ON MEROMORPHIC FUNCTIONS SHARING THREE VALUES AND ONE SET

Manabu Shirosaki

Abstract

We give relations of two meromorphic functions sharing $0,1, \infty$ and a set CM .

1. Introduction

For nonconstant meromorphic functions f and g on C and a discrete set S in $\hat{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$, we say that f and g share $S \mathrm{CM}$ (counting multiplicities) if $f^{-1}(S)=g^{-1}(S)$ and if for each $z_{0} \in f^{-1}(S)$ two functions $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ have the same multiplicity of zero at z_{0}, where the notations $f-\infty$ and $g-\infty$ mean $1 / f$ and $1 / g$, respectively. In particular if S is a one point set $\{a\}$, then we say also that f and g share a CM.

In [N], R. Nevalinna showed
Theorem A1. Let f and g be two distinct nonconstant meromorphic functions on \boldsymbol{C} and a_{1}, \ldots, a_{4} four distinct points in $\hat{\boldsymbol{C}}$. If f and g share a_{1}, \ldots, a_{4} $C M$, then f is a Möbius transformation of g and there exists a permutation σ of $\{1,2,3,4\}$ such that $a_{\sigma(3)}, a_{\sigma(4)}$ are Picard exceptional values of f and g and the cross ratio $\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}, a_{\sigma(4)}\right)=-1$.

If $a_{1}=0, a_{2}=1, a_{3}=\infty$, then the fourth point a_{4} such that the cross ratio is -1 in some order is one of $-1,2$ and $\frac{1}{2}$. Then a part of Theorem A1 can be denoted as following:

Theorem A2. Let f and g be two nonconstant meromorphic functions on C sharing $0,1, \infty$ and $a C M$, where $a \neq 0,1, \infty$. Then f and g have one of the following relations:

$$
f=g, \quad f=\frac{1}{g}, \quad f=\frac{g}{g-1} \quad \text { and } \quad f=-g+1 .
$$

[^0]Also, in $[\mathrm{T}]$ Tohge considered two meromorphic functions sharing $1,-1, \infty$ and a two-point set containing none of them.

Theorem B1. Let f and g be two nonconstant meromorphic functions on \boldsymbol{C} sharing $1,-1$ and $\infty C M$. Let $S=\{a, b\}$, where $a, b \neq 1,-1, \infty$. If f and g share $S C M$, then they have one the following relations:

$$
\begin{gathered}
f= \pm g, \quad f g=1, \quad f+g= \pm 2, \quad(f \pm 1)(g \pm 1)=4 \\
f \pm 1=\omega(g \pm 1) \quad \text { and } \quad\left(f+\frac{1+\omega}{1-\omega}\right)\left(g-\frac{1+\omega}{1-\omega}\right)=\frac{4}{3}
\end{gathered}
$$

where $\omega^{3}=1, \omega \neq 1$ and double signs in same order respectively.
If we replace the first three points by 0,1 and ∞, the result is changed as follows:

Theorem B2. Let f and g be two nonconstant meromorphic functions on \boldsymbol{C} sharing 0,1 and $\infty C M$. Let $S=\{a, b\}$ where $a, b \neq 0,1, \infty$. If f and g share $S C M$, then they have one the following relations:

$$
\begin{gathered}
f=g, \quad f=-g+1, \quad f=\frac{g}{2 g-1}, \quad f=-g+2, \quad f=-g, \quad f g=1, \\
(f-1)(g-1)=1, \quad f=\omega g, \quad f-1=\omega(g-1) \quad \text { and } \quad f=\frac{g}{\left(1-\frac{1}{\omega}\right) g+\frac{1}{\omega}},
\end{gathered}
$$

