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ON MEROMORPHIC FUNCTIONS SHARING THREE VALUES

AND ONE SET

Manabu Shirosaki

Abstract

We give relations of two meromorphic functions sharing 0, 1, y and a set CM.

1. Introduction

For nonconstant meromorphic functions f and g on C and a discrete set
S in ĈC ¼ C U fyg, we say that f and g share S CM (counting multiplicities)

if f �1ðSÞ ¼ g�1ðSÞ and if for each z0 A f �1ðSÞ two functions f � f ðz0Þ and
g� gðz0Þ have the same multiplicity of zero at z0, where the notations f �y and
g�y mean 1=f and 1=g, respectively. In particular if S is a one point set fag,
then we say also that f and g share a CM.

In [N], R. Nevalinna showed

Theorem A1. Let f and g be two distinct nonconstant meromorphic func-
tions on C and a1; . . . ; a4 four distinct points in ĈC .If f and g share a1; . . . ; a4
CM, then f is a Möbius transformation of g and there exists a permutation s of
f1; 2; 3; 4g such that asð3Þ, asð4Þ are Picard exceptional values of f and g and the
cross ratio ðasð1Þ; asð2Þ; asð3Þ; asð4ÞÞ ¼ �1.

If a1 ¼ 0, a2 ¼ 1, a3 ¼ y, then the fourth point a4 such that the cross ratio
is �1 in some order is one of �1, 2 and 1

2 . Then a part of Theorem A1 can be
denoted as following:

Theorem A2. Let f and g be two nonconstant meromorphic functions on
C sharing 0, 1, y and a CM, where a0 0; 1;y. Then f and g have one of the
following relations:

f ¼ g; f ¼ 1

g
; f ¼ g

g� 1
and f ¼ �gþ 1:
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Also, in [T] Tohge considered two meromorphic functions sharing 1, �1, y
and a two-point set containing none of them.

Theorem B1. Let f and g be two nonconstant meromorphic functions on C
sharing 1, �1 and y CM. Let S ¼ fa; bg, where a; b0 1;�1;y. If f and g
share S CM, then they have one the following relations:

f ¼Gg; fg ¼ 1; f þ g ¼G2; ð f G 1ÞðgG 1Þ ¼ 4

f G 1 ¼ oðgG 1Þ and f þ 1þ o

1� o

� �
g� 1þ o

1� o

� �
¼ 4

3
;

where o3 ¼ 1, o0 1 and double signs in same order respectively.

If we replace the first three points by 0, 1 and y, the result is changed as
follows:

Theorem B2. Let f and g be two nonconstant meromorphic functions on C
sharing 0, 1 and y CM. Let S ¼ fa; bg where a; b0 0; 1;y. If f and g share
S CM, then they have one the following relations:

f ¼ g; f ¼ �gþ 1; f ¼ g

2g� 1
; f ¼ �gþ 2; f ¼ �g; fg ¼ 1;

ð f � 1Þðg� 1Þ ¼ 1; f ¼ og; f � 1 ¼ oðg� 1Þ and f ¼ g

1� 1

o

� �
gþ 1

o

;

where o3 ¼ 1 and o0 1.

There are many results on two meromorphic functions sharing three values
CM with additional conditions of defects or counting functions for another value,
for example [Li] and [LY]. In this paper we consider two nonconstant mer-
omorphic functions sharing three values 0, 1, y and a finite set containing none
of them.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions on C
sharing 0, 1 and y CM. Let S be a finite set in C defined by the zeros of a
monic polynomial PðzÞ without multiple zeros such that Pð0Þ0 0, Pð1Þ0 0. If f
and g share S CM, then they have one of the following relations:

(i) f ¼ cg;
(ii) f � 1 ¼ cðg� 1Þ i.e., f ¼ cg� cþ 1;

(iii)
f � 1

f
¼ c

g� 1

g
i.e., f ¼ �g

ðc� 1Þg� c
;

(iv) fg ¼ 1;
(v) ð f � 1Þðg� 1Þ ¼ 1 i.e., f ¼ g

g� 1
;
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(vi)
f � 1

f
¼ g� 1

g
i.e., f ¼ �gþ 1;

