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To the memory of the late Professor Kiyoshi Noshiro on the occasion of the
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1. Introduction

Let /' = [fi,.-., fatr1] be a holomorphic curve from C into the n-dimensional
complex projective space P"(C) with a reduced representation
(flv B n+1) 1 C— C'Hl - {0}7

where n is a positive integer. We use the following notations:
1@l = (AP + -+ ()}
and for a vector a = (ay,...,a,4) € C"™' — {0}
lall = (e + -+ lana D', (@ f) = arfi 4+ vt fun,
(a,/(2)) = a1fi(z) + -+ + ans1 fus1 (2).-

The characteristic function of f is defined as follows (see [14]):

2n
T, f) =55 || ogllr e a0 ~ logl (O]

It is known ([1]) that for U(z) = maxi<j<+1|fj(2)]

1 2n )

(1) T(r, f) = 2—J log U(re™®) do+ O(1).
Jo

We suppose throughout the paper that f is transcendental; that is to say,
r—o  logr

and that f is linearly non-degenerate over C; namely, fi,..., f,+1 are linearly

independent over C. It is well-known that f is linearly non-degenerate over C if
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112 NOBUSHIGE TODA

and only if the Wronskian W = W (fi,..., fur1) of fi,..., fus1 is not identically
equal to zero.
We call the quantity:

N log T'(r, f)
p(f)—llrlisolc}pilogr

the order of f.

For meromorphic functions in the complex plane we use the standard
notation of the Nevanlinna theory of meromorphic functions ([4, 7]).

For ae C"™!' — {0}, we write

1 (> a re'? 1
m(r,a, )= EL log 7”("','}];}(@[.0);" d0, N(r,a,f)= N(r7 m)
We then have the First Fundamental Theorem ([14, p. 76]):
T(r,f)=m(ra )+ N(r,a, f)+ O(1).
We call the quantity
ola, f)=1—limsup N(r,a, f)/T(r,[f) = liﬂglf m(r,a, )/ T(r, f)

r—0o0

the deficiency (or defect) of a with respect to f. We have 0 <d(a,f) < 1.
Let v(c) be the order of zero of (a, f(z)) at z = ¢ and for a positive integer k

nk(r,a,f) = Z min{v(c),k}.
|L’\Sr
We put for r >0
e

; dt+ni(0,a, ) logr
0

and put
5k<a7f) =1- limsup Nk(r,a,f)/T(r,f).

r—0o0

Then, it is easy to see that
(l.a) the sequemce {J(a, f)};2, is decreasing;
(1.b) for any k,

0<d(a,f)<ol(a f) <l
We denote by S(r, f) the quantity satisfying
S f) {oaog ) (r — ) if p(f) < o
O(log T(r, f)+1logr) (r— oo, r¢ E) if p(f) = o0,
where E is a subset of (0,00) of finite linear measure.
Let X be any subset of C"!— {0} in N-subgeneral position satisfying

2N —n+2 < #X < oo, where N is an integer satisfying N > n. We say that X
is in general position when X is in n-subgeneral position.
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Cartan ([1], N =n) and Nochka ([8], N > n) gave the following

THEOREM 1.A (see [3, Corollary 3.3.9]). For any q elements a; (j=1,...,q)
of X 2N —n+1<g < ), we have the following inequalities:

(1) (g 2N +n—DT( 1) < X0, Ny (v, /) + S(r, /):

(I1) (the truncated defect relation) qu:lén(a_/,f) <2N-—-n+1.

Let @ be any vector in C""' — {0}. We say that

“a has multiplicity m if (a, /) has at least one zero and all the zeros of the
function (a, f(z)) have multiplicity at least m, while at least one zero has
multiplicity m.”

When (a, f) has no zero, we set m = oo.

Then, as a corollary of Theorem 1.A(II), Cartan ([1], N =n) and Nochka
(8], N > n) gave the following theorem:

THEOREM 1.B. For any ai,...,a, € X, let a; have multiplicity m;.  Then,
q
Z(l —i) <ON —n+1,
" mj
J=1 J

where 2N —n+1 < g < oo (see [3, Theorem 3.3.15]).

As the numbers “1 —n/m;” are not always non-negative in this theorem, we
gave a new defect in [12, Definition 4.1] (see also [6, p. 171]). More generally we
give the following

DErFINITION 1.1. For ae C™' — {0} with multiplicity m and for a positive
integer k we put

k\© k
ﬂk(avf):(l_a) Zl—m,

where a™ = max(a,0) for any real number a.