where $\omega^{3}=1$ and $\omega \neq 1$.
There are many results on two meromorphic functions sharing three values CM with additional conditions of defects or counting functions for another value, for example [Li] and [LY]. In this paper we consider two nonconstant meromorphic functions sharing three values $0,1, \infty$ and a finite set containing none of them.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions on \boldsymbol{C} sharing 0,1 and $\infty C M$. Let S be a finite set in \boldsymbol{C} defined by the zeros of a monic polynomial $P(z)$ without multiple zeros such that $P(0) \neq 0, P(1) \neq 0$. If f and g share $S C M$, then they have one of the following relations:
(i) $f=c g$;
(ii) $f-1=c(g-1)$ i.e., $f=c g-c+1$;
(iii) $\frac{f-1}{f}=c \frac{g-1}{g}$ i.e., $f=\frac{-g}{(c-1) g-c}$;
(iv) $f g=1$;
(v) $(f-1)(g-1)=1$ i.e., $f=\frac{g}{g-1}$;
(vi) $\frac{f-1}{f}=\frac{g-1}{g}$ i.e., $f=-g+1$;
(vii) there exist monic polynomials $\Phi(X) \in \boldsymbol{C}[X]$ and $\varphi(z)=z^{p}(z-1)^{q}$ with $p, q>0$ and $(p, q)=1$ such that

$$
\varphi(f)=\omega \varphi(g), \quad P_{0}(z)=\Phi(\varphi(z))
$$

where $\omega^{t}=1$ for t such that the coefficient of X^{t} of $\Phi(X)$ is not zero and $P_{0}(z)$ is one of $P(z), Q(z):=\frac{1}{P(0)} z^{n} P\left(\frac{1}{z}\right)$ and $R(z):=$ $\frac{1}{P(1)} z^{n} P\left(\frac{z-1}{z}\right)$.
Here, c is a non-zero constant in (i), (ii) and (iii).

2. Representations of rank N and Borel's lemma

In this section we introduce the definition of representations of rank N which is a generalization of representations in $[\mathrm{F}, \S 2]$. Let G be a torsion-free abelian multiplicative group, and consider a q-tuple $A=\left(a_{1}, a_{2}, \ldots, a_{q}\right)$ of elements a_{i} in G. For a subgroup \tilde{A} of G generated by $a_{1}, a_{2}, \ldots, a_{q}$, we can take a basis $\left\{b_{1}, \ldots, b_{t}\right\}$ of \tilde{A}. Then each a_{i} can be uniquely represented as

$$
\begin{equation*}
a_{j}=b_{1}{ }^{\mu_{j 1}} b_{2}{ }^{\mu_{j 2}} \cdots b_{t}{ }^{\mu_{j t}} \tag{2.1}
\end{equation*}
$$

with suitable integers $\mu_{j \tau}$. Let p_{1}, \ldots, p_{t} be integers and put $\mu_{j}:=$ $\mu_{j 1} p_{1}+\cdots+\mu_{j t} p_{t}$. If

$$
\begin{equation*}
\prod_{j=1}^{q} a_{j}^{\varepsilon_{j}}=\prod_{j=1}^{q} a_{j}^{\varepsilon_{j}^{\prime}} \tag{2.2}
\end{equation*}
$$

for integers ε_{j} and ε_{j}^{\prime}, then

$$
\begin{equation*}
\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}=\sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j} . \tag{2.3}
\end{equation*}
$$

For we have, by substiting (2.1) into (2.2),

$$
\prod_{k=1}^{t} b_{k}^{\sum_{j=1}^{q} \varepsilon_{j} \mu_{j k}}=\prod_{k=1}^{t} b_{j} \sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j_{k}} .
$$

Since b_{1}, \ldots, b_{t} are linearly independent over \boldsymbol{Z}, we get

$$
\begin{equation*}
\sum_{j=1}^{q} \varepsilon_{j} \mu_{j k}=\sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j k} \quad(k=1, \ldots, t) \tag{2.4}
\end{equation*}
$$

and hence

$$
\begin{aligned}
\sum_{j=1}^{q} \varepsilon_{j} \mu_{j} & =\sum_{j=1}^{q} \varepsilon_{j} \sum_{k=1}^{t} p_{k} \mu_{j k}=\sum_{k=1}^{t} p_{k} \sum_{j=1}^{q} \varepsilon_{j} \mu_{j k} \\
& =\sum_{k=1}^{t} p_{k} \sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j k}=\sum_{j=1}^{q} \varepsilon_{j}^{\prime} \sum_{k=1}^{t} p_{k} \mu_{j k}=\sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j}
\end{aligned}
$$

Let N be a positive integer. We call integers μ_{j} representations of rank N of a_{j} if (2.3) implies (2.4) for any integers ε_{j}, ε_{j}^{\prime} with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$. In particular we call representations of rank 1, simply, representations.