(vii) there exist monic polynomials FðXÞ A C ½X � and jðzÞ ¼ zpðz� 1Þq with
p; q > 0 and ðp; qÞ ¼ 1 such that

jð f Þ ¼ ojðgÞ; P0ðzÞ ¼ FðjðzÞÞ;
where o t ¼ 1 for t such that the coe‰cient of X t of FðXÞ is not

zero and P0ðzÞ is one of PðzÞ;QðzÞ :¼ 1

Pð0Þ z
nP

1

z

� �
and RðzÞ :¼

1

Pð1Þ z
nP

z� 1

z

� �
.

Here, c is a non-zero constant in (i), (ii) and (iii).

2. Representations of rank N and Borel’s lemma

In this section we introduce the definition of representations of rank N which
is a generalization of representations in [F, §2]. Let G be a torsion-free abelian
multiplicative group, and consider a q-tuple A ¼ ða1; a2; . . . ; aqÞ of elements ai
in G. For a subgroup ~AA of G generated by a1; a2; . . . ; aq, we can take a basis

fb1; . . . ; btg of ~AA. Then each ai can be uniquely represented as

aj ¼ b1
mj1b2

mj2 � � � bt mjtð2:1Þ
with suitable integers mjt. Let p1; . . . ; pt be integers and put mj :¼
mj1 p1 þ � � � þ mjt pt. If

Yq
j¼1

a
ej
j ¼

Yq
j¼1

a
e 0j
jð2:2Þ

for integers ej and e 0j , then

Xq

j¼1

ejmj ¼
Xq

j¼1

e 0jmj :ð2:3Þ

For we have, by substiting (2.1) into (2.2),

Yt
k¼1

b
T

q

j¼1 ejmjk
k ¼

Yt
k¼1

bj
T

q

j¼1 e
0
j
mjk :

Since b1; . . . ; bt are linearly independent over Z, we get

Xq

j¼1

ejmjk ¼
Xq

j¼1

e 0jmjk ðk ¼ 1; . . . ; tÞ;ð2:4Þ

and hence
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Xq

j¼1

ejmj ¼
Xq

j¼1

ej
Xt

k¼1

pkmjk ¼
Xt

k¼1

pk
Xq

j¼1

ejmjk

¼
Xt

k¼1

pk
Xq

j¼1

e 0jmjk ¼
Xq

j¼1

e 0j
Xt

k¼1

pkmjk ¼
Xq

j¼1

e 0jmj:

Let N be a positive integer. We call integers mj representations of rank N
of aj if (2.3) implies (2.4) for any integers ej, e 0j with

Pq
j¼1 jejjaN andPq

j¼1 je 0j jaN. In particular we call representations of rank 1, simply, repre-
sentations.

For the existence of representations of rank N, it is enough to take
pt ¼ pt�1 ð1a ta tÞ for an integer p > 2N �maxfjmjkj; 1a ja q; 1a ka tg.

We introduce the following Borel’s Lemma, whose proof can be found, for
example, on p. 186 of [La].

Lemma 2.1. If entire functions a0; a1; . . . ; an without zeros satisfy

a0 þ a1 þ � � � þ an ¼ 0;

then for each j ¼ 0; 1; . . . ; n there exists some k0 j such that aj=ak is constant.

We use the following Lemma in the proof of Theorem 1.1 which is an
application of Lemma 2.1.

Lemma 2.2. Let f and g be two nonconstant meromorphic functions sharing
0, 1 and y CM. If two of 0, 1 and y are the common Picard exceptional values
of f and g, then f and g have one of the following relations:

f ¼ g; fg ¼ 1; ð f � 1Þðg� 1Þ ¼ 1 and
f � 1

f
� g� 1

g
¼ 1:

Proof. There exist entire functions a0, a1 without zeros such that

f ¼ a0g; f � 1 ¼ a1ðg� 1Þ:ð2:10Þ
Fisrt assume that 0 and y are the common Picard exceptional vaules of f

and g. Then f and g are entire functions without zeros. We apply Lemma 2.1
to the second equation of (2.10). Since f and g are not constant, we have either
f ¼ a1g, 1 ¼ a1 or f ¼ �a1, �1 ¼ a1g. The formar implies f ¼ g and the latter
fg ¼ 1.