We call w(a, f) the p-defect of a with respect to f. It is easy to see that
the sequence {zy(a, f)};—, is decreasing. Later we shall see that for any a e X
and for any positive integer k

ﬂk(a,f) < 5k(aaf)
(Corollary 2.2).
From Theorem 1.B we have the following defect relation for w,(a, f):

THEOREM 1.C (see [6, Corollary (3.B.46)]). For any ai,...,a,€ X (q < ),
we have the following inequality:

q
Zlun(ajvf) < 2N — n—+ L.
J=1



114 NOBUSHIGE TODA

We call this inequality the u,-defect relation for f over X. In Section 6 we
shall give an example of holomorphic curve f from C into P"(C) and a subset X
of C"™' — {0} in N-subgeneral position such that if k < n then

Z 1y (a

acX

In [12] we gave some results on u,(a, f) when #{ae X |u,(a,f)=1} is
large. For example,

THEOREM 1.D. Suppose that N >n>2. If there exist n+ 1 linearly in-

dependent vectors ay, . ..,a,.1 € X satisfying u,(a;, f)=1 (j=1,...,n+1), then
(I) (12, Theorem 4.2]) For any a€ X satisfying u,(a,f) >0, w,(a,f) =1
(I) ([12, Theorem 4.3]) >, .y #,(a,f) < N+ N/n.

Remark 1.1. N+ N/n<2N —n+1 when N >n > 2.

We are interested in a holomorphic curve f for which the u,-defect relation
is extremal.

The purpose of this paper is to give several results on the u,-defect relation
for f and on u,(a, f) when the u,-defect relation is extremal.

2. Preliminaries and lemma

Let f =[fi,..., fat1], X, etc. be as in Section 1 and ¢ an integer satisfying
2N—-n+1<g<o. We put 0={1,2,...,q}. Let {a;|je O} be a subset
of X. For a non-empty subset P of Q, we denote by V' (P) the vector space
spanned by {a;|je P} and by d(P) the dimension of V(P). We put

O={PcQ|0<#P<N+1}.
Lemma 2.1 (see [3, (2.4.3), p. 68]). If Pe O, then #P —d(P) < N —n.

For {a;|je O}, let w: O — (0,1] be the Nochka weight function and ¢ the
reciprocal number of the Nochka constant given in [3, p. 72]. Then they have
the following properties:

LemmA 2.2 (see [3, Theorem 2.4.11], [2]).
(@) 0 <w(j)0 <1 for alljeQ

(0) g —2N 0~ = 0(5, () ~n—1);
(c) N/n <0< (2N—n+1)/(n+l);

(d) If Pe, then 3, p(j) <d(P).

((%): see [11, Note 2.1]).

DerNITION 2.1 ([9, Definition 1]). We put
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Pel

A=min d(P)/#P and o¢:Q — (0,1] such that o(j) =41 (j€ Q).
Then, 4 and ¢ have the following properties.

Lemma 2.3 ([9, Proposition 2]). (a) 1I/(N—n+1)<i<(m+1)/(N+1);
(b) For any Pe O, 3, po(j) < d(P).

Remark 2.1. (a) If A< (@m+1)/2N —n+1), then A=minic;<, o(j),
o(j) = 4 and G (j ) <1 (je Py) for an element Py € O satisfying A =d(Py)/#Py.
O If A=(n+1)/2N—-n+1), then w(j)=1/0=m+1)/2N —n+1)
G=1,...,9).
(See [11, Remark 2].)

Let /& be an entire function. For a € C, let v(a,h) be the order of zero of
h(z) at z=a:

h(z) = ci(z —a)"“? 4 er(z —a)" @ 4 (¢ #0).
For a; (je€ Q) we put F; = (a;, f) (je Q). Then, we have the following
Lemma 2.4 ([3, (3.2.14), p. 102]).
q
Zw(j)(v(a,F,) —n)" <v(a, W).

j=1
From this inequality we have the following

LEMMA 2.5. For ay,...,a;€ X,

1) w(n(r,aj, f) = na(r,a;, )} < n(r, 1/ W).

(1) Z, lw( Nn(r.aj, f) = ma(r,a;, 1)) = (0,4, /) — n,(0,4;, 1))}
< n(r,1/W)—n(0,1/W).