For the existence of representations of rank N, it is enough to take $p_{\tau}=p^{\tau-1}(1 \leq \tau \leq t)$ for an integer $p>2 N \cdot \max \left\{\left|\mu_{j k}\right| ; 1 \leq j \leq q, 1 \leq k \leq t\right\}$.

We introduce the following Borel's Lemma, whose proof can be found, for example, on p. 186 of [La].

Lemma 2.1. If entire functions $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ without zeros satisfy

$$
\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}=0
$$

then for each $j=0,1, \ldots, n$ there exists some $k \neq j$ such that α_{j} / α_{k} is constant.
We use the following Lemma in the proof of Theorem 1.1 which is an application of Lemma 2.1.

Lemma 2.2. Let f and g be two nonconstant meromorphic functions sharing 0,1 and $\infty C M$. If two of 0,1 and ∞ are the common Picard exceptional values of f and g, then f and g have one of the following relations:

$$
f=g, \quad f g=1, \quad(f-1)(g-1)=1 \quad \text { and } \quad \frac{f-1}{f} \cdot \frac{g-1}{g}=1 .
$$

Proof. There exist entire functions α_{0}, α_{1} without zeros such that

$$
\begin{equation*}
f=\alpha_{0} g, \quad f-1=\alpha_{1}(g-1) \tag{2.10}
\end{equation*}
$$

Fisrt assume that 0 and ∞ are the common Picard exceptional vaules of f and g. Then f and g are entire functions without zeros. We apply Lemma 2.1 to the second equation of (2.10). Since f and g are not constant, we have either $f=\alpha_{1} g, 1=\alpha_{1}$ or $f=-\alpha_{1},-1=\alpha_{1} g$. The formar implies $f=g$ and the latter $f g=1$.

Next assume that 1 and ∞ are the common Picard exceptional vaules of f and g. Then $f-1$ and $g-1$ are entire functions without zeros. We apply Lemma 2.1 to

$$
(f-1)=\alpha_{0}(g-1)+\alpha_{0}-1
$$

which is induced from the former of (2.10). Since f and g are not constant, we have either $f-1=\alpha_{0}(g-1), \alpha_{0}=1$ or $f-1=\alpha_{0}, \alpha_{0}(g-1)=1$. The formar implies $f=g$ and the latter $(f-1)(g-1)=1$.

Finally assume that 0 and 1 are the common Picard exceptional vaules of f and g. Then $\frac{f-1}{f}$ and $\frac{g-1}{g}$ are entire functions without zeros. We apply
Lemma 2.1 to

$$
\frac{f-1}{f}=\frac{1}{\alpha_{0}} \cdot \frac{g-1}{g}+1-\alpha_{0}
$$

which is induced from the former of (2.10). Since f and g are not constant, we have either $\frac{f-1}{f}=\frac{1}{\alpha_{0}} \cdot \frac{g-1}{g}, \frac{1}{\alpha_{0}}=1$ or $\frac{f-1}{f}=-\frac{1}{\alpha_{0}}, \frac{1}{\alpha_{0}} \cdot \frac{g-1}{g}=-1$. The formar implies $f=g$ and the latter $\frac{f-1}{f} \cdot \frac{g-1}{g}=1$.

Now we investigate the torsion-free abelian multipicative group $G=\mathscr{E} / \mathscr{C}$, where \mathscr{E} is the abelian group of entire functions without zeros and \mathscr{C} is the subgroup of all non-zero constant functions.

Let $\alpha_{1}, \ldots, \alpha_{q}$ be elements in \mathscr{E}. We represent by $\left[\alpha_{j}\right]$ the element of $\mathscr{E} / \mathscr{C}$ with the representative α_{j}. Take representations μ_{j} of rank N of $\left[\alpha_{j}\right]$. For $\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}$ we define its index by $\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}$. The indices depend only on $\left[\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}\right]$.

