]). The inequality
(4) reduces to our result. r

We put Mþ
n ðX ; f Þ ¼ fa1; a2; . . . ; aqg.

Proposition 3.2. Suppose that

Xq

j¼1

mnðaj; f Þ ¼ 2N � nþ 1:ð5Þ

Then,
(a)

Pq
j¼1 dnðaj; f Þ ¼ 2N � nþ 1.

(b) mnðaj ; f Þ ¼ dnðaj; f Þ ð1a ja qÞ.

Proof. (a) By Corollary 2.2(a), Theorem 1.A(II) and the assumption (5) we
obtain (a) immediately.

(b) This is a direct consequence of Corollary 2.2(a) for k ¼ n, the as-
sumption (5) and (a) of this proposition. r

Proposition 3.3. Suppose that
(i) N > nb 1;
(ii)

Pq
j¼1 mnðaj ; f Þ ¼ 2N � nþ 1.

Then, there is a subset E of ð0;yÞ such that for any aj A Mþ
n ðX ; f Þ�

M 1
n ðX ; f Þ and for any sequence frngyn¼1 H ð0;yÞ � E tending to þy, it holds that
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lim inf
n!y

Nðrn; aj; f Þ
Tðrn; f Þ

¼ 1;

where E is empty when rð f Þ < y and E is of finite linear measure when
rð f Þ ¼ y.

Proof. By the assumption (ii) we have from Proposition 3.2(b) that

dnðaj ; f Þ ¼ mnðaj; f Þ ð j ¼ 1; . . . ; qÞ:
Let aj A Mþ

n ðX ; f Þ �M 1
n ðX ; f Þ. Then, by Corollary 2.1 and Lemma 2.10

for k ¼ n we have that

n

maxðmj; nÞ
¼ lim sup

r!y

Nnðr; aj; f Þ
Tðr; f Þ ¼ lim

n!y

Nnðrn; aj; f Þ
Tðrn; f Þ

a lim inf
n!y

n

maxðmj; nÞ
Nðrn; aj; f Þ
Tðrn; f Þ

a
n

maxðmj; nÞ
;

where mj is the multilicitiy of aj with respect to f . This inequality implies that
this proposition holds. r

Proposition 3.4. Suppose that
(i) N > nb 1;
(ii)

Pq
j¼1 mnðaj ; f Þ ¼ 2N � nþ 1.

Then, we have the inequality

nþ 1 ¼
Xq

j¼1

oð jÞdnðaj; f Þa lim sup
r!y; r BE

Nðr; 1=WÞ
Tðr; f Þ þ

X
f j j a j AM 1

n ðX ; f Þg
oð jÞ;

where E is as in Proposition 3.3.

Proof. First we note that

lim sup
r!y; r BE

Nðr; 1=WÞ
Tðr; f Þ a nþ 1

by Lemma 2.11.
By the assumption (ii) we have from Proposition 3.2(a) that

Xq

j¼1

dnðaj ; f Þ ¼ 2N � nþ 1;

and so from Lemma 2.8 we have that

nþ 1 ¼
Xq

j¼1

oð jÞdnðaj ; f Þ:ð6Þ
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Next, from Lemma 2.6, we have the inequality

Xq

j¼1

oð jÞNðr; aj; f ÞaN r;
1

W

� �
þ
Xq

j¼1

oð jÞNnðr; aj; f Þ ðrb 1Þ:ð7Þ

Let frngyn¼1 H ð0;yÞ � E be any sequence tending to þy. Then from (7)
we obtain the inequality

Xq

j¼1

oð jÞ lim inf
n!y

Nðrn; aj ; f Þ
Tðrn; f Þ

a lim inf
n!y

Nðrn; 1=WÞ
Tðrn; f Þ

þ
Xq

j¼1

oð jÞ lim sup
n!y

Nnðrn; aj; f Þ
Tðrn; f Þ

a lim sup
r!y; r BE

Nðr; 1=WÞ
Tðr; f Þ þ

Xq

j¼1

oð jÞ lim sup
r!y

Nnðr; aj; f Þ
Tðr; f Þ ;

from which we obtain our proposition by Proposition 3.3 and (6) since
Nðr; aj ; f Þ ¼ 0 for aj A M 1

n ðX ; f Þ. r

From now on throughout this section we suppose that N > nb 2. In [12]
we proved that

‘‘If aM 1
n ðX ; f ÞbN þ 1, the mn-defect relation is not extremal:

X
a AMþ

n ðX ; f Þ
mnða; f Þ < 2N � nþ 1:’’

One of the main purposes of this section is to give a generalization of this
result. We put

Dþ
n ðX ; f Þ ¼ fa A X j dnða; f Þ > 0g and D1

nðX ; f Þ ¼ fa A X j dnða; f Þ ¼ 1g:

Theorem 3.1. If there exists one ao A X �M 1
n ðX ; f Þ satisfying dðao; f Þ > 0,

then the mn-defect relation for f over X is not extremal.