Next assume that 1 and y are the common Picard exceptional vaules of
f and g. Then f � 1 and g� 1 are entire functions without zeros. We apply
Lemma 2.1 to

ð f � 1Þ ¼ a0ðg� 1Þ þ a0 � 1

which is induced from the former of (2.10). Since f and g are not constant, we
have either f � 1 ¼ a0ðg� 1Þ, a0 ¼ 1 or f � 1 ¼ a0, a0ðg� 1Þ ¼ 1. The formar
implies f ¼ g and the latter ð f � 1Þðg� 1Þ ¼ 1.
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Finally assume that 0 and 1 are the common Picard exceptional vaules of f

and g. Then
f � 1

f
and

g� 1

g
are entire functions without zeros. We apply

Lemma 2.1 to

f � 1

f
¼ 1

a0
� g� 1

g
þ 1� a0

which is induced from the former of (2.10). Since f and g are not constant, we

have either
f � 1

f
¼ 1

a0
� g� 1

g
,

1

a0
¼ 1 or

f � 1

f
¼ � 1

a0
,

1

a0
� g� 1

g
¼ �1. The

formar implies f ¼ g and the latter
f � 1

f
� g� 1

g
¼ 1. r

Now we investigate the torsion-free abelian multipicative group G ¼ E=C,
where E is the abelian group of entire functions without zeros and C is the
subgroup of all non-zero constant functions.

Let a1; . . . ; aq be elements in E. We represent by ½aj � the element of E=C
with the representative aj. Take representations mj of rank N of ½aj�. ForQq

j¼1 a
ej
j we define its index by

Pq
j¼1 ejmj . The indices depend only on ½

Qq
j¼1 a

ej
j �.

Lemma 2.3. Assume that there is a relation Cða1; . . . ; aqÞ1 0 where
CðX1; . . . ;XqÞ A C ½X1; . . . ;Xq� is a nonconstant polynomial of degree at most N
of X1; . . . ;Xq. Then each term aX e1

1 � � �X eq
q of CðX1; . . . ;XqÞ has another term

bX
e 0
1

1 � � �X e 0q
q such that ae1

1 � � � aeq
q and a

e 0
1

1 � � � ae 0q
q have the same indices, where a and b

are non-zero constants.

Proof. By using Lemma 2.1 each term aX e1
1 � � �X eq

q has another term

bX
e 0
1

1 � � �X e 0q
q such that ðae1

1 � � � aeq
q Þ=ða

e 0
1

1 � � � ae 0q
q Þ is constant. This implies the

conclusion of Lemma. r

3. Proof of Theorem 1.1

Proposition 3.1. Let f and g be two nonconstant meromorphic functions and
PðzÞ a monic polynomial of degree nðb 1Þ such that Pð0Þ;Pð1Þ0 0. Assume that
there exist entire functions without zeros a0, a1, a2 such that

f ¼ a0g; f � 1 ¼ a1ðg� 1Þð3:1Þ

and

Pð f Þ ¼ a2PðgÞ:ð3:2Þ

and assume that f is not a Möbius transformation of g of type (i)@(vi) in Theorem
1.1. Then one of a2=a

n
0, a2=a

n
1 and a2 is identically equal to 1.
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Proof. Delete f and g from the relations (3.1) and (3.2). Then we have

a2fPð0Þan
0 þ ð�1ÞnPð1Þan

1 þ ð�Þ þ 1gð3:3Þ
� fð�1Þnan

0a
n
1 þ ð��Þ þ Pð1Þan

0 þ Pð0Þð�1Þnan
1 ð�Þg ¼ 0:

Here the degree of each term of ð�Þ is not greater than n about a0 and a1 and not
greater than n� 1 about each aj ð j ¼ 0; 1Þ, and the degree of each term of ð��Þ is
not greater than 2n� 1 and not smaller than n about a0 and a1 and not greater
than n about each aj ð j ¼ 0; 1Þ.