Proof. We note that

Z( v(a, F)) —n)" Z< —min{v(a, F;),n})

la|<r

)~ Y min{(a, F;),n}

|a\5r la|<r
( ajaf) nn(r7aj7f);
> vla, W) =n(r, 1/ W)

la|<r

and that
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Y MaEF)=n'= 3" (va F) - min{v(a,E),n})

0<|a|<r 0<|a|<r
= Z v(a, Fj) — Z min{v(a, F;),n}
0<]a|<r 0<|a|<r

= n(rva./vf) - nn(r’ a_,’,f) - (H(O,a,‘,f) - nn(ova_/?f))§
> va, W) =n(r,1/W) —n(0,1/W).

0<|a|<r

By using these equalities we obtain this lemma from Lemma 2.4. O

Lemma 2.6 (see [3, p. 105]). For ai,...,a,€ X, we have the inequality

> o)V )~ Milrar 1) < N (1) (=)

J=1

Proof. This inequality is essentially the same one as that in [3, p. 105].
But there is a little difference between them for a small term. To make sure of it
we give a proof of our lemma. By definition

Jrn(t,aj,f) —n(0,a;, f)
0

t

N(r,a;, f) =
J’nn(t, a;, f) —ny(0,4;, )
0

t

dt+n(0,a;, f) log r;

Nu(r,a;, f) = dt +n,(0,a;, ) log r;

N(}", I/W) _ J;n<t7 1/W> ;I’I(O, I/W)

+n(0,1/W) log r.

For simplicity we put

q
Zw {I’l r, aj, ) nn(raajvf)}'
Then, we have

Za) WHN(r,aj, f) — Nu(r,a;, f )}—J‘Mdl‘%—nm)logr:(*).

Put
n(0,1/W) —n(0) = ¢,,

which is non-negative by Lemma 2.5(I). Then, by Lemma 2.5(1I)
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r J—
(%) SJ n(t,1/W) —n(0,1/W)
0 t
=N 1/W)—c,logr<N(r,1/W) (r=1).
We have this lemma. ]

dt+n(0,1/W)logr—c,logr

Lemma 2.7 ([3, Theorem 3.3.8]). For ay,...,a,€ X, we have the inequality
q
Zw w(a;, ) <n+1.

Lemma 2.8 ([10, Lemma 2.4]). Suppose that N > n. For ay,...,a,€ X the
maximal deficiency sum

9
> oula, f)=2N —n+1
i=1

.

holds if and only if the following two relations hold.
) (1= 00()))(1 = 0n(a, /) =0 (j=1,...,9);
2) YL o(j)on(a;, f) =n+1.

LemMa 2.9. Suppose that there are q elements a; (j=1,...,q) in X
(2N —n+1 < g < o) satisfying

q
2) S Gu(@ ) = 2N —n+ 1.
Then, there is a subset E of (0,00) such that for j=1,...,q
limsup Nn(raaj?f): lim Nl’l(raaﬁf)

r—o0 T(l"7 f) r—oo;r¢ E T(r, f) ’
where E is empty when p(f) < oo and E is of finite linear measure when

p(f) = .

Proof. (a) When p(f) < oo. Let j be any integer satisfying 1 < j<gq.
From Theorem 1.A and (2) we obtain the inequality

n(r aj7f) b N(}" ak7f)
— (2N —n+1) < liminf ——L-% 4 lim sup ———=~
( ) < limin 7(r f) k:;#] L T(r, f)

q
< limsup —— =~ rahf + Z lim sup Nulr,ax, /)
r— o0 k= lc#j r— 00 (V,f)
— (2N —n+1),

which reduces to our lemma.
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(b) When p(f) = oco. Let j be any integer satisfying 1 < j<g. From
Theorem 1.A and (2) there is a subset E of (0,00) of finite linear measure for
which we obtain the inequality

q
~(@N-n+1)< liminf “’ﬁf N Z limsup No(r:./)
r—o0;r¢ E k=T hosj T r¢E (V f)

q
lim sup Nl ra,, + Z lim sup Nulr,ac, /)

<
r—oo;r¢ E T( k=1;k )13 ir¢ E T( f)
Nu(r,a;, f) ! No(r, ax, f)
< limsup + limsup ————==~
L (NP Dl (G
—(2N—-n+1)
and for j=1,...,¢, we have the inequality
(V al7f) . Nn(raajvf) N(I’ a/af)
liminf ————=— < limsup ——=— < limsup ——+—~
e T(rf) oy T, f) MU )
apriori. From these inequalities we obtain our lemma. O

COROLLARY 2.1. Under the same assumption as in Lemma 2.9, for any
j=1,...,q and for any sequence {r,} -, < (0,00) — E tending to +o0

lim sup Nulr.a;, /) = lim Nolr, 4, /) )
r—oo T(}",f) V= T(}"V,f)

where E is as in Lemma 2.9.

