SOME CONVERGENCE THEOREMS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS

ARIF RAFIQ

Abstract

Let K be a nonempty closed convex subset of a real Banach space $E,T:K\to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0}\subset [1,\infty)$, $\lim_{n\to\infty}k_n=1$ such that $p\in F(T)=\{x\in K:Tx=x\}$. Let $\{\alpha_n\}_{n\geq 0}\subset [0,1]$ be such that $\sum_{n\geq 0}\alpha_n=\infty$ and $\lim_{n\to\infty}\alpha_n=0$. For arbitrary $x_0\in K$ and $\{v_n\}_{n\geq 0}$ in K let $\{x_n\}_{n\geq 0}$ be iteratively defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n v_n, \quad n \ge 0,$$

satisfying $\lim_{n\to\infty} ||x_n - x_n|| = 0$. Suppose there exists a strictly increasing function $\phi: [0, \infty) \to [0, \infty), \ \phi(0) = 0$ such that

$$\langle T^n x - p, j(x - p) \rangle \le k_n ||x - p||^2 - \phi(||x - p||), \quad \forall x \in K.$$

Then $\{x_n\}_{n\geq 0}$ converges strongly to $p\in F(T)$.

The remark at the end is important.

1. Introduction

Let E be a real Banach space and K be a nonempty convex subset of E. Let J denote the normalized duality mapping from E to 2^{E^*} defined by

$$J(x) = \{ f^* \in E^* : \langle x, f^* \rangle = ||x||^2 \text{ and } ||f^*|| = ||x|| \},$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. We shall denote the single-valued duality map by j.

Let $T: D(T) \subset E \to E$ be a mapping with domain D(T) in E.

DEFINITION 1. The mapping T is said to be uniformly L-Lipschitzian if there exists L > 0 such that for all $x, y \in D(T)$

$$||T^n x - T^n y|| \le L||x - y||.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10, 47H17: Secondary 54H25.

Key words and phrases. Modified implicit Mann iterative scheme, Uniformly L-Lipschitzian mappings, Asymptotically pseudocontractive mappings, Banach spaces.

Received July 11, 2006; revised October 10, 2006.

DEFINITION 2. T is said to be nonexpansive if for all $x, y \in D(T)$, the following inequality holds:

$$||Tx - Ty|| \le ||x - y||$$
 for all $x, y \in D(T)$.

DEFINITION 3. T is said to be asymptotically nonexpansive [6], if there exists a sequence $\{k_n\}_{n>0} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^n x - T^n y|| \le k_n ||x - y||$$
 for all $x, y \in D(T), n \ge 1$.

DEFINITION 4. T is said to be asymptotically pseudocontractive if there exists a sequence $\{k_n\}_{n\geq 0}\subset [1,\infty)$ with $\lim_{n\to\infty}k_n=1$ and there exists $j(x-y)\in J(x-y)$ such that

$$\langle T^n x - T^n y, j(x - y) \rangle \le k_n ||x - y||^2$$
 for all $x, y \in D(T), n \ge 1$.

Remark 1. It is easy to see that every asymptotically nonexpansive mapping is uniformly *L*-Lipschitzian.

Remark 2. If T is asymptotically nonexpansive mapping then for all $x, y \in D(T)$ there exists $j(x - y) \in J(x - y)$ such that

$$\langle T^n x - T^n y, j(x - y) \rangle \le ||T^n x - T^n y|| ||x - y||$$

 $\le k_n ||x - y||^2, \quad n \ge 1.$

Hence every asymptotically nonexpansive mapping is asymptotically pseudo-contractive.

Remark 3. Rhoades in [11] showed that the class of asymptotically pseudocontractive mappings properly contains the class of asymptotically non-expansive mappings.

The asymptotically pseudocontractive mappings were introduced by Schu [12] who proved the following theorem:

Theorem 1. Let K be a nonempty bounded closed convex subset of a Hilbert space $H,T:K\to K$ a completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence $\{k_n\}\subset [1,\infty);\ q_n=2k_n-1,\ \forall n\in N;\ \sum (q_n^2-1)<\infty;\ \{\alpha_n\},\{\beta_n\}\subset [0,1];\ \in<\alpha_n<\beta_n\le b,\ \forall n\in N,\ and\ some\ \in>0\ and\ some\ b\in (0,L^{-2}[(1+L^2)^{1/2}-1]);\ x_1\in K\ for\ all\ n\in N,\ define$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n.$$

Then $\{x_n\}$ converges to some fixed point of T.