Lemma 2.3. Assume that there is a relation $\Psi\left(\alpha_{1}, \ldots, \alpha_{q}\right) \equiv 0$ where $\Psi\left(X_{1}, \ldots, X_{q}\right) \in \boldsymbol{C}\left[X_{1}, \ldots, X_{q}\right]$ is a nonconstant polynomial of degree at most N of X_{1}, \ldots, X_{q}. Then each term $a X_{1}^{\varepsilon_{1}} \cdots X_{q}^{\varepsilon_{q}}$, of $\Psi\left(X_{1}, \ldots, X_{q}\right)$ has another term $b X_{1}^{\varepsilon_{1}} \cdots X_{q}^{\varepsilon_{q}^{\prime}}$ such that $\alpha_{1}^{\varepsilon_{1}} \cdots \alpha_{q}^{\varepsilon_{q}}$ and $\alpha_{1}^{\varepsilon_{1}^{\prime}} \cdots \alpha_{q}^{\varepsilon_{q}}$ have the same indices, where a and b are non-zero constants.

Proof. By using Lemma 2.1 each term $a X_{1}^{\varepsilon_{1}} \cdots X_{q}^{\varepsilon_{q}}$ has another term $b X_{1}^{\varepsilon_{1}^{\prime}} \cdots X_{q}^{\varepsilon_{q}^{\prime}}$ such that $\left(\alpha_{1}^{\varepsilon_{1}} \cdots \alpha_{q}^{\varepsilon_{q}}\right) /\left(\alpha_{1}^{\varepsilon_{1}^{\prime}} \cdots \alpha_{q}^{\varepsilon_{q}^{\prime}}\right)$ is constant. This implies the conclusion of Lemma.

3. Proof of Theorem 1.1

Proposition 3.1. Let f and g be two nonconstant meromorphic functions and $P(z)$ a monic polynomial of degree $n(\geq 1)$ such that $P(0), P(1) \neq 0$. Assume that there exist entire functions without zeros $\alpha_{0}, \alpha_{1}, \alpha_{2}$ such that

$$
\begin{equation*}
f=\alpha_{0} g, \quad f-1=\alpha_{1}(g-1) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P(f)=\alpha_{2} P(g) . \tag{3.2}
\end{equation*}
$$

and assume that f is not a Möbius transformation of g of type (i)~(vi) in Theorem 1.1. Then one of $\alpha_{2} / \alpha_{0}^{n}, \alpha_{2} / \alpha_{1}^{n}$ and α_{2} is identically equal to 1 .

Proof. Delete f and g from the relations (3.1) and (3.2). Then we have

$$
\begin{align*}
& \alpha_{2}\left\{P(0) \alpha_{0}^{n}+(-1)^{n} P(1) \alpha_{1}^{n}+(*)+1\right\} \tag{3.3}\\
& \quad-\left\{(-1)^{n} \alpha_{0}^{n} \alpha_{1}^{n}+(* *)+P(1) \alpha_{0}^{n}+P(0)(-1)^{n} \alpha_{1}^{n}(*)\right\}=0 .
\end{align*}
$$

Here the degree of each term of $(*)$ is not greater than n about α_{0} and α_{1} and not greater than $n-1$ about each $\alpha_{j}(j=0,1)$, and the degree of each term of $(* *)$ is not greater than $2 n-1$ and not smaller than n about α_{0} and α_{1} and not greater than n about each $\alpha_{j}(j=0,1)$.