LemMA 2.10.  Let k be a positive integer. For a vector a in C"™' — {0} of
multiplicity m with respect to [ and for r > 1, we have the inequality

N(r,a, f)
N(r,a, f) < k

max(m, k)

Nk(r,a,f) < m

T(r,f)+ 0O(1).

Proof. As this lemma is trivial when m = o0 or N(r,a, f) = 0, we have only
to prove the following inequality when m < 0.

ko
max(m, k)

(3) Ni(rya, f) < N(@r,a, f) (r=1).

(a) When k >m. (3) is trivial.
(b) When k <m. For r>1, we have the inequality
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Ni(r,a, f) < kN(r,a, f) :%N(r,a,f)
kN(r,a,f) Kk - k
SmN(r,a,f)—EN(r,a,f)—WN(nmf). O

COROLLARY 2.2. Let k be a positive integer and let a be a vector in
C"™™' — {0} whose multiplicity with respect to f is m. Then,
(a) We have the inequality

k 5(”7 f)
1ZMmﬂzl—ag@;¢vﬁwJD2Lan.

(b) If w(a,f) = Sula, /), then m= o or 3(a,f) = 0.

Proof. (a) From Lemma 2.10 we obtain this proposition immediately.
(b) Suppose that m < co. By the assumption, we obtain from (a) of this
corollary that

- 1 b)) = mlar)

max(m, k)
from which we obtain the equality

k

—9 =0.
max(m, k) (a,1)
As m < oo, we obtain that d(a, /) = 0. O
Lemma 2.11. Let uy, ... u, be linearly independent n+ 1 vectors in cl

Then, there is a subset E of (0,00) for which it holds that

, N(r, 1/ W) ot ,
limsup —————= <n+1-» ouw,f),
r—oo,r¢ E T(r, f) /:Zl ! )

where E is empty when p(f) < oo and E is of finite linear measure when

p(f) = .

Proof. We put G;= (w;, f) (j=1,...,n+1). Then, Gi,...,G,y are lin-
early independent over C and we have the relation

W=W(_fi,..., fur1) =cW(G1,...,Gy1) (c #0, constant),

where W(fi,..., fus1) is the Wronskian of fi,..., fii1.
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1
N(r, 1/W) 2_J log| W (re)| do
1 ‘
EJ 10g|W Gl,...,Gn+1)(V€l0)| d0—|—10g|c|
+
Z ru/’ (}" f)a
since
log| W (G, G 1)|:§flog\G-|+10gM
gy Uny = J Gl...G’1+1
ntl
Gla"'7Gn+1)
< log|G;| + lo +<—
_/2:1: glG;l g G- Groy
and
L[ L W(GL,...,Gu1) .
-— 1 +7—’n+ l(') dHZS
ZRJO 08 Gl"'Gn-H (7’6 ) (V7f)

as in [1, pp. 14-15]. Therefore, there is a subset E of (0,c0) for which

. NG 1/ W) _ A
limsup —————= o(u;, f
r—o0,r¢ E T(V, f) Z !

where E is empty when p(f) < oo and E is of finite linear measure when

p(f) = .

3. On the y, -defect relation

Let f, X, etc. be as in Section 1 or 2. In this section we shall consider the
u,-defect relation for f over X.

ProposiTION 3.1.  For any vectors ai,...,a,€ X 2N —n+1<q < o) we
have the inequality

q
Zw NDita(aj, ) <n+1.

Proof. As 0 <u,(a,f)<d,(a,f) <1 for any vector a in C""' —{0} by
Corollary 2.2(a) and w(j) > 0, this proposition is a direct consequence of Lemma

2.7. O
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We put for any positive integer k&

M{(X,f)={aeX|plaf)>0} and My(X,f)={aeX|ula, f)=1}.