Let m0, m1, m2 be representations of a0, a1, a2 with rank 2n. By assumption
mj 0 0 ð j ¼ 0; 1Þ and m0 0 m1, and we may assume m0 < m1. In addition we
assume m2 0 0.

(I) The case of m0 < m1 a m2. If 0 < m0 < m1 a m2, the minimal indices of
each terms in (3.3) may be only nm0 and m2. Hence we have nm0 ¼ m2 by
Lemma 2.3. If m0 < 0 < m1 a m2, the minimal index of each terms in (3.3) is
only nm0, which contradicts to Lemma 2.3. If m0 < m1 < 0 < m2, the minimal
index of each terms in (3.3) is only nðm0 þ m1Þ, which contradicts to Lemma 2.3.
If m0 < m1 a m2 < 0, the minimal indices of each terms in (3.3) is only nðm0 þ m1Þ,
which contradicts to Lemma 2.3. So we have nm0 ¼ m2 in this case.

(I 0) The case of m2 a m0 < m1. We have also nm0 ¼ m1 as in the case (I).
(II) The case of m0 < m2 < m1. If 0 < m0 < m2 < m1, the minimal indices of

each terms in (3.3) may be only nm0 and m2. Hence we have nm0 ¼ m2 by
Lemma 2.3. If m0 < 0 < m2 < m1, the minimal index of each terms in (3.3) is
only nm0, which contradicts to Lemma 2.3. If m0 < m2 < 0 < m1, the minimal
index of each terms in (3.3) is only nm1, which contradicts to Lemma 2.3. If
m0 < m2 < m1 < 0, the minimal indices of each terms in (3.3) may be only
nðm0 þ m1Þ and nm0 þ m2. Hence we have nm1 ¼ m2 by Lemma 2.3. So we have
nm0 ¼ m2 in this case.

(III) The case of m2 ¼ m0 < m1. If 0 < m2 ¼ m0 < m1, the minimal index of
each terms in (3.3) is only m2, which contradicts to Lemma 2.3. If m2 ¼ m0 <
0 < m1, the minimal index of each terms in (3.3) is only nm0 þ m2, which con-
tradicts to Lemma 2.3. If m2 ¼ m0 < m1 < 0, the minimal indices of each terms
in (3.3) may be only nðm0 þ m1Þ and nm0 þ m2. Hence we have nm1 ¼ m2 by
Lemma 2.3. So we have nm1 ¼ m2 in the case (III).

(III 0) The case of m0 < m1 ¼ m2. We have nm0 ¼ m1 as in this case.
Therefore since m 0

j s have rank 2n, one of a2=a
n
0, a2=a

n
1 and a2 is constant.

Write it by C, then one of

Pð f Þ ¼ CPðgÞ; Pð f Þ
f n

¼ C
PðgÞ
gn

;
Pð f Þ

ð f � 1Þn ¼ C
PðgÞ

ðg� 1Þn

holds. Since f and g, by assumption and Lemma 2.2, take simultaneously each
of 0, 1 and y except at most one, we can conclude C ¼ 1. r

Remark. Note that we get formalizations

Pð f Þ ¼ PðgÞ; f ¼ a0g; f � 1 ¼ a1ðg� 1Þ
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in the case of a2 1 1,

Q
1

f

� �
¼ Q

1

g

� �
;

1

f
¼ 1

a0

1

g
;

1

f
� 1 ¼ a1

a0

1

g
� 1

� �

in the case a2=a
n
0 1 1 and

R
1

1� f

� �
¼ R

1

1� g

� �
;

1

1� f
¼ 1

a1

1

1� g
;

1

1� f
� 1 ¼ a0

a1

1

1� g
� 1

� �

in the case of a2=a
n
1 1 1. Here monic polynomials QðzÞ and RðzÞ of degree n are

defined by

QðzÞ ¼ 1

Pð0Þ z
nPð1=zÞ and RðzÞ ¼ 1

Pð1Þ z
nP

z� 1

z

� �

which satisfy Qð0Þ0 0, Qð1Þ0 0, Rð0Þ0 0, Rð1Þ0 1.