Let $\mu_{0}, \mu_{1}, \mu_{2}$ be representations of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ with rank $2 n$. By assumption $\mu_{j} \neq 0(j=0,1)$ and $\mu_{0} \neq \mu_{1}$, and we may assume $\mu_{0}<\mu_{1}$. In addition we assume $\mu_{2} \neq 0$.
(I) The case of $\mu_{0}<\mu_{1} \leq \mu_{2}$. If $0<\mu_{0}<\mu_{1} \leq \mu_{2}$, the minimal indices of each terms in (3.3) may be only $n \mu_{0}$ and μ_{2}. Hence we have $n \mu_{0}=\mu_{2}$ by Lemma 2.3. If $\mu_{0}<0<\mu_{1} \leq \mu_{2}$, the minimal index of each terms in (3.3) is only $n \mu_{0}$, which contradicts to Lemma 2.3. If $\mu_{0}<\mu_{1}<0<\mu_{2}$, the minimal index of each terms in (3.3) is only $n\left(\mu_{0}+\mu_{1}\right)$, which contradicts to Lemma 2.3. If $\mu_{0}<\mu_{1} \leq \mu_{2}<0$, the minimal indices of each terms in (3.3) is only $n\left(\mu_{0}+\mu_{1}\right)$, which contradicts to Lemma 2.3. So we have $n \mu_{0}=\mu_{2}$ in this case.
(I') The case of $\mu_{2} \leq \mu_{0}<\mu_{1}$. We have also $n \mu_{0}=\mu_{1}$ as in the case (I).
(II) The case of $\mu_{0}<\mu_{2}<\mu_{1}$. If $0<\mu_{0}<\mu_{2}<\mu_{1}$, the minimal indices of each terms in (3.3) may be only $n \mu_{0}$ and μ_{2}. Hence we have $n \mu_{0}=\mu_{2}$ by Lemma 2.3. If $\mu_{0}<0<\mu_{2}<\mu_{1}$, the minimal index of each terms in (3.3) is only $n \mu_{0}$, which contradicts to Lemma 2.3. If $\mu_{0}<\mu_{2}<0<\mu_{1}$, the minimal index of each terms in (3.3) is only $n \mu_{1}$, which contradicts to Lemma 2.3. If $\mu_{0}<\mu_{2}<\mu_{1}<0$, the minimal indices of each terms in (3.3) may be only $n\left(\mu_{0}+\mu_{1}\right)$ and $n \mu_{0}+\mu_{2}$. Hence we have $n \mu_{1}=\mu_{2}$ by Lemma 2.3. So we have $n \mu_{0}=\mu_{2}$ in this case.
(III) The case of $\mu_{2}=\mu_{0}<\mu_{1}$. If $0<\mu_{2}=\mu_{0}<\mu_{1}$, the minimal index of each terms in (3.3) is only μ_{2}, which contradicts to Lemma 2.3. If $\mu_{2}=\mu_{0}<$ $0<\mu_{1}$, the minimal index of each terms in (3.3) is only $n \mu_{0}+\mu_{2}$, which contradicts to Lemma 2.3. If $\mu_{2}=\mu_{0}<\mu_{1}<0$, the minimal indices of each terms in (3.3) may be only $n\left(\mu_{0}+\mu_{1}\right)$ and $n \mu_{0}+\mu_{2}$. Hence we have $n \mu_{1}=\mu_{2}$ by Lemma 2.3. So we have $n \mu_{1}=\mu_{2}$ in the case (III).
(III' $^{\prime}$) The case of $\mu_{0}<\mu_{1}=\mu_{2}$. We have $n \mu_{0}=\mu_{1}$ as in this case.
Therefore since μ_{j}^{\prime} s have rank $2 n$, one of $\alpha_{2} / \alpha_{0}^{n}, \alpha_{2} / \alpha_{1}^{n}$ and α_{2} is constant. Write it by C, then one of

$$
P(f)=C P(g), \quad \frac{P(f)}{f^{n}}=C \frac{P(g)}{g^{n}}, \quad \frac{P(f)}{(f-1)^{n}}=C \frac{P(g)}{(g-1)^{n}}
$$

holds. Since f and g, by assumption and Lemma 2.2, take simultaneously each of 0,1 and ∞ except at most one, we can conclude $C=1$.

Remark. Note that we get formalizations

$$
P(f)=P(g), \quad f=\alpha_{0} g, \quad f-1=\alpha_{1}(g-1)
$$

in the case of $\alpha_{2} \equiv 1$,

$$
Q\left(\frac{1}{f}\right)=Q\left(\frac{1}{g}\right), \quad \frac{1}{f}=\frac{1}{\alpha_{0}} \frac{1}{g}, \quad \frac{1}{f}-1=\frac{\alpha_{1}}{\alpha_{0}}\left(\frac{1}{g}-1\right)
$$

in the case $\alpha_{2} / \alpha_{0}^{n} \equiv 1$ and

$$
R\left(\frac{1}{1-f}\right)=R\left(\frac{1}{1-g}\right), \quad \frac{1}{1-f}=\frac{1}{\alpha_{1}} \frac{1}{1-g}, \quad \frac{1}{1-f}-1=\frac{\alpha_{0}}{\alpha_{1}}\left(\frac{1}{1-g}-1\right)
$$