The recursion formula of theorem 1 is a modification of the well-known Mann iteration process (see [9]).

Recently, Chang [1] extended Theorem 1 to real uniformly smooth Banach space; in fact, he proved the following theorem:

Theorem 2. Let K be a nonempty bounded closed convex subset of a real uniformly smooth Banach space $E,T:K\to K$ an asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0}\subset [1,\infty)$, $\lim_{n\to\infty}k_n=1$, and $x^*\in F(T)=\{x\in K:Tx=x\}$. Let $\{\alpha_n\}\subset [0,1]$ satisfying the following conditions: $\lim_{n\to\infty}\alpha_n=0$, $\sum\alpha_n=\infty$. For arbitrary $x_0\in K$ let $\{x_n\}$ be iteratively defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \quad n \ge 0.$$

If there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty),\ \phi(0)=0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle \le k_n ||x - x^*||^2 - \phi(||x - x^*||), \quad \forall n \in \mathbb{N},$$

then $x_n \to x^* \in F(T)$.

Remark 4. Theorem 2, as stated is a modification of Theorem 2.4 of Chang [1] who actually included error terms in his algorithm.

In [10], E. U. Ofoedu proved the following results.

Theorem 3. Let K be a nonempty closed convex subset of a real Banach space $E,T:K\to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0}\subset [1,\infty)$, $\lim_{n\to\infty}k_n=1$ such that $x^*\in F(T)=\{x\in K:Tx=x\}$. Let $\{\alpha_n\}_{n\geq 0}\subset [0,1]$ be such that $\sum_{n\geq 0}\alpha_n=\infty$, $\sum_{n\geq 0}\alpha_n^2<\infty$ and $\sum_{n\geq 0}\alpha_n(k_n-1)<\infty$. For arbitrary $x_0\in K$ let $\{x_n\}_{n\geq 0}$ be iteratively defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \quad n \ge 0.$$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty),\ \phi(0)=0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle \le k_n ||x - x^*||^2 - \phi(||x - x^*||), \quad \forall x \in K.$$

Then $\{x_n\}_{n>0}$ is bounded.

Theorem 4. Let K be a nonempty closed convex subset of a real Banach space $E,T:K\to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0}\subset [1,\infty)$, $\lim_{n\to\infty}k_n=1$ such that $x^*\in F(T)=\{x\in K:Tx=x\}$. Let $\{\alpha_n\}_{n\geq 0}\subset [0,1]$ be such that $\sum_{n\geq 0}\alpha_n=\infty$, $\sum_{n\geq 0}\alpha_n^2<\infty$ and $\sum_{n\geq 0}\alpha_n(k_n-1)<\infty$. For arbitrary $x_0\in K$ let $\{x_n\}_{n\geq 0}$ be iteratively defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \quad n \ge 0.$$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty),\ \phi(0)=0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle \le k_n ||x - x^*||^2 - \phi(||x - x^*||), \quad \forall x \in K.$$

Then $\{x_n\}_{n>0}$ converges strongly to $x^* \in F(T)$.

THEOREM 5. Let K be a nonempty closed convex subset of a real Banach space $E, T: K \to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n>0} \subset [1,\infty)$, $\lim_{n\to\infty} k_n = 1$ such that $x^* \in F(T) = 1$ $\{x \in K : Tx = x\}$. Let $\{a_n\}_{n \ge 0}$, $\{b_n\}_{n \ge 0}$, $\{c_n\}_{n \ge 0}$ be real sequences in [0, 1]satisfying the following conditions:

i):
$$a_n + b_n + c_n = 1$$
;

ii):
$$\sum_{n\geq 0} (b_n + c_n) = \infty$$
;

iii):
$$\sum_{n>0}^{-} (b_n + c_n)^2 < \infty$$

1).
$$a_n + b_n + c_n - 1$$
,
ii): $\sum_{n \ge 0} (b_n + c_n) = \infty$;
iii): $\sum_{n \ge 0} (b_n + c_n)^2 < \infty$;
iv): $\sum_{n \ge 0} (b_n + c_n)(k_n - 1) < \infty$; and
v): $\sum_{n \ge 0} c_n < \infty$.