Proposition 3.2. Let f and g be two nonconstant meromorphic functions and
PðzÞ a monic polynomial of degree nðb 1Þ such that Pð0Þ0 0, Pð1Þ0 0. Assume
that there exist entire functions without zeros a0, a1 satisfying (3.1) and assume that
f is not a Möbius transformation of g of type (i)@(vi) in Theorem 1.1. If in
addition

Pð f Þ ¼ PðgÞð3:4Þ

holds, then there exist polynomials FðXÞ A C ½X � and jðzÞ ¼ zpðz� 1Þq with
p; q > 0 and ðp; qÞ ¼ 1 such that

jð f Þ ¼ ojðgÞ P0ðzÞ ¼ FðjðzÞÞ;

where o t ¼ 1 for t such that the coe‰cient of X t of FðXÞ is not zero.

Remark. If n ¼ 1, (3.4) implies f ¼ g. If n ¼ 2 and f 0 g, (3.4) implies
f þ gþ a ¼ 0 for some constant a. However, a ¼ 0 or a ¼ �2 by Lemma 2.2,
which are (i) and (ii), respectively.

Proof. We proceed the proof by induction on n.
Assume that the result holds for polynomials of degree not greater than

n� 1.
Let cð0 0Þ the constant term of PðzÞ. There exit integers m0 b 1 and k0 b 0

and a monic polynomial P1ðzÞ such that

PðzÞ ¼ zm0ðz� 1Þk0P1ðzÞ þ c and P1ð0Þ0 0; P1ð1Þ0 0:ð3:5Þ
Then we have

P1ð f Þ ¼
g

f

� �m0 g� 1

f � 1

� �k0

P1ðgÞ ¼
1

am0

0 ak0

1

P1ðgÞ:ð3:6Þ
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Put n1 :¼ deg P1ðzÞ ¼ n�m0 � k0. If n1 ¼ 0, then am0

0 ak0

1 ¼ 1, and hence k0 b 1
and there is nothing to prove. So we consider the case of n1 > 0. Apply
Proposition 3.1 to (3.6) in place of (3.2), then one of the followings holds:

am0

0 ak0

1 ¼ 1;ð3:7Þ

1

am0

0 ak0

1

�
an1
0 ¼ 1 i:e:; an�k0

0 ak0

1 ¼ 1;ð3:8Þ

1

am0

0 ak0

1

�
an1
1 ¼ 1 i:e:; am0

0 an�m0

1 ¼ 1:ð3:9Þ

Since a0 and a1 are nonconstant by assumption, all above exponents of a0 and a1
are positive. Now assume that (3.8) holds. Then we have

Q1
1

f

� �
¼ Q1

1

g

� �
;

1

g
¼ 1

a0

1

g
;

1

f
� 1 ¼ a1

a0

1

g
� 1

� �

where Q1ðzÞ :¼
1

P1ð0Þ
zn1P1

1

z

� �
. By applying the same process above to

1

f
,
1

g
and Q1ðzÞ there exist non-negative integers n0, n1 such that n0 þ n1 > 0 and that

1

a0

� �n0 a1

a0

� �n1

¼ 1 i:e:; an1
1 ¼ an0þn1

0 ;

which induce with (3.8) that one of a0 and a1 is constant. This is a contradiction
to the assumption. Hence (3.8) is excluded and so is (III) by the same manner.
We have now (3.9) and then P1ð f Þ ¼ PðgÞ holds from (3.5). Note that k0 > 0.
By the assumption of induction there exists monic plynomials F1ðX Þ A C ½X � and
j1ðzÞ ¼ zp1ðz� 1Þq1 with p1; q1 > 0 and ðp1; q1Þ ¼ 1 satisfying

P1ðzÞ ¼ F1ðj1ðzÞÞ and j1ð f Þ ¼ o1j1ðgÞ
where o1 is a radical root of unity such that o t