in the case of $\alpha_{2} / \alpha_{1}^{n} \equiv 1$. Here monic polynomials $Q(z)$ and $R(z)$ of degree n are defined by

$$
Q(z)=\frac{1}{P(0)} z^{n} P(1 / z) \quad \text { and } \quad R(z)=\frac{1}{P(1)} z^{n} P\left(\frac{z-1}{z}\right)
$$

which satisfy $Q(0) \neq 0, Q(1) \neq 0, R(0) \neq 0, R(1) \neq 1$.
Proposition 3.2. Let f and g be two nonconstant meromorphic functions and $P(z)$ a monic polynomial of degree $n(\geq 1)$ such that $P(0) \neq 0, P(1) \neq 0$. Assume that there exist entire functions without zeros α_{0}, α_{1} satisfying (3.1) and assume that f is not a Möbius transformation of g of type (i)~(vi) in Theorem 1.1. If in addition

$$
\begin{equation*}
P(f)=P(g) \tag{3.4}
\end{equation*}
$$

holds, then there exist polynomials $\Phi(X) \in \boldsymbol{C}[X]$ and $\varphi(z)=z^{p}(z-1)^{q}$ with $p, q>0$ and $(p, q)=1$ such that

$$
\varphi(f)=\omega \varphi(g) \quad P_{0}(z)=\Phi(\varphi(z))
$$

where $\omega^{t}=1$ for t such that the coefficient of X^{t} of $\Phi(X)$ is not zero.
Remark. If $n=1$, (3.4) implies $f=g$. If $n=2$ and $f \neq g$, (3.4) implies $f+g+a=0$ for some constant a. However, $a=0$ or $a=-2$ by Lemma 2.2, which are (i) and (ii), respectively.

Proof. We proceed the proof by induction on n.
Assume that the result holds for polynomials of degree not greater than $n-1$.

Let $c(\neq 0)$ the constant term of $P(z)$. There exit integers $m_{0} \geq 1$ and $k_{0} \geq 0$ and a monic polynomial $P_{1}(z)$ such that

$$
\begin{equation*}
P(z)=z^{m_{0}}(z-1)^{k_{0}} P_{1}(z)+c \quad \text { and } \quad P_{1}(0) \neq 0, P_{1}(1) \neq 0 \tag{3.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
P_{1}(f)=\left(\frac{g}{f}\right)^{m_{0}}\left(\frac{g-1}{f-1}\right)^{k_{0}} P_{1}(g)=\frac{1}{\alpha_{0}^{m_{0}} \alpha_{1}^{k_{0}}} P_{1}(g) \tag{3.6}
\end{equation*}
$$

Put $n_{1}:=\operatorname{deg} P_{1}(z)=n-m_{0}-k_{0}$. If $n_{1}=0$, then $\alpha_{0}^{m_{0}} \alpha_{1}^{k_{0}}=1$, and hence $k_{0} \geq 1$ and there is nothing to prove. So we consider the case of $n_{1}>0$. Apply Proposition 3.1 to (3.6) in place of (3.2), then one of the followings holds:

$$
\begin{gather*}
\alpha_{0}^{m_{0}} \alpha_{1}^{k_{0}}=1 \tag{3.7}\\
\frac{1}{\alpha_{0}^{m_{0}} \alpha_{1}^{k_{0}}} / \alpha_{0}^{n_{1}}=1 \quad \text { i.e., } \quad \alpha_{0}^{n-k_{0}} \alpha_{1}^{k_{0}}=1 \tag{3.8}\\
\frac{1}{\alpha_{0}^{m_{0}} \alpha_{1}^{k_{0}}} / \alpha_{1}^{n_{1}}=1 \quad \text { i.e., } \quad \alpha_{0}^{m_{0}} \alpha_{1}^{n-m_{0}}=1 . \tag{3.9}
\end{gather*}
$$