It is known that
(3.a) ([12, Theorem 4.1]) #M,(X,f) < (n+1)2N —n+1);
(3.b) ([12, Proposition 4.2)) #M}(X,f) <N+ N/n.

Note 3.1. As an improvement of (3.a), we have the inequality
#MT (X, f) +n#EM) (X, f) < (n+1)2N —n+1).
Proof. From the p,-defect relation (Theorem 1.C) we have the inequality

Z ﬂn(a7f): Z ll'lﬂ(a7.](‘)+ Z ﬂﬂ(a7f)

aeM;(X.f) ae M} (X.f)-M}(X.f) ae M, (X.f)

= > (@, f) + #MYX, f) <2N —n+ 1,
ae M, (X,[)-M}(X.f)

from which we obtain the inequality

@) #M (X )= My(X[)/(n+ 1)+ #M, (X, f) <2N —n+1
since w,(a, f)>1/(n+1) for ae M} (X, f)— M!(X, f) ((14]). The inequality
(4) reduces to our result. O

We put M, (X, f) ={ai,a,...,a,}.

ProrosiTION 3.2.  Suppose that

q
(5) Zﬂn(aj,f):ZN—n+1.
Jj=1

Then,
(@) Y0 0ulaj, /) =2N —n+1.
(b) :un(aj’f> :511(aj7f) (1 <j< (])

Proof. (a) By Corollary 2.2(a), Theorem 1.A(Il) and the assumption (5) we
obtain (a) immediately.

(b) This is a direct consequence of Corollary 2.2(a) for k =n, the as-
sumption (5) and (a) of this proposition. O

ProrosiTION 3.3.  Suppose that

(i) N>n=1;

(i) S, (@, f) = 2N — it 1.

Then, there is a subset E of (0,00) such that for any aje M (X, f)—
MMNX, f) and for any sequence {r,},", = (0,0) — E tending to +c0, it holds that
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. N(r.a;, f)
liminf — 22272
= T(ry, f)

where E is empty when p(f) < oo and E is of finite linear measure when

p(f) = .

Proof. By the assumption (ii) we have from Proposition 3.2(b) that
on(aj, ) = w(a;, /) (G=1,-...9)

:1’

Let aj e M7 (X, f) — M) (X, f). Then, by Corollary 2.1 and Lemma 2.10
for k =n we have that
n hmsup N (r ajaf) lim Nn(rwajaf)

max(m;,n) o T(r,f) T T(n )

< liminf — " NUwar/) o n
v—oo max(m;,n)  T(ry, f) max(mj, n)

where m; is the multilicitiy of a; with respect to f. This inequality implies that
this proposition holds. O

ProposiTION 3.4.  Suppose that
i) N>n=>1;

(i) S0 0, (a, ) = 2N —n+ 1.
Then, we have the inequality

q
n+1:2w w(a;, f) < limsup NG 1/ W)

r—o0;r¢ E T( f) * w(]),

{jlaje M, (X./)}

where E is as in Proposition 3.3.

Proof. First we note that

lim sup NG /W)

7§n+1
r—oo;r¢ E T( f)

by Lemma 2.11.
By the assumption (ii) we have from Proposition 3.2(a) that

q
Zén (aj, f)=2N—n+1,
Jj=1

and so from Lemma 2.8 we have that

q
(6) n—l—l:Zw w(aj, f
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Next, from Lemma 2.6, we have the inequality
q
M el ) <N ()¢ > o(Nalraf) (=)
=1 =1

Let {r},~, = (0,00) — E be any sequence tending to +co. Then from (7)
we obtain the inequality

. N(ryai, ) . . N, W) , No(rva;, f)
E ) liminf — 2227 < liminf ————"—+ Y w(j) limsup —="-L2~
= v—x  T(r, f) = T(ry, f) ; () m Sup T f)
. N(r,1/W) N Nu(r,a;, f)
< limsup ————"+ > o(j) limsup —— =,
r—oo;r¢ E T(l", f) Z ( ) F—0o0 T(V7f)

=
from which we obtain our proposition by Proposition 3.3 and (6) since
N(r,a;, ) =0 for a;e M}(X, f). O

From now on throughout this section we suppose that N >n > 2. In [12]
we proved that
“If #MN (X, f) = N + 1, the w,-defect relation is not extremal:

Z ta, f)<2N—-n+1"
ae M, (X,f)

One of the main purposes of this section is to give a generalization of this
result. We put

