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ON MEROMORPHIC FUNCTIONS SHARING THREE VALUES
AND ONE SET
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Abstract

We give relations of two meromorphic functions sharing 0, 1, oo and a set CM.

1. Introduction

For nonconstant meromorphic functions f and g on C and a discrete set
S in C=CU{w}, we say that f and g share S CM (counting multiplicities)
it f~1(S)=g¢"'(S) and if for each zye f~'(S) two functions f — f(z9) and
g — g(z0) have the same multiplicity of zero at zy, where the notations f — oo and
g — oo mean 1/f and 1/g, respectively. In particular if S is a one point set {a},
then we say also that f and g share « CM.

In [N], R. Nevalinna showed

THEOREM Al. Let f and g be two distinct nonconstant meromorphic func-
tions on C and ay,...,a4 four distinct points in C.If f and g share a,...,a
CM, then f is a Mébius transformation of g and there exists a permutation o of
{1,2,3,4} such that a,3), a4y are Picard exceptional values of f and g and the
cross ratio (dq(1), dg(2), dg(3); Ag4)) = — L.

If aj =0, a =1, a3 = o0, then the fourth point a4 such that the cross ratio
is —1 in some order is one of —1, 2 and % Then a part of Theorem Al can be
denoted as following:

THEOREM A2. Let f and g be two nonconstant meromorphic functions on
C sharing 0, 1, oo and a CM, where a # 0,1, 00. Then f and g have one of the
following relations:
1

f=9 f=
g

f:L and f=-—-g+1.
g—1
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Also, in [T] Tohge considered two meromorphic functions sharing 1, —1, o
and a two-point set containing none of them.

THEOREM Bl. Let f and g be two nonconstant meromorphic functions on C
sharing 1, —1 and .o CM. Let S ={a,b}, where a,b#1,—1,00. If f and g
share S CM, then they have one the following relations:

f=x9, fa=1, fH+g==%2, (fx1)g+xl)=4
rei=ox)) ad (14772 (0-112) =5,

-

where @’ =1, w # 1 and double signs in same order respectively.

If we replace the first three points by 0, 1 and oo, the result is changed as
follows:

THEOREM B2. Let f and g be two nonconstant meromorphic functions on C
sharing 0, 1 and oo CM. Let S = {a,b} where a,b #0,1,00. If f and g share
S CM, then they have one the following relations:

f:g7 f:_g+17 f:%’ f:_g+27 f:_ga fg:17

(f-Dg-1H)=1, f=wg, f-l=wlg-1) and f_(l%’
1——>g—|——

where @3> =1 and o # 1.

There are many results on two meromorphic functions sharing three values
CM with additional conditions of defects or counting functions for another value,
for example [Li] and [LY]. In this paper we consider two nonconstant mer-
omorphic functions sharing three values 0, 1, oo and a finite set containing none
of them.

THEOREM 1.1.  Let f and g be two nonconstant meromorphic functions on C
sharing 0, 1 and oo CM. Let S be a finite set in C defined by the zeros of a
monic polynomial P(z) without multiple zeros such that P(0) #0, P(1) #0. If f
and g share S CM, then they have one of the following relations:

(i) f=cg;

i) f—-l=clg-1)ie, f=cg—c+1;
iy 2212971, f:(c%)gg—c;
EiV) fa=
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(vi) f—;lzg_l
(vii) there exist monic polynomials ®(X) € C[X] and ¢(z) = zF(z — 1)7 with
p,q >0 and (p,q) =1 such that
o(f) = wplg), Po(z) = P(p(2)),

where ' =1 for t such that the coefficient of X' of ®(X) is not
; o 1 n 1 ——
zero and Py(z) is one of P(z),0(z) := P(O)Z P(z) and R(z) :=

()

ie, f=—g+1;

Here, ¢ is a non-zero constant in (1), (i) and (iii).

2. Representations of rank N and Borel’s lemma

In this section we introduce the definition of representations of rank N which

is a generalization of representations in [F, §2]. Let G be a torsion-free abelian
multiplicative group, and consider a g-tuple 4 = (a;,as,...,a,) of elements g
in G. For a subgroup 4 of G generated by aj,as,...,a,, we can take a basis

br,...,
(2.1)

with

b} of A. Then each a; can be uniquely represented as
a = b ¥inbyte .. bt

suitable integers ;. Let pi,...,p, be integers and put g =

Wi pr - W pre If

(2.2)

::]Q
\Q\.,

q
& _
I =

Jj=1

~.
I

3 /
for integers ¢ and ¢/, then

(2.3)

For

q q
_ ’
> ety =D et
=1 J=1

we have, by substiting (2.1) into (2.2),

!