Proof. By Corollary 2.2(a) for k ¼ n we have that

Mþ
n ðX ; f ÞHDþ

n ðX ; f Þ; ao A Dþ
n ðX ; f Þ and mnðao; f Þ < dnðao; f Þ;

from which and by Theorem 1.A(II) we obtain the inequality

X
a AMþ

n ðX ; f Þ
mnða; f Þ <

X
a ADþ

n ðX ; f Þ
dnða; f Þa 2N � nþ 1: r

For any subset A of X , we denote by dimðAÞ the dimension of the vector
space spanned by elements of A.

Theorem 3.2. Suppose that
(i) N > nb 2;
(ii)

Pq
j¼1 mnðaj ; f Þ ¼ 2N � nþ 1.

123on holomorphic curves extremal for the mn-defect relation



Then, we have that

aM 1
n ðX ; f Þa ð2N � nþ 1Þ=2 and dimðM 1

n ðX ; f ÞÞa ðnþ 1Þ=2:

Proof. By Theorem 1.D, it holds that dimðM 1
n ðX ; f ÞÞa n and

aM 1
n ðX ; f ÞaN, which implies that q > 2N � nþ 1 by the assumption (ii). As

there is nothing to prove when dimðM 1
n ðX ; f ÞÞ ¼ 0, we suppose that

dimðM 1
n ðX ; f ÞÞb 1. By Proposition 3.4 we have the inequality

nþ 1 ¼
Xq

j¼1

oð jÞdnðaj; f Þa lim sup
r!y; r BE

Nðr; 1=WÞ
Tðr; f Þ þ

X
f j j mnða j ; f Þ¼1g

oð jÞ;ð8Þ

where E is as in Proposition 3-3.
In Lemma 2.11, let u1; . . . ; unþ1 be linearly independent nþ 1 vectors in C nþ1

such that u1; . . . ; up are in M 1
n ðX ; f Þ, where p ¼ dimðM 1

n ðX ; f ÞÞ. Then, we have

lim sup
r!y; r BE

Nðr; 1=WÞ
Tðr; f Þ a nþ 1� dimðM 1

n ðX ; f ÞÞ;ð9Þ

since dðuj; f Þ ¼ 1 for uj A M 1
n ðX ; f Þ.

From (8), (9) and from Lemma 2.2(d) we obtain

dimðM 1
n ðX ; f ÞÞ ¼

X
a j AM 1

n ðX ; f Þ
oð jÞð10Þ

as aM 1
n ðX ; f ÞaN. Further, by Proposition 3.2 we have the equality

Xq

j¼1

dnðaj; f Þ ¼ 2N � nþ 1ð11Þ

and the relation dnðaj ; f Þ ¼ mnðaj; f Þ ð j ¼ 1; . . . ; qÞ, so that we have

Dþ
n ðX ; f Þ ¼ Mþ

n ðX ; f Þ and D1
nðX ; f Þ ¼ M 1

n ðX ; f Þ:ð12Þ
From (6), (10) and (12) we obtain the equality

nþ 1� dimðD1
nðX ; f ÞÞ ¼

X
a j AD

þ
n ðX ; f Þ�D1

n ðX ; f Þ
oð jÞdnðaj; f Þ;

which is equal to

1

y
f2N � nþ 1�aD1

nðX ; f Þg

by (11) since yoð jÞ ¼ 1 for j satisfying aj B D1
nðX ; f Þ by Lemma 2.8. From this

relation we obtain that

y ¼ 2N � nþ 1�aD1
nðX ; f Þ

nþ 1� dimðD1
nðX ; f ÞÞ :
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Note that dimðD1
nðX ; f ÞÞ ¼ dimðM 1

n ðX ; f ÞÞa n. As ya ð2N � nþ 1Þ=ðnþ 1Þ
by Lemma 2.2(c), we obtain the inequality