For arbitrary $x_0 \in K$ let $\{x_n\}_{n>0}$ be iteratively defined by

$$x_{n+1} = a_n x_n + b_n T^n x_n + c_n u_n, \quad n \ge 0,$$

where $\{u_n\}_{n\geq 0}$ is a bounded sequence of error terms in K. Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty),\ \phi(0)=0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle \le k_n ||x - x^*||^2 - \phi(||x - x^*||), \quad \forall x \in K.$$

Then $\{x_n\}_{n>0}$ converges strongly to $x^* \in F(T)$.

The purpose of this paper is to introduce the following Mann iteration process associated with uniformly L-Lipschitzian asymptotically pseudocontractive mappings to have a strong convergence in the setting of real Banach spaces.

Let K be a closed convex subset of a real normed space E and $T: K \to K$ be a mapping. For a sequence $\{v_n\}_{n\geq 0}$ in K, define $\{x_n\}_{n\geq 0}$ in the following way:

(AU-M)
$$x_0 \in K,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n v_n, \quad n \ge 0,$$

where $\{\alpha_n\}_{n>0}$ be a real sequence in [0, 1] satisfying some appropriate conditions. We improve the results of Ofoedu [10] in a significantly more general context by removing the conditions $\sum_{n\geq 0} \alpha_n^2 < \infty$ and $\sum_{n\geq 0} \alpha_n(k_n-1) < \infty$ from the theorems 3-4. We also significantly extend theorem 2 from uniformly smooth Banach space to arbitrary real Banach space. The boundedness assumption imposed on K in the theorem is also dispensed with. A related result involving bounded sequence of error terms is also obtained.

2. Main results

The following lemmas are now well known.

LEMMA 1. Let $J: E \to 2^E$ be the normalized duality mapping. Then for any $x, y \in E$, we have

$$(2.1) ||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y) \rangle, \quad \forall j(x+y) \in J(x+y).$$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty)$ with $\phi(0)=0$.

Lemma 2. Let $\{\theta_n\}$ be a sequence of nonnegative real numbers, $\{\lambda_n\}$ be a real sequence satisfying

$$0 \le \lambda_n \le 1, \quad \sum_{n=0}^{\infty} \lambda_n = \infty.$$

If there exists a positive integer n_0 such that

$$\theta_{n+1}^2 \le \theta_n^2 - \lambda_n \phi(\theta_{n+1}) + \sigma_n,$$

for all $n \ge n_0$, with $\sigma_n \ge 0$, $\forall n \in \mathbb{N}$, and $\sigma_n = 0(\lambda_n)$, then $\lim_{n \to \infty} \theta_n = 0$.

Theorem 6. Let K be a nonempty closed convex subset of a real Banach space $E,T:K\to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0}\subset [1,\infty)$, $\lim_{n\to\infty}k_n=1$ such that $p\in F(T)=\{x\in K:Tx=x\}$. Let $\{\alpha_n\}_{n\geq 0}\subset [0,1]$ be such that $\sum_{n\geq 0}\alpha_n=\infty$ and $\lim_{n\to\infty}\alpha_n=0$. For arbitrary $x_0\in K$ and $\{v_n\}_{n\geq 0}$ in K, define the sequence $\{x_n\}_{n\geq 0}$ by $(AU\!-\!M)$ satisfying $\lim_{n\to\infty}\|v_n-x_n\|=0$. Suppose there exists a strictly increasing function $\phi:[0,\infty)\to [0,\infty)$, $\phi(0)=0$ such that

$$(2.2) \langle T^n x - p, j(x - p) \rangle \le k_n ||x - p||^2 - \phi(||x - p||), \quad \forall x \in K.$$

Then $\{x_n\}_{n>0}$ converges strongly to $p \in F(T)$.