NG | O

~

k=1 k=1
Since by,...,b, are linearly independent over Z, we get
q q
/
(2.4) Zej,ujk :ZSjujk (k=1,...,1),
J=1 J=1

and

hence
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q q ! t q
E &l = E & E Prlj = E Pk E &l
j=1 j=1 k=1 k=1 j=I1
t q q ! q
! ! i
=2 Pk Z‘%‘/‘ﬂc = Z'?f Zl’kﬂﬂc = Z%‘/‘j-
k=1 j=I j=1 k=1 j=1

Let N be a positive integer. We call integers w; representations of rank N

of a; if (2.3) implies (2.4) for any integers ¢, & with Y7, | <N and
,'qzl |ej/ | < N. In particular we call representations of rank 1, simply, repre-

sentations.

For the existence of representations of rank N, it is enough to take
pe=p"" (1 <7< for an integer p > 2N -max{|u;|;1 < j<gq,1 <k <1}

We introduce the following Borel’s Lemma, whose proof can be found, for
example, on p. 186 of [La].

Lemma 2.1. If entire functions ag,ay,...,0, without zeros satisfy
ag+og+ -+, =0,
then for each j=0,1,...,n there exists some k # j such that o;/oy is constant.

We use the following Lemma in the proof of Theorem 1.1 which is an
application of Lemma 2.1.

LemMa 2.2. Let f and g be two nonconstant meromorphic functions sharing
0, 1 and co CM. If two of 0, 1 and oo are the common Picard exceptional values
of f and g, then [ and g have one of the following relations:

Proof. There exist entire functions og, o; without zeros such that

(2.10) f=o0g, [f—1=uwm(g—1).

Fisrt assume that 0 and oo are the common Picard exceptional vaules of f
and g. Then f and g are entire functions without zeros. We apply Lemma 2.1
to the second equation of (2.10). Since f and g are not constant, we have either
f=oa1g, 1 =a; or f =—o, —1 =oa;g. The formar implies f = g and the latter
Jog=1

Next assume that 1 and oo are the common Picard exceptional vaules of
f and g. Then f —1 and g — 1 are entire functions without zeros. We apply
Lemma 2.1 to

(f =1 =a0lg—1)+o—1
which is induced from the former of (2.10). Since f and g are not constant, we
have either /' — 1 =ag(g—1), o =1o0r f =1 =ag, ag(¢g — 1) =1. The formar
implies /' =g and the latter (f —1)(g—1) =1.
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Finally assume that 0 and 1 are the common Picard exceptional vaules of f

and ¢g. Then S-
Lemma 2.1 to /

-1 . . .
and ¢ are entire functions without zeros. We apply
g

f_lzi.g;1+l_a0

which is induced from the former of (2.10). Since f and g are not constant, we
Sol_ Vo=l b /=t L g=1_ e
Sooom g % / 2’ a g

f-1g-1 =1. 0
ooy

have either

formar implies f =g and the latter

Now we investigate the torsion-free abelian multipicative group G = &/%,
where & is the abelian group of entire functions without zeros and % is the
subgroup of all non-zero constant functions.

Let o1,...,a, be elements in &. We represent by [« the element of &/%
with the representative o;. Take representations g of rank N of [o]. For
IT., oc;" we define its index by >3 ¢ The indices depend only on [, oc;’ ].

Lemma 2.3. Assume that there is a relation ¥(ui,...,0,) =0 where
Y(Xi,...,X,) e C[Xi,...,X,] is a nonconstant polynomial of degree at most N
of Xi,...,Xq Then each term aXf‘/--XqH/" of W(Xi,...,X,) has another term
bX{V - X, such that ot - oy and o' - - - 05" have the same indices, where a and b
are non-zero constants.

Proof. By using Lemma 2.1 each term aX|"---X,* has another term
be‘~-~Xq£" such that (oxf‘~~~oc,‘;")/(ocf‘~-~oc;") is constant. This implies the
conclusion of Lemma. O

3. Proof of Theorem 1.1

ProposITION 3.1.  Let f and g be two nonconstant meromorphic functions and
P(z) a monic polynomial of degree n(> 1) such that P(0), P(1) # 0. Assume that
there exist entire functions without zeros o, o, o such that

(3.1) f=oug, f-1=wu(g-1)
and
(32) P(f) = oaP(g).

and assume that f is not a Mobius transformation of g of type (1)~(vi) in Theorem
1.1.  Then one of wy/of, or/a] and o, is identically equal to 1.
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Proof. Delete f and g from the relations (3.1) and (3.2). Then we have
(3-3) o {P(0)ag + (—1)"P(1)a + () + 1}
—{(=1D)"gaf + () + P(1)og + P(0)(=1)"af (x)} = 0.

Here the degree of each term of (x) is not greater than n about o and «; and not
greater than n — 1 about each o; (j =0,1), and the degree of each term of (xx) is
not greater than 2n — 1 and not smaller than n about ¢ and «; and not greater
than n about each o; (j=0,1).