Since α_{0} and α_{1} are nonconstant by assumption, all above exponents of α_{0} and α_{1} are positive. Now assume that (3.8) holds. Then we have

$$
Q_{1}\left(\frac{1}{f}\right)=Q_{1}\left(\frac{1}{g}\right), \quad \frac{1}{g}=\frac{1}{\alpha_{0}} \frac{1}{g}, \quad \frac{1}{f}-1=\frac{\alpha_{1}}{\alpha_{0}}\left(\frac{1}{g}-1\right)
$$

where $Q_{1}(z):=\frac{1}{P_{1}(0)} z^{n_{1}} P_{1}\left(\frac{1}{z}\right)$. By applying the same process above to $\frac{1}{f}, \frac{1}{g}$ and $Q_{1}(z)$ there exist non-negative integers v_{0}, v_{1} such that $v_{0}+v_{1}>0$ and that

$$
\left(\frac{1}{\alpha_{0}}\right)^{v_{0}}\left(\frac{\alpha_{1}}{\alpha_{0}}\right)^{v_{1}}=1 \quad \text { i.e., } \quad \alpha_{1}^{v_{1}}=\alpha_{0}^{v_{0}+v_{1}}
$$

which induce with (3.8) that one of α_{0} and α_{1} is constant. This is a contradiction to the assumption. Hence (3.8) is excluded and so is (III) by the same manner. We have now (3.9) and then $P_{1}(f)=P(g)$ holds from (3.5). Note that $k_{0}>0$. By the assumption of induction there exists monic plynomials $\Phi_{1}(X) \in C[X]$ and $\varphi_{1}(z)=z^{p_{1}}(z-1)^{q_{1}}$ with $p_{1}, q_{1}>0$ and $\left(p_{1}, q_{1}\right)=1$ satisfying

$$
P_{1}(z)=\Phi_{1}\left(\varphi_{1}(z)\right) \quad \text { and } \quad \varphi_{1}(f)=\omega_{1} \varphi_{1}(g)
$$

where ω_{1} is a radical root of unity such that $\omega_{1}^{t}=1$ if the coefficients of X^{t} are not zero. Since some power of $\omega_{1}=\alpha_{0}^{p_{1}} \alpha_{1}^{q_{1}}$ is $1=\alpha_{0}^{m_{0}} \alpha_{1}^{k_{0}}$, we have $p_{1}: q_{1}=$ $m_{0}: k_{0}$. For, otherwise, α_{0} and α_{1} are constant. So there exist an integer N such that

$$
m_{0}=N p_{1}, \quad k_{0}=N p_{1},
$$

and then $\omega:=\alpha_{0}^{p_{1}} \alpha_{1}^{q_{1}}$ is a constant such that $\omega^{N}=1$. We obtain $p_{0}=p_{1}$, $q_{0}=q_{1}$ and complete the proof by taking $\Phi(X)=X^{N} \Phi_{1}(X)+c$ and $\varphi(z)=\varphi_{1}(z)$ from (3.5) and $P(z)=\left\{z^{p_{1}}(z-1)^{q_{1}}\right\}^{N} \Phi_{1}\left(\varphi_{1}(z)\right)+c$.

We have proved in place of Theorem 1.1
Theorem 3.3. Let f and g be two nonconstant meromorphic functions and $P(z)$ a monic polynomial of degree n such that $P(0), P(1) \neq 0$. Assume that there exist entire functions without zeros $\alpha_{0}, \alpha_{1}, \alpha_{2}$ satisfying (3.1) and (3.2). Then f and g have one of the relations (i)~(vii) in Theorem 1.1.

4. The case of cubic polynomials

In this section we consider cubic polynomials $P(z)$. Let $P(z)=z^{3}+a z^{2}+$ $b z+c$ a cubic polynomial without multiple zeros where a, b, c are constants with $c \neq 0, a+b+c \neq-1$. Let S be the zero points of $P(z)$.

Assume that two nonconstant meromorphic functions f and g on C share $0,1, \infty$ and the set S CM. Let α_{0} and α_{1} be the entire fuctions without zeros satisfying (3.1).