Proof. By $\lim_{n\to\infty} \alpha_n = 0$, $\lim_{n\to\infty} ||v_n - x_n|| = 0$ and $\lim_{n\to\infty} k_n = 1$, imply there exists $n_0 \in \mathbb{N}$ such that $\forall n \geq n_0, \ \alpha_n \leq \delta, \ ||v_n - x_n|| \leq \delta'$;

$$\begin{split} 0 < \delta &= \min \left\{ \frac{1}{1 + 2(1 + L)}, \frac{\phi(2\phi^{-1}(a_0))}{48(1 + L)^2 [\phi^{-1}(a_0)]^2} \right\}, \\ 0 < \delta' &= \min \frac{1}{L} \left\{ \phi^{-1}(a_0), \frac{\phi(2\phi^{-1}(a_0))}{48\phi^{-1}(a_0)} \right\}, \end{split}$$

and

$$k_n - 1 \le \frac{\phi(2\phi^{-1}(a_0))}{36[\phi^{-1}(a_0)]^2}.$$

Define $a_0 := \|x_{n_0} - T^{n_0}x_{n_0}\| \|x_{n_0} - p\| + (k_{n_0} - 1)\|x_{n_0} - p\|^2$. Then from (2.2), we obtain that $\|x_{n_0} - p\| \le \phi^{-1}(a_0)$.

CLAIM. $||x_n - p|| \le 2\phi^{-1}(a_0) \ \forall n \ge n_0.$

The proof is by induction. Clearly, the claim holds for $n=n_0$. Suppose it holds for some $n \ge n_0$, i.e., $\|x_n-p\| \le 2\phi^{-1}(a_0)$. We prove that $\|x_{n+1}-p\| \le 2\phi^{-1}(a_0)$. Suppose that this is not true. Then $\|x_{n+1}-p\| > 2\phi^{-1}(a_0)$, so that $\phi(\|x_{n+1}-p\|) > \phi(2\phi^{-1}(a_0))$. Using the recursion formula (AU-M), we have the following estimates

$$||x_{n} - T^{n}v_{n}|| \leq ||x_{n} - p|| + ||p - T^{n}v_{n}||$$

$$\leq ||x_{n} - p|| + L||v_{n} - p||$$

$$\leq (1 + L)||x_{n} - p|| + L||v_{n} - x_{n}||$$

$$\leq 2(1 + L)\phi^{-1}(a_{0}) + L||v_{n} - x_{n}||,$$

$$||x_{n+1} - p|| = ||(1 - \alpha_{n})x_{n} + \alpha_{n}T^{n}v_{n} - p||$$

$$= ||x_{n} - p - \alpha_{n}(x_{n} - T^{n}v_{n})||$$

$$\leq ||x_{n} - p|| + \alpha_{n}||x_{n} - T^{n}v_{n}||$$

$$\leq 2\phi^{-1}(a_{0}) + \alpha_{n}[2(1 + L)\phi^{-1}(a_{0}) + L||v_{n} - x_{n}||]$$

$$\leq [1 + 2(1 + L)]\phi^{-1}(a_{0})\alpha_{n}$$

$$\leq 3\phi^{-1}(a_{0}).$$

With these estimates and again using the recursion formula (AU-M), we obtain by lemma 1 that

$$(2.3) ||x_{n+1} - p||^2 = ||(1 - \alpha_n)x_n + \alpha_n T^n v_n - p||^2$$

$$= ||x_n - p - \alpha_n(x_n - T^n v_n)||^2$$

$$\leq ||x_n - p||^2 - 2\alpha_n \langle x_n - T^n x_n, j(x_{n+1} - p) \rangle$$

$$= ||x_n - p||^2 + 2\alpha_n \langle T^n x_{n+1} - p, j(x_{n+1} - p) \rangle$$

$$- 2\alpha_n \langle x_{n+1} - p, j(x_{n+1} - p) \rangle$$

$$+ 2\alpha_n \langle T^n v_n - T^n x_{n+1}, j(x_{n+1} - p) \rangle$$

$$+ 2\alpha_n \langle x_{n+1} - x_n, j(x_{n+1} - p) \rangle$$

$$\leq ||x_n - p||^2 + 2\alpha_n (k_n ||x_{n+1} - p||^2 - \phi(||x_{n+1} - p||))$$