Let ug, 1, pu, be representations of o, o, o» with rank 2n. By assumption
i #0 (j=0,1) and p, # py, and we may assume g, <. In addition we
assume p, # 0.

(I) The case of py < p; < pto. If 0 < py < pty < p,, the minimal indices of
each terms in (3.3) may be only ny, and u,. Hence we have nuy, = u, by
Lemma 2.3. If gy, <0 < y; < p,, the minimal index of each terms in (3.3) is
only nu,, which contradicts to Lemma 2.3. If x, < gy < 0 < g5, the minimal
index of each terms in (3.3) is only n(u, + g, ), which contradicts to Lemma 2.3.
If wy < 1y < pp, <0, the minimal indices of each terms in (3.3) is only n(uy + 1),
which contradicts to Lemma 2.3. So we have nu, = 1, in this case.

(I') The case of u, < py < uy. We have also nu, =g, as in the case (I).

(II) The case of uy < ptp < g If 0 < py < py < yy, the minimal indices of
each terms in (3.3) may be only ny, and u,. Hence we have nuy = u, by
Lemma 2.3. If py <0 < u, < x;, the minimal index of each terms in (3.3) is
only nu,, which contradicts to Lemma 2.3. If x, < u, <0 < g, the minimal
index of each terms in (3.3) is only ny;, which contradicts to Lemma 2.3. If
Lo < Hy < 7 <0, the minimal indices of each terms in (3.3) may be only
n(py + 1) and nuy + u,. Hence we have ny; = u, by Lemma 2.3.  So we have
nuy = i, in this case.

(III) The case of py = g < py. If 0 < py = g < g, the minimal index of
each terms in (3.3) is only u,, which contradicts to Lemma 2.3. If u, = gy <
0 < g, the minimal index of each terms in (3.3) is only nu, + u,, which con-
tradicts to Lemma 2.3. If u, = uy < gy <0, the minimal indices of each terms
in (3.3) may be only n(u,+y,) and nu,+ u,. Hence we have nu; = pu, by
Lemma 2.3. So we have ny; = u, in the case (III).

(III") The case of uy < 4y = u,. We have npuy = p; as in this case.

Therefore since /,tjfs have rank 2n, one of o/uf, or/af and oy is constant.
Write it by C, then one of

f g =1 (¢—1)
holds. Since f and g, by assumption and Lemma 2.2, take simultaneously each
of 0, 1 and oo except at most one, we can conclude C = 1. O

Remark. Note that we get formalizations

P(f)=P(g), f=o0g, [f—-1=o(g-1)
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in the case of on =1,
1 1 I 11 1 oq(l )
— | = -1, —=——, ——1:— ——1
o(7)=2() a7 =a
in the case oy/af =1 and
1 1 1 1 1 1 o0 1
R[——)=R S =2
(1—f) (1—g>’ I—f al-g 1-f %1(1—9 )

in the case of oy /0] = 1. Here monic polynomials Q(z) and R(z) of degree n are
defined by

1, (=1
0O(z) :WZ P(1/z) and R(z) —Wz P(T)

which satisfy Q(0) # 0, O(1) #0, R(0) #0, R(1) # 1.

ProPOSITION 3.2.  Let f and g be two nonconstant meromorphic functions and
P(z) a monic polynomial of degree n(> 1) such that P(0) #0, P(1) #0. Assume
that there exist entire functions without zeros oy, o satisfying (3.1) and assume that
f is not a Mdbius transformation of g of type (i)~(vi) in Theorem 1.1. If in
addition

(3.4) P(f) = P(9)
holds, then there exist polynomials ®(X)e C[X| and ¢(z) =zP(z—1)? with
p,q>0 and (p,q) =1 such that
o(f) = wp(g)  Po(z) = D(p(2)),
where o' =1 for t such that the coefficient of X' of ®(X) is not zero.
Remark. 1f n=1, (3.4) implies f =¢g. If n=2 and f #g¢, (3.4) implies

f+g+a=0 for some constant a. However, « =0 or ¢« = —2 by Lemma 2.2,
which are (i) and (ii), respectively.

Proof. We proceed the proof by induction on n.

Assume that the result holds for polynomials of degree not greater than
n—1.

Let ¢(# 0) the constant term of P(z). There exit integers mo > 1 and k¢ > 0
and a monic polynomial P;(z) such that

(3.5) P(z) =z (z—1)*Pi(z) + ¢ and P;(0) #0, Pi(1) #0.
Then we have

(36) Pi(f) = (%)m (Jgféll)k”m(g) :an%alkomm.