Further we assume that none of (i)~(vi) holds. Then by Theorem 1.1 there exists a monic polynomial $\varphi(z)=z^{p}(z-1)^{q}$ with relatively prime positive integers p and q such that

$$
P_{0}(z)=\varphi(z)+c \quad \text { and } \quad \varphi(f)=\varphi(g)
$$

Note that $\Phi(X)=X+c$ in this case.
If $P_{0}(z)=P(z)$, then $P(z)=z^{2}(z-1)+c$ or $P(z)=z(z-1)^{2}+c$. In the former

$$
f=\frac{\alpha_{0}\left(\alpha_{0}+1\right)}{\alpha_{0}^{2}+\alpha_{0}+1}, \quad g=\frac{\alpha_{0}+1}{\alpha_{0}^{2}+\alpha_{0}+1}
$$

with $\alpha_{0}^{2} \alpha_{1}=1$. In the latter

$$
f=\frac{1}{\alpha_{1}^{2}+\alpha_{1}+1}, \quad g=\frac{\alpha_{1}^{2}}{\alpha_{1}^{2}+\alpha_{1}+1}
$$

with $\alpha_{0} \alpha_{1}^{2}=1$.
If $P_{0}(z)=Q(z)$, then $P(z)=z^{3}-c z+c$ or $P(z)=z^{3}+c z^{2}-2 c z+c$. In the former

$$
f=\frac{\alpha_{0}^{2}+\alpha_{0}+1}{\alpha_{0}+1}, \quad g=\frac{\alpha_{0}^{2}+\alpha_{0}+1}{\alpha_{0}\left(\alpha_{0}+1\right)}
$$

with $\alpha_{0}^{2}=\alpha_{1}$. In the latter

$$
f=\frac{\alpha_{1}^{2}+\alpha_{1} \alpha_{0}+\alpha_{0}^{2}}{\alpha_{0}^{2}}, \quad g=\frac{\alpha_{1}^{2}+\alpha_{1} \alpha_{0}+\alpha_{0}^{2}}{\alpha_{1}^{2}}
$$

with $\alpha_{1}^{2}=\alpha_{0}^{3}$.
If $P_{0}(z)=R(z)$, then $P(z)=z^{3}-3 z^{2}+b z-1$ or $P(z)=z^{3}+a z^{2}+3 z-1$. In the former

$$
f=\frac{\alpha_{1}^{2}}{\alpha_{1}+1}, \quad g=\frac{1}{\alpha_{1}\left(\alpha_{1}+1\right)}
$$

with $\alpha_{0}=\alpha_{1}^{3}$. In the latter

$$
f=-\frac{\alpha_{0}\left(\alpha_{0}+\alpha_{1}\right)}{\alpha_{1}^{2}}, \quad g=-\frac{\alpha_{1}\left(\alpha_{0}+\alpha_{1}\right)}{\alpha_{0}^{2}}
$$

with $\alpha_{0}^{2}=\alpha_{1}^{3}$.

Now we identify the space of all monic polynomials of degree n with C^{n} by the corresondence $z^{n}+\sum_{j=1}^{n} a_{j} z^{n-j}$ with $\left(a_{1}, \ldots, a_{n}\right)$. Let X_{n} be the subspace of all monic polynomials $P(z)$ of degree n such that there exist two distinct nonconstant meromorphic functions f and g on \boldsymbol{C} satisfying (3.1) and (3.2) for some entire functions $\alpha_{j}(j=0,1,2)$ and not any of (i) $\sim(\mathrm{vi})$ in Theorem 1.1. Then X_{3} has dimension one under the above identification. As well if n is an odd prime number, so does X_{n}.

References

[F] H. Fuismoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23.
[La] S. LaNG, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987.
[Li] P. Li, Meromorphic functions sharing three values or sets CM, Kodai Math. J. 21 (1998), 138-152.
[LY] X.-M. Li and H.-X. Yi, Meromorphic functions sharing three values, J. Math. Soc. Japan 56 (2004), 147-168.
[N] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391.
[T] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J. 11 (1988), 249-279.

Manabu Shirosaki
Department of Mathmatical Sciences
College of Engineering
Osaka Prefecture University
Sakai 599-8531
Japan
E-mail: mshiro@ms.osakafu-u.ac.jp

[^0]: 2000 Mathematical Subject Classification. Primary 30D35.
 Key words and phrases. Uniqueness theorem, Shared values, Nevanlinna theory. Received March 9, 2006; revised June 7, 2006.