$$- 2\alpha_n ||x_{n+1} - p||^2 + 2\alpha_n ||T^n v_n - T^n x_{n+1}|| ||x_{n+1} - p||$$

$$+ 2\alpha_n ||x_{n+1} - x_n|| ||x_{n+1} - p||$$

$$\leq ||x_n - p||^2 + 2\alpha_n (k_n - 1) ||x_{n+1} - p||$$

$$+ 2\alpha_n (1 + L) ||x_{n+1} - x_n|| ||x_{n+1} - p||$$

$$+ 2L\alpha_n ||v_n - x_n|| ||x_{n+1} - p||,$$

where

(2.4)
$$||x_{n+1} - x_n|| = ||(1 - \alpha_n)x_n + \alpha_n T^n v_n - x_n||$$
$$= \alpha_n ||x_n - T^n v_n||$$
$$\leq (1 + L)||x_n - p||\alpha_n + L||v_n - x_n||\alpha_n.$$

Substituting (2.4) in (2.3), we get

$$(2.5) ||x_{n+1} - p||^2 \le ||x_n - p||^2 + 2\alpha_n (k_n - 1) ||x_{n+1} - p||^2 - 2\alpha_n \phi(||x_{n+1} - p||) + 2\alpha_n^2 (1 + L)^2 ||x_n - p|| ||x_{n+1} - p|| + 2L(1 + L)\alpha_n^2 ||v_n - x_n|| ||x_{n+1} - p|| + 2L\alpha_n ||v_n - x_n|| ||x_{n+1} - p|| \le ||x_n - p||^2 - 2\alpha_n \phi(2\phi^{-1}(a_0)) + \alpha_n \phi(2\phi^{-1}(a_0)) = ||x_n - p||^2 - \alpha_n \phi(2\phi^{-1}(a_0)).$$

Thus

$$\alpha_n \phi(2\phi^{-1}(a_0)) \le ||x_n - p||^2 - ||x_{n+1} - p||^2,$$

implies

$$\phi(2\phi^{-1}(a_0)) \sum_{n=n_0}^{j} \alpha_n \le \sum_{n=n_0}^{j} (\|x_n - p\|^2 - \|x_{n+1} - p\|^2)$$
$$= \|x_{n_0} - p\|^2,$$

so that as $j \to \infty$ we have

$$\phi(2\phi^{-1}(a_0))\sum_{n=n_0}^{\infty}\alpha_n \leq ||x_{n_0}-p||^2 < \infty,$$

which implies that $\sum \alpha_n < \infty$, a contradiction. Hence, $||x_{n+1} - x^*|| \le 2\phi^{-1}(a_0)$; thus $\{x_n\}_{n\ge 0}$ is bounded.

Now from (2.5), we get

$$||x_{n+1} - p||^{2} \le ||x_{n} - p||^{2} - 2\alpha_{n}\phi(||x_{n+1} - p||) + 8[\phi^{-1}(a_{0})]^{2}\alpha_{n}(k_{n} - 1) + 8[\phi^{-1}(a_{0})]^{2}(1 + L)^{2}\alpha_{n}^{2} + 4L(1 + L)\phi^{-1}(a_{0})\alpha_{n}^{2}||v_{n} - x_{n}|| + 4L\phi^{-1}(a_{0})\alpha_{n}||v_{n} - x_{n}|| = ||x_{n} - p||^{2} - 2\alpha_{n}\phi(||x_{n+1} - p||) + 4\phi^{-1}(a_{0})\delta_{n}\alpha_{n};$$

$$\delta_n = 2\phi^{-1}(a_0)(k_n - 1) + 2(1 + L)^2\phi^{-1}(a_0)\alpha_n + (L(1 + L)\alpha_n + L)||v_n - x_n||.$$
 Denote

$$\theta_n = ||x_n - p||,$$

$$\lambda_n = 2\alpha_n,$$

$$\sigma_n = 4\phi^{-1}(a_0)\delta_n\alpha_n.$$

Condition $\lim_{n\to\infty} \alpha_n = 0$ ensures the existence of a rank $n_0 \in \mathbb{N}$ such that $\lambda_n = 2\alpha_n \le 1$, for all $n \ge n_0$. Now with the help of $\sum_{n\ge 0} \alpha_n = \infty$, $\lim_{n\to\infty} \alpha_n = 0$, $\lim_{n\to\infty} k_n = 1$, $\lim_{n\to\infty} \|v_n - x_n\| = 0$ and lemma 2, we obtain from (2.6) that

$$\lim_{n\to\infty}||x_n-p||=0,$$

completing the proof.