0
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Put ny :=deg Pi(z) =n—mg — ko. If n; =0, then ocg’oocf‘o =1, and hence ko > 1
and there is nothing to prove. So we consider the case of n; > 0. Apply
Proposition 3.1 to (3.6) in place of (3.2), then one of the followings holds:

(3.7) a0t = 1;
1 n . l17k() 1((]
(3.8) i %0 =1 e, oy lut =1
Oy O
0 1
(3 9) 1 n __ 1 ] mo ., ,n—mqy __ 1
. T o' = ie., oyl =1.
0 71

Since oy and o; are nonconstant by assumption, all above exponents of oy and o
are positive. Now assume that (3.8) holds. Then we have

1 Iy 1 11 1 o (1
“J=0/(-), ~=—-, ——1=2(--1
o(5) =) =%y 726

where Q;(z) := !

1
P(0) /g
and Q;(z) there exist non-negative integers vy, v; such that vy + v; > 0 and that

1 Vo O{l Vi
_ P Vi VotV
(a—()) (a—o) =1 l.e., O(l = OCO 3

which induce with (3.8) that one of oy and o, is constant. This is a contradiction
to the assumption. Hence (3.8) is excluded and so is (III) by the same manner.
We have now (3.9) and then P;(f) = P(g) holds from (3.5). Note that k¢ > 0.
By the assumption of induction there exists monic plynomials @;(X) € C[X] and
¢;(z) =z (z — 1) with p1,¢q1 >0 and (p1,¢q1) = 1 satisfying

Pi(z) = ®i(p(z)) and ¢,(f) = w19,(9)

where ) is a radical root of unity such that w{ = 1 if the coefficients of X’ are
not zero. Since some power of w; = ol is 1 = ot we have p;:q =
my : ko. For, otherwise, ap and o) are constant. So there exist an integer N

such that

1 .
z" P (z) By applying the same process above to

mo = Np1, ko= Npi,

and then w:=of'af' is a constant such that w® = We obtain pg = pi,

1.
g0 = ¢1 and complete the proof by taking ®(X) = XV (X) + ¢ and ¢(z) = ¢,(z)
from (3.5) and P(z) = {z/'(z — D"}V ®,(p,(2)) + c. O

We have proved in place of Theorem 1.1

THEOREM 3.3. Let f and g be two nonconstant meromorphic functions and
P(z) a monic polynomial of degree n such that P(0),P(1) # 0. Assume that there
exist entire functions without zeros oy, oy, o satisfying (3.1) and (3.2). Then f
and g have one of the relations (i)~(vii) in Theorem 1.1.
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4. The case of cubic polynomials

In this section we consider cubic polynomials P(z). Let P(z) =z +az> +
bz + ¢ a cubic polynomial without multiple zeros where a, b, ¢ are constants with
c#0, a+b+c#—1. Let S be the zero points of P(z).

Assume that two nonconstant meromorphic functions f and g on C share
0, 1, oo and the set S CM. Let oy and oy be the entire fuctions without zeros
satisfying (3.1).

Further we assume that none of (i)~(vi) holds. Then by Theorem 1.1 there
exists a monic polynomial ¢(z) = z”(z — 1)? with relatively prime positive integers
p and ¢ such that

Py(z) = 9(z) + ¢ and o(f) = ¢(9).

Note that ®(X) = X + ¢ in this case.
If Py(z) = P(z), then P(z) =z%(z—1)+c or P(z) =z(z—1)>+¢. In the
former

og(og + 1) op + 1
f: B y =3
o+ oo+ 1 of + oo+ 1
with ooy = 1. In the latter

2
1 o

:ocleroclJrl’ g:oclz+oc1+1

/

with ogo? = 1.
If Py(z) = Q(z), then P(z)=z>—cz+c or P(z) =z +¢z2~2cz+c. In
the former

Caj 4oy +1 o tog+1
 ap+1 g_oco(oco+1)
with o} =oy. In the latter
fioclz—i-oclaco—l—ac% 706124-0(10(04-0(%
- o s o

with o = o3.
If Py(z) = R(z), then P(z) =23 —3z2+bz—1 or P(z) =23 +az*+3z—1.

In the former

2
o 1
f=—1— g=——-
o + 1 oap(og + 1)
with o9 =0o;. In the latter
: oo (oo 4 op) oy (oo + o)
f== o? ’ T o3
i 0

: 2_ .3
with aj = oj.



484 MANABU SHIROSAKI

Now we identify the space of all monic polynomials of degree n with C " by
the corresondence z" + Z}’:I ajz"/ with (ay,...,a,). Let X, be the subspace of

all monic polynomials P(z) of degree n such that there exist two distinct
nonconstant meromorphic functions f and g on C satisfying (3.1) and (3.2) for
some entire functions o; (j=0,1,2) and not any of (i)~(vi) in Theorem
1.1. Then X3 has dimension one under the above identification. As well if n is
an odd prime number, so does X,.
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