Dy (X, f) ={aeX|o(a f) >0} and D,(X,f)={aeX|o(a f)=1}.
THEOREM 3.1.  If there exists one a, € X — MM X, f) satisfying é(a,, f') > 0,
then the u,-defect relation for f over X is not extremal.
Proof. By Corollary 2.2(a) for k =n we have that
M;(ny) < D;(X,f), a, € D;,L(Xaf) and  u,(a,, /) < ou(a, f),
from which and by Theorem 1.A(II) we obtain the inequality

Soomla )< > duaf) 2N —n+1. 0

ae M (X,f) aeD;} (X,f)

For any subset 4 of X, we denote by dim(A4) the dimension of the vector
space spanned by elements of A.

THEOREM 3.2. Suppose that
(i) N>n=>2;
(11) Z;I:I :un(ajvf) =2N-n+1.
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Then, we have that
#MN (X, f) < (2N —n+1)/2 and dim(M}(X,f)) < (n+1)/2.

Proof. By Theorem 1.D, it holds that dim(M!(X,f))<n and
#M!(X, f) < N, which implies that ¢ > 2N —n+ 1 by the assumption (ii). As
there is nothing to prove when dim(M!(X,f))=0, we suppose that
dim(M!(X,f)) = 1. By Proposition 3.4 we have the inequality

w(j))

r—oo;r¢ E T(r’ f) {Jla(a;. f)=1}

where E is as in Proposition 3-3.
In Lemma 2.11, let uy, ..., u,.; be linearly independent n + 1 vectors in C"*!
such that uy, ..., u, are in M!(X, f), where p = dim(M!(X, f)). Then, we have

9) S G )

since &(u;, f) =1 for uj e M!(X, f).
From (8), (9) and from Lemma 2.2(d) we obtain

6 nt1=Y o(a.f) < limsop 21T
j=1

<n+1—dim(M (X, f)),

(10) dim(M} (X, /) = > ()

aje M} (X, f)

as #M} (X, f) < N. Further, by Proposition 3.2 we have the equality

(11) > oulaj, f)=2N—n+1

J=1
and the relation J,(a;, f) = u,(a;, f) (j=1,...,q), so that we have
(12) Dy (X, f)=M[(X,f) and D,(X,f)=M,(X,[).
From (6), (10) and (12) we obtain the equality
n+1—dim(D,(X, f)) = > @(/)on(a; f),
a;e D (X,f)=Dy(X.f)

which is equal to
é{ZN —n+1-#DNX, 1)}

by (11) since Ow(j) = 1 for j satisfying a; ¢ D} (X, f) by Lemma 2.8. From this
relation we obtain that

2N —n+1—#D)X,f)

- n+1—dim(D}(X, f))
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Note that dim(D}(X,f)) =dim(M}!(X,f)) <n. As 0<(2N—-n+1)/(n+1)
by Lemma 2.2(c), we obtain the inequality

#Dy(X.f) _ 2N-—n+1

(13) dim(DM(X,f)) = n+1

As #DY(X, f) =#M}(X,f) < N, we have the inequality
(14) #D} (X, f) —dim(D}(X, f)) < N —n
by Lemma 2.1. From (13) and (14) we obtain that
#M) (X, f) =#D)(X,f) < (2N —n+1)/2
and
dim(M, (X, f)) = dim(D}(X. f)) < (n+1)/2,
which are to be proved. O

COROLLARY 3.1. Suppose that N >n>2 If either #MX,[)>
(2N —n+1)/2 or dim(M (X, f)) > (n+1)/2 holds, then the w,-defect relation
for [ over X is not extremal.

Remark 3.1. When n =1, Theorem 3.2 or Corollary 3.1 does not hold as
Example 6.2 shows.

4. Extremal case of the y, -defect relation I: n = 2m

Let f, X, ou(a, f), p,(a,f), etc. be as in Section 1, 2 or 3.

LemmA 4.1 (see [10, Theorem 5.1 and its proof]). Suppose that
(i) N>n=2m (meN),
(ii) there exist vectors ai,...,a;€ X (q < o) satisfying

on(aj, f)=2N—n+1.
j=1
Then, there exists a non-empty subset Py of Q ={1,2,...,q} satisfying
(@) d(Py)/#Py < (n+1)/2N —n+1);
(b) du(ay, /) =1 (j € Po).
In particular,
#{j € Qlou(aj, /) =1} > 2N —n+1)/(n+1).