Theorem 7. Let K be a nonempty closed convex subset of a real Banach space $E,T:K\to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0}\subset [1,\infty)$, $\lim_{n\to\infty}k_n=1$ such that $p\in F(T)=\{x\in K:Tx=x\}$. Let $\{a_n\}_{n\geq 0}$, $\{b_n\}_{n\geq 0}$, $\{c_n\}_{n\geq 0}$ be real sequences in [0,1] satisfying the following conditions:

- i): $a_n + b_n + c_n = 1$;
- ii): $\sum_{n\geq 0} b_n = \infty$;
- iii): $\overline{c_n} = o(b_n)$;
- iv): $\lim_{n\to\infty} b_n = 0$.

For arbitrary $x_0 \in K$ and $\{v_n\}_{n>0}$ in K let $\{x_n\}_{n>0}$ be iteratively defined by

$$x_n = a_n x_{n-1} + b_n T^n v_n + c_n u_n, \quad n \ge 0,$$

satisfying $\lim_{n\to\infty} ||v_n - x_n|| = 0$, where $\{u_n\}_{n\geq 0}$ is a bounded sequence of error terms in K. Suppose there exists a strictly increasing function $\phi: [0,\infty) \to [0,\infty), \ \phi(0) = 0$ such that

$$\langle T^n x - p, j(x - p) \rangle \le k_n ||x - p||^2 - \phi(||x - p||), \quad \forall x \in K.$$

Then $\{x_n\}_{n\geq 0}$ converges strongly to $p\in F(T)$.

3. Multi-step fixed point iterations

Let K be a nonempty closed convex subset of a real normed space E and $T_1, T_2, \ldots, T_p : K \to K \ (p \ge 2)$ be a family of selfmappings.

ALGORITHM 1. For a given $x_0 \in K$, compute the sequence $\{x_n\}_{n\geq 0}$ by the iteration process of arbitrary fixed order $p\geq 2$,

(4.1)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_1^n y_n^1,$$

$$y_n^i = (1 - \beta_n^i)x_n + \beta_n^i T_{i+1}^n y_n^{i+1}; \quad i = 1, 2, \dots, p-2,$$

$$y_n^{p-1} = (1 - \beta_n^{p-1})x_n + \beta_n^{p-1} T_n^n x_n, \quad n \ge 0,$$

82 ARIF RAFIQ

which is called the modified multi-step iteration process, where $\{\alpha_n\}, \{\beta_n^i\} \subset [0, 1], i = 1, 2, ..., p - 1.$

For p = 3, we obtain the following modified three-step iteration process:

ALGORITHM 2. For a given $x_0 \in K$, compute the sequence $\{x_n\}$ by the iteration process:

(4.2)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_1^n y_n^1,$$

$$y_n^1 = (1 - \beta_n^1)x_n + \beta_n^1 T_2^n y_n^2,$$

$$y_n^2 = (1 - \beta_n^2)x_n + \beta_n^2 T_3^n x_n, \quad n \ge 0,$$

where $\{\alpha_n\}_{n\geq 0}$, $\{\beta_n^1\}_{n\geq 0}$ and $\{\beta_n^2\}_{n\geq 0}$ are three real sequences in [0,1].

For p = 2, we obtain the following modified two-step iteration process:

ALGORITHM 3. For a given $x_0 \in K$, compute the sequence $\{x_n\}_{n\geq 0}$ by the iteration process

(4.3)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_1^n y_n^1,$$

$$y_n^1 = (1 - \beta_n^1)x_n + \beta_n^1 T_2^n x_n, \quad n \ge 0,$$

where $\{\alpha_n\}_{n>0}$ and $\{\beta_n^1\}_{n>0}$ are two real sequences in [0,1].