aD1
nðX ; f Þ

dimðD1
nðX ; f ÞÞ b

2N � nþ 1

nþ 1
:ð13Þ

As aD1
nðX ; f Þ ¼aM 1

n ðX ; f ÞaN, we have the inequality

aD1
nðX ; f Þ � dimðD1

nðX ; f ÞÞaN � nð14Þ

by Lemma 2.1. From (13) and (14) we obtain that

aM 1
n ðX ; f Þ ¼aD1

nðX ; f Þa ð2N � nþ 1Þ=2
and

dimðM 1
n ðX ; f ÞÞ ¼ dimðD1

nðX ; f ÞÞa ðnþ 1Þ=2;
which are to be proved. r

Corollary 3.1. Suppose that N > nb 2. If either aM 1
n ðX ; f Þ >

ð2N � nþ 1Þ=2 or dimðM 1
n ðX ; f ÞÞ > ðnþ 1Þ=2 holds, then the mn-defect relation

for f over X is not extremal.

Remark 3.1. When n ¼ 1, Theorem 3.2 or Corollary 3.1 does not hold as
Example 6.2 shows.

4. Extremal case of the mn-defect relation I: n ¼ 2m

Let f , X , dnða; f Þ, mnða; f Þ, etc. be as in Section 1, 2 or 3.

Lemma 4.1 (see [10, Theorem 5.1 and its proof ]). Suppose that
(i) N > n ¼ 2m ðm A NÞ;
(ii) there exist vectors a1; . . . ; aq A X ðq < yÞ satisfying

Xq

j¼1

dnðaj ; f Þ ¼ 2N � nþ 1:

Then, there exists a non-empty subset P0 of Q ¼ f1; 2; . . . ; qg satisfying
(a) dðP0Þ=aP0 < ðnþ 1Þ=ð2N � nþ 1Þ;
(b) dnðaj; f Þ ¼ 1 ð j A P0Þ.
In particular,

af j A Q j dnðaj; f Þ ¼ 1g > ð2N � nþ 1Þ=ðnþ 1Þ:
Let q ¼aMþ

n ðX ; f Þ and Mþ
n ðX ; f Þ ¼ fa1; a2; . . . ; aqg. Then by (3.a)

qa ðnþ 1Þð2N � nþ 1Þ.

Theorem 4.1. Suppose that
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(i) N > n ¼ 2m ðm A NÞ;
(ii)

Pq
j¼1 mnðaj ; f Þ ¼ 2N � nþ 1.

Then, there exists a non-empty subset P0 of Q ¼ f1; 2; . . . ; qg satisfying
(a) dðP0Þ=aP0 < ðnþ 1Þ=ð2N � nþ 1Þ;
(b) mnðaj ; f Þ ¼ 1 ð j A P0Þ.
In particular,

af j A Q j mnðaj; f Þ ¼ 1g > ð2N � nþ 1Þ=ðnþ 1Þ:

Proof. We note that from (ii) and Theorem 1.D, the number q must satisfy
the inequality 2N � nþ 1 < qa ðnþ 1Þð2N � nþ 1Þ.

From Proposition 3.2(a), Lemma 4.1 and Proposition 3.2(b) we obtain this
theorem. r

Note 4.1. Let P0 be the subset of Q given in Theorem 4.1. Then, there are
at least two vectors a and b in faj j j A P0g satisfying a ¼ cb ðc0 0Þ.

Proof. From the inequality

aP0 � dðP0Þ >
2N � nþ 1

nþ 1
� 1

� �
dðP0Þ ¼

2ðN � nÞ
nþ 1

dðP0Þ > 0;

we have that aP0 b dðP0Þ þ 1.
(a) When dðP0Þ ¼ 1, our conclusion is trivial.
(b) When dðP0Þb 2. We suppose that b1; . . . ; bdðP0Þ are linearly inde-

pendent vectors belonging to faj j j A P0g. Then, any vector a A faj j j A P0g�
fb1; . . . ; bdðP0Þg can be represented by b1; . . . ; bdðP0Þ as a linear combination over
C :

a ¼ c1b1 þ � � � þ cdðP0ÞbdðP0Þ:

From this relation, we obtain

ða; f Þ ¼
XdðP0Þ

n¼1

cnðbn; f Þ:ð15Þ

As a; b1; . . . ; bdðP0Þ A M 1
n ðX ; f Þ, from (15) we obtain that there is n0

ð1a n0 a dðP0ÞÞ such that

ða; f Þ ¼ cn0ðbn0 ; f Þ ðcn0 0 0Þ
by a Borel’s theorem (see [1, 1o, p. 19]). This relation reduces to a ¼ cn0bn0 since
f is linearly non-degenerate over C .