Let q=#M/(X,f) and M/ (X,f)=A{ai,a,...,a,}. Then by (3.a)
g<(n+1)2N —n+1).

THEOREM 4.1.  Suppose that
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(i) N>n=2m (meN),
(i) 37 uy(ay, [) =2N —n+ 1.
Then, there exists a non-empty subset Py of Q ={1,2,...,q} satisfying
(@) d(Po)/#Py < (n+1)/2N —n+1);
(b) u,(a;, /) =1 (jePo).
In particular,
#{j€Qlu,(a;,[) =1} > (2N —n+1)/(n+1).

Proof. We note that from (ii) and Theorem 1.D, the number ¢ must satisfy
the inequality 2N —n+1<¢g< (n+1)2N —n+1).

From Proposition 3.2(a), Lemma 4.1 and Proposition 3.2(b) we obtain this
theorem. O

Note 4.1. Let Py be the subset of Q given in Theorem 4.1. Then, there are
at least two vectors @ and b in {a;|je€ Py} satisfying a =cb (c #0).

Proof. From the inequality

2Nn+l—l>d(P0) 2(N —n)

we have that #Py > d(Py) + 1.

(a) When d(Py) =1, our conclusion is trivial.

(b) When d(Py) >2. We suppose that bi,...,byp, are linearly inde-
pendent vectors belonging to {a;|je Po}. Then, any vector ae {a;|je Py} —
{b1,...,bgp,} can be represented by by,...,byp, as a linear combination over
C:

a=cihi + -+ cypybapy-

From this relation, we obtain

(15) (a’f) = Cv(b\uf)'

As a,bl,...7bd(p0)eM,}(X,f), from (15) we obtain that there is v
(I <vy <d(Py)) such that

(aa f) = Cy (bvovf) (cvo 7 O)

by a Borel’s theorem (see [1, 1°, p. 19]). This relation reduces to a = ¢,,b,, since
f is linearly non-degenerate over C.

COROLLARY 4.1. Suppose that N >n=2m. If any two vectors in X are
linearly independent, then for any linearly non-degenerate and transcendental
holomorphic curve f from C into P"(C), the u,-defect relation for f over X is not
extremal. O
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5. Extremal case of the u ,-defect relation II: n =2m — 1

Let n be odd and f, X, d,(a, f), u,(a,f), etc. be as in Section 1, 2 or 3.
The purpose of this section is to give a result when the p,-defect relation is
extremal.

Lemma 5.1 ([13, Theorem 3.1]). Suppose that
(i) N>n=2m—1 (meN),
(ii) On(aj, /) >0 (j=1,...,4;9 < ) and

on(aj, f)=2N —n+1.

J=1

Then, for the set Q ={1,...,q}, either (1) or (II) given below holds:

(1) #{€ 0o, (@, /) =1} > 2N —n+1)/(n+1).

(I1) g is divisible by N —m+ 1 and for p=q/(N —m+ 1), there are mu-
tually disjoint subsets M,..., M, of Q satisfying

(@) 0=, Mi; (b) d(My) =m, #Mx =N —-m+1 (1 <k <p) and

(c) any m elements of {a,...,a,} are linearly independent.

By using this lemma, we obtain the following result when the u,-defect
relation is extremal. Let ¢ = #M, (X, f), then ¢ < (n+ 1)(2N —n+1) by (3.a)
and we put M, (X, f)={ai,...,a,}.

THEOREM 5.1.  Suppose that

(i) N>n=2m—1 (meN);,

(11) Z]szl :un(aﬁf) =2N-—n + 1.

Then, for the set Q ={1,...,q}, either (1) or (II) given below holds:

(1) #{je Qlu(a, f) =1} > ON —n+1)/(n+1)

(I1) q is divisible by N —m+1 and for p=¢q/(N —m+1), there are mu-
tually disjoint subsets Mi,..., M, of Q satisfying

(@) 0=, Mi; (b) d(My) =m, #Mx=N—-m+1 (1 <k <p) and

(c) any m elements of {a,...,a,} are linearly independent.

Proof. By the assumptions (i), (ii) and Proposition 3.2 we can apply Lemma
5.1 to this case to obtain the result immediately. O

Remark 5.1. The case (II) occurs. We shall give an example for (II) of
this theorem when m =1 in Section 6.