1 ¼ 1 if the coe‰cients of X t are
not zero. Since some power of o1 ¼ a

p1
0 a

q1
1 is 1 ¼ am0

0 ak0

1 , we have p1 : q1 ¼
m0 : k0. For, otherwise, a0 and a1 are constant. So there exist an integer N
such that

m0 ¼ Np1; k0 ¼ Np1;

and then o :¼ a
p1
0 a

q1
1 is a constant such that oN ¼ 1. We obtain p0 ¼ p1,

q0 ¼ q1 and complete the proof by taking FðXÞ ¼ X NF1ðXÞ þ c and jðzÞ ¼ j1ðzÞ
from (3.5) and PðzÞ ¼ fzp1ðz� 1Þq1gNF1ðj1ðzÞÞ þ c. r

We have proved in place of Theorem 1.1

Theorem 3.3. Let f and g be two nonconstant meromorphic functions and
PðzÞ a monic polynomial of degree n such that Pð0Þ;Pð1Þ0 0. Assume that there
exist entire functions without zeros a0, a1, a2 satisfying (3.1) and (3.2). Then f
and g have one of the relations (i)@(vii) in Theorem 1.1.
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4. The case of cubic polynomials

In this section we consider cubic polynomials PðzÞ. Let PðzÞ ¼ z3 þ az2 þ
bzþ c a cubic polynomial without multiple zeros where a, b, c are constants with
c0 0, aþ bþ c0�1. Let S be the zero points of PðzÞ.

Assume that two nonconstant meromorphic functions f and g on C share
0, 1, y and the set S CM. Let a0 and a1 be the entire fuctions without zeros
satisfying (3.1).

Further we assume that none of (i)@(vi) holds. Then by Theorem 1.1 there
exists a monic polynomial jðzÞ ¼ zpðz� 1Þq with relatively prime positive integers
p and q such that

P0ðzÞ ¼ jðzÞ þ c and jð f Þ ¼ jðgÞ:
Note that FðX Þ ¼ X þ c in this case.

If P0ðzÞ ¼ PðzÞ, then PðzÞ ¼ z2ðz� 1Þ þ c or PðzÞ ¼ zðz� 1Þ2 þ c. In the
former

f ¼ a0ða0 þ 1Þ
a20 þ a0 þ 1

; g ¼ a0 þ 1

a20 þ a0 þ 1

with a20a1 ¼ 1. In the latter

f ¼ 1

a21 þ a1 þ 1
; g ¼ a21

a21 þ a1 þ 1

with a0a
2
1 ¼ 1.

If P0ðzÞ ¼ QðzÞ, then PðzÞ ¼ z3 � czþ c or PðzÞ ¼ z3 þ cz2 � 2czþ c. In
the former

f ¼ a20 þ a0 þ 1

a0 þ 1
; g ¼ a20 þ a0 þ 1

a0ða0 þ 1Þ
with a20 ¼ a1. In the latter

f ¼ a21 þ a1a0 þ a20
a20

; g ¼ a21 þ a1a0 þ a20
a21

with a21 ¼ a30.
If P0ðzÞ ¼ RðzÞ, then PðzÞ ¼ z3 � 3z2 þ bz� 1 or PðzÞ ¼ z3 þ az2 þ 3z� 1.

In the former

f ¼ a21
a1 þ 1

; g ¼ 1

a1ða1 þ 1Þ
with a0 ¼ a31 . In the latter

f ¼ � a0ða0 þ a1Þ
a21

; g ¼ � a1ða0 þ a1Þ
a20

with a20 ¼ a31 .
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Now we identify the space of all monic polynomials of degree n with C n by
the corresondence zn þ

Pn
j¼1 ajz

n�j with ða1; . . . ; anÞ. Let Xn be the subspace of

all monic polynomials PðzÞ of degree n such that there exist two distinct
nonconstant meromorphic functions f and g on C satisfying (3.1) and (3.2) for
some entire functions aj ð j ¼ 0; 1; 2Þ and not any of (i)@(vi) in Theorem
1.1. Then X3 has dimension one under the above identification. As well if n is
an odd prime number, so does Xn.
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