Corollary 4.1. Suppose that N > n ¼ 2m. If any two vectors in X are
linearly independent, then for any linearly non-degenerate and transcendental
holomorphic curve f from C into PnðC Þ, the mn-defect relation for f over X is not
extremal. r
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5. Extremal case of the mn-defect relation II: n ¼ 2m� 1

Let n be odd and f , X , dnða; f Þ, mnða; f Þ, etc. be as in Section 1, 2 or 3.
The purpose of this section is to give a result when the mn-defect relation is
extremal.

Lemma 5.1 ([13, Theorem 3.1]). Suppose that
(i) N > n ¼ 2m� 1 ðm A NÞ;
(ii) dnðaj; f Þ > 0 ð j ¼ 1; . . . ; q; q < yÞ and

Xq

j¼1

dnðaj ; f Þ ¼ 2N � nþ 1:

Then, for the set Q ¼ f1; . . . ; qg, either (I) or (II) given below holds:
(I) af j A Q j dnðaj; f Þ ¼ 1g > ð2N � nþ 1Þ=ðnþ 1Þ.
(II) q is divisible by N �mþ 1 and for p ¼ q=ðN �mþ 1Þ, there are mu-

tually disjoint subsets M1; . . . ;Mp of Q satisfying
(a) Q ¼ 6p

k¼1
Mk; (b) dðMkÞ ¼ m, aMk ¼ N �mþ 1 ð1a ka pÞ and

(c) any m elements of fa1; . . . ; aqg are linearly independent.

By using this lemma, we obtain the following result when the mn-defect
relation is extremal. Let q ¼aMþ

n ðX ; f Þ, then qa ðnþ 1Þð2N � nþ 1Þ by (3.a)
and we put Mþ

n ðX ; f Þ ¼ fa1; . . . ; aqg.

Theorem 5.1. Suppose that
(i) N > n ¼ 2m� 1 ðm A NÞ;
(ii)

Pq
j¼1 mnðaj ; f Þ ¼ 2N � nþ 1.

Then, for the set Q ¼ f1; . . . ; qg, either (I) or (II) given below holds:
(I) af j A Q j mnðaj ; f Þ ¼ 1g > ð2N � nþ 1Þ=ðnþ 1Þ.
(II) q is divisible by N �mþ 1 and for p ¼ q=ðN �mþ 1Þ, there are mu-

tually disjoint subsets M1; . . . ;Mp of Q satisfying
(a) Q ¼ 6p

k¼1
Mk; (b) dðMkÞ ¼ m, aMk ¼ N �mþ 1 ð1a ka pÞ and

(c) any m elements of fa1; . . . ; aqg are linearly independent.

Proof. By the assumptions (i), (ii) and Proposition 3.2 we can apply Lemma
5.1 to this case to obtain the result immediately. r

Remark 5.1. The case (II) occurs. We shall give an example for (II) of
this theorem when m ¼ 1 in Section 6.

6. Example

In this section we shall give some examples of holomorphic curves.

Example 6.1. There exists a transcendental holomorphic curve f from C
into PnðC Þ and a subset X of C nþ1 � f0g in N-subgeneral position whose
mk-defect relation over X is divergent when 1a ka n� 1, where N > nb 2.
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Proof. We apply the method used in [5]. Let h1 and h2 be entire functions
without common zeros such that the meromorphic function h ¼ h1=h2 is tran-
scendental. We put

fjþ1 ¼ nCjh
n�j
1 h

j
2 ð j ¼ 0; . . . ; nÞ:

Then, (a) f1; . . . ; fnþ1 are entire functions without common zeros.
(b) f1; . . . ; fnþ1 are linearly independent over C .
(c) For the curve f ¼ ½ f1; . . . ; fnþ1�, we have the relation Tðr; f Þ ¼ nTðr; hÞþ

Oð1Þ, so that f is transcendental.
For e1 ¼ ð1; 0; . . . ; 0Þ A C nþ1, let

X0 ¼ fðan; an�1; . . . ; a; 1Þ j a A CgU fe1g
and

X ¼ X0 U fne1 j n ¼ 2; . . . ;N � nþ 1g:
Then, (d) X0 is in general position and X is in N-subgeneral position.
Here, we prove (a), (b), (c) and (d) briefly.
(a) As h1 and h2 have no common zeros, hn