6. Example

In this section we shall give some examples of holomorphic curves.

Example 6.1. There exists a transcendental holomorphic curve f from C
into P"(C) and a subset X of C""' —{0} in N-subgeneral position whose
Ly~defect relation over X is divergent when 1 <k <n—1, where N >n > 2.
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Proof. We apply the method used in [5]. Let /; and /i, be entire functions
without common zeros such that the meromorphic function /& = h/h, is tran-
scendental. We put

fiv1 =aGh 7R, (j=0,...,n).
Then, (a) fi,..., f.+1 are entire functions without common zeros.
(b) fi,..., fus1 are linearly independent over C.
(c) For the curve f = [fi,..., fat+1], we have the relation T(r, f) = nT(r,h) +
O(1), so that f is transcendental.
For e; = (1,0,...,0) e C""! let
Xo={(a",a"",...,a,1)|ae C}YU{e}

and
X=XoU{ve|v=2,...,N—n+1}.
Then, (d) Xy is in general position and X is in N-subgeneral position.
Here, we prove (a), (b), (c) and (d) briefly.
(a) As hy and h, have no common zeros, A} and A} have no common zeros,
so that f},..., f,41 are entire functions without common zeros.
(b) Let oy fi +o2fo+ -+ opi1fur1 = 0. Then, we have

(16) h;(dlhn + O!zncll’ln_l + oo+ o Croth + O(,hq) =0.
As h is transcendental and meromorphic, 4", ... &, 1 are linearly independent
over C, so that from (16)
o =02, C1 =+ = ot Cpm1 = oty = 05

namely o) =0y =--- =a, = d,; = 0. This means that fi,..., f,.1 are linearly
independent over C.
(c) By using the following inequality for a positive constant K

max{ s (2)|", |12(2)]"} < U(:) = | max._[£(2)

= max an|h1(Z)|n_j\h2(Z)|j

0<j<n
< K max{|i(2)|",|h(z)|"}

we have the relation

2n
T(r, f) :% . log U(re™) do + O(1)

2n
= % log max{|hy (re™)|", |hy(re™)|"} dO + O(1)
Jo
2n
= 2" og max{ s (re”). ()|} 0 + O(1)
0

=nT(r,h) + O(1).
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(d) As any n+ 1 vectors in X, are linearly independent, Xj is in general
position.

Let 4 be any subset of X containing N + 1 elements. As #{4ANXy} >
n+1, the set A contains n+ 1 linearly independent vectors. The holo-
morphic curve f, X, and X satisfy Example 6-1. In fact, we put a(a) =
(a",a"',...,a,1) (ae C). Then, for any ae C the multiplicity of a(a) with
respect to f is at least n since

(a(a), ) = a"fi +a" ot -+ afu + fun
= (ah)" + ,Ci(ah)" " hy + -+, Coy (ah) YW~ + B = (ahy + )"

Let m(a) be the multiplicity of a(a) with respect to f, then, m(a) > n and we
have that for 1 <k <n-—1

(17) wlat@ ) = (1-05) =1-5 51

m(a) non

for any ae C. By (17) we have that for | <k <n-1

w =Y mla@. )< 3wl f) < 3 waf).

aeC ae Xy aeX

Example 6.2. Let f=J[e’1]] and X ={v(a,1)|aeC;v=1,...,N}U
{v(1,0)|v=1,...,N}. Then, f is transcendental from C into P!(C) and X is in
N-subgeneral position, where N > 1. In this case, n=1. We put a, =(1,0)
and b, =v(0,1) for v=1,...,N. Then, we obtain that for v=1,...,N

:ul(an) :/ul(bl”f) =1,

and so

D omlaf) = {umlay f)+ (b, f)} =2N. O
v=1

acX

Example 6.3. Let f=]cosz 1] and X ={v(a,1)|aeC;v=1,...,N}U
{v(1,0)|v=1,...,N}. Then, f is transcendental from C into P!(C) and X is in
N-subgeneral position, where N > 1. Inthiscase,n =1. Weputforv=1,... N

a,=v(l,1), b,=v(-1,1) and ¢, =v(0,1)
Then, we obtain that for v=1,...,N

(@ f) = (b f) = 1/2 and (e f) =1,
and so

Z:ul(avf) = Z{:ul(awf) + 11(by, /) + (v, f)} = 2N. 0
v=1

acX
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