If $T_1 = T$, $T_2 = I$, $\beta_n^1 = 0$ in (4.3), we obtain the modified Mann iteration process [12]:

ALGORITHM 4. For any given $x_0 \in K$, compute the sequence $\{x_n\}_{n\geq 0}$ by the iteration process

(4.4)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \quad n \ge 0,$$

where $\{\alpha_n\}_{n\geq 0}$ is a real sequence in [0,1].

By applying Theorem 6 under assumption that T_1 is uniformly L-Lipschitzian asymptotically pseudocontractive mapping, we obtain Theorem 8 which proves strong convergence of the iteration process defined by (4.1). Consider by taking $T_1 = T$ and $v_n = y_n^1$, then

$$||v_n - x_n|| = ||y_n^1 - x_n||$$

$$= ||(1 - \beta_n^1)x_n + \beta_n^1 T_2^n y_n^2 - x_n||$$

$$= \beta_n^1 ||T_2^n y_n^2 - x_n||$$

$$\leq M\beta_n^1;$$

M depends on L, β_n^i and $\phi^{-1}(a_0)$, $i=2,\ldots,p$. Now from the condition $\lim_{n\to\infty}\beta_n^1=0$, it can be easily seen that $\lim_{n\to\infty}\|v_n-x_n\|=0$.

Theorem 8. Let K be a nonempty closed convex subset of a real Banach space E and T_1, T_2, \ldots, T_p $(p \ge 2)$ be selfmappings of K. Let T_1 be a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\ge 0} \subset [1,\infty)$, $\lim_{n\to\infty} k_n=1$ and $T_i; i=2,\ldots,p$ are uniformly L-Lipschitzian mappings. Let $\{\alpha_n\}_{n\ge 0}, \{\beta_n^i\}_{n\ge 0} \subset [0,1], i=1,2,\ldots,p-1$ be real sequences in [0,1] satisfying $\sum_{n\ge 0} \alpha_n = \infty$, $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} \beta_n^1 = 0$. For arbitrary $x_0 \in K$, define the sequence $\{x_n\}_{n\ge 0}$ by (4.1). Then $\{x_n\}_{n\ge 0}$ converges strongly to the common fixed point of $\bigcap_{i=1}^p F(T) \ne \emptyset$.

Remark 5. Similar results can be found for the iteration processes involved error terms, we omit the details.

Remark 6. If we take $\alpha_n = \frac{1}{n^{\sigma}}$; $0 < \sigma < 1$, then $\sum \alpha_n = \infty$, but also $\sum \alpha_n^2 = \infty$. Hence the conclusions of theorems 3–5 are wrong.

Acknowledgement 1. We are thankful to the worthy referee for his valuable suggestions.

REFERENCES

- S. S. CHANG, Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 129 (2000), 845–853.
- [2] C. E. CHIDUME, Iterative algorithm for nonexpansive mappings and some of their generalizations, Nonlinear Anal. (to V. Lakshmikantham on his 80th birthday) 1,2 (2003), 383–429.
- [3] C. E. CHIDUME, Geometric properties of Banach spaces and nonlinear iterations, in press.
- [4] C. E. CHIDUME AND C. O. CHIDUME, Convergence theorem for zeros of generalized Lipschitz generalized phi-quasiaccretive operators, Proc. Amer. Math. Soc. 134 (2006), 243–251.
- [5] C. E. CHIDUME AND C. O. CHIDUME, Convergence theorem for fixed points of uniformly continuous generalized phihemicontractive mappings, J. Math. Anal. Appl. 303 (2005), 545–554.
- [6] K. GOEBEL AND W. A. KIRK, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174.
- [7] S. ISHIKAWA, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150.
- [8] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 1945 (1995), 114–125.
- [9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [10] E. U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl. 321 (2006), 722–728.
- [11] B. E. RHOADES, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257–290.
- [12] J. SCHU, Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407–413.

84 ARIF RAFIQ

[13] Y. Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998), 98–101.

Arif Rafiq
COMSATS Institute of Information Technology
Islamabad
Pakistan

E-mail: arafiq@comsats.edu.pk