1 and hn
2 have no common zeros,

so that f1; . . . ; fnþ1 are entire functions without common zeros.
(b) Let a1 f1 þ a2 f2 þ � � � þ anþ1 fnþ1 ¼ 0. Then, we have

hn
2 ða1hn þ a2nC1h

n�1 þ � � � þ annCn�1hþ anþ1Þ ¼ 0:ð16Þ
As h is transcendental and meromorphic, hn; . . . ; h; 1 are linearly independent

over C , so that from (16)

a1 ¼ a2nC1 ¼ � � � ¼ annCn�1 ¼ anþ1 ¼ 0;

namely a1 ¼ a2 ¼ � � � ¼ an ¼ anþ1 ¼ 0. This means that f1; . . . ; fnþ1 are linearly
independent over C .

(c) By using the following inequality for a positive constant K

maxfjh1ðzÞjn; jh2ðzÞjngaUðzÞ ¼ max
1ajanþ1

j fjðzÞj

¼ max
0ajan

nCjjh1ðzÞjn�jjh2ðzÞj j

aK maxfjh1ðzÞjn; jh2ðzÞjng
we have the relation

Tðr; f Þ ¼ 1

2p

ð2p

0

log UðreiyÞ dyþOð1Þ

¼ 1

2p

ð2p

0

log maxfjh1ðreiyÞjn; jh2ðreiyÞjng dyþOð1Þ

¼ n

2p

ð2p

0

log maxfjh1ðreiyÞj; jh2ðreiyÞjg dyþOð1Þ

¼ nTðr; hÞ þOð1Þ:
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(d) As any nþ 1 vectors in X0 are linearly independent, X0 is in general
position.

Let A be any subset of X containing N þ 1 elements. As afAVX0gb
nþ 1, the set A contains nþ 1 linearly independent vectors. The holo-
morphic curve f , X0 and X satisfy Example 6-1. In fact, we put aðaÞ ¼
ðan; an�1; . . . ; a; 1Þ ða A C Þ. Then, for any a A C the multiplicity of aðaÞ with
respect to f is at least n since

ðaðaÞ; f Þ ¼ anf1 þ an�1f2 þ � � � þ afn þ fnþ1

¼ ðah1Þn þ nC1ðah1Þn�1
h2 þ � � � þ nCn�1ðah1Þhn�1

2 þ hn
2 ¼ ðah1 þ h2Þn:

Let mðaÞ be the multiplicity of aðaÞ with respect to f , then, mðaÞb n and we
have that for 1a ka n� 1

mkðaðaÞ; f Þ ¼ 1� k

mðaÞ

� �þ
b 1� k

n
b

1

n
ð17Þ

for any a A C . By (17) we have that for 1a ka n� 1

y ¼
X
a AC

mkðaðaÞ; f Þa
X
a AX0

mkða; f Þa
X
a AX

mkða; f Þ:

Example 6.2. Let f ¼ ½ez; 1� and X ¼ fnða; 1Þ j a A C ; n ¼ 1; . . . ;NgU
fnð1; 0Þ j n ¼ 1; . . . ;Ng. Then, f is transcendental from C into P1ðC Þ and X is in
N-subgeneral position, where N > 1. In this case, n ¼ 1. We put an ¼ nð1; 0Þ
and bn ¼ nð0; 1Þ for n ¼ 1; . . . ;N. Then, we obtain that for n ¼ 1; . . . ;N

m1ðan; f Þ ¼ m1ðbn; f Þ ¼ 1;

and so

X
a AX

m1ða; f Þ ¼
XN
n¼1

fm1ðan; f Þ þ m1ðbn; f Þg ¼ 2N: r

Example 6.3. Let f ¼ ½cos z; 1� and X ¼ fnða; 1Þ j a A C ; n ¼ 1; . . . ;NgU
fnð1; 0Þ j n ¼ 1; . . . ;Ng. Then, f is transcendental from C into P1ðC Þ and X is in
N-subgeneral position, where N > 1. In this case, n ¼ 1. We put for n ¼ 1; . . . ;N

an ¼ nð1; 1Þ; bn ¼ nð�1; 1Þ and cn ¼ nð0; 1Þ
Then, we obtain that for n ¼ 1; . . . ;N

m1ðan; f Þ ¼ m1ðbn; f Þ ¼ 1=2 and m1ðcn; f Þ ¼ 1;

and so

X
a AX

m1ða; f Þ ¼
XN
n¼1

fm1ðan; f Þ þ m1ðbn; f Þ þ m1ðcn; f Þg ¼ 2N: r
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