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Abstract

Some consequences of equality in the Castelnuovo-Severi inequality are discussed.
In particular, it is shown that if a Riemann surface of genus ten, W), admits four
coverings of tori, each in three sheets, then W}y admits an elementary abelian group of
order 27. By previous work this last result is then characterized by the vanishing of
certain thetanulls. An elementary discussion of the direct product of monodromy
groups is an essential part of the proofs.

1. Introduction

The inequality of Castelnuovo-Severi is as follows [2, 4]. Let W¥,, a compact
Riemann surface of genus ¢, cover two Riemann surfaces, W}, genus A, in m
sheets, and W}, genus k, in n sheets, so that the two coverings admit no common
non-trivial factorization. (If m and n are primes this will always be the case.)
Then the Castelnuovo-Severi inequality (CSI) states:

g <mh+nk+ (m—1)(n—-1)

A natural (and venerable) question is whether there is a Riemann surface W},
covered by W), in n sheets, and covered by W) in m sheets, so that the resulting
square diagram commutes. In the case of equality in the CSI a theorem of
Castelnuovo gives much more information, so that in this case the question
should be easier to answer. For & =k =0 the answer is: sometimes yes and
sometimes no (Section 8). So perhaps the question should be that of finding
necessary and sufficient conditions for the existence of such a W,, which must
necessarily be the Riemann sphere P!. We shall give a characterization when
h=k=1, m=3 and n an odd prime (Theorems 4.5 and 4.6). A more general
situation is covered in Theorem 4.2 where /& and k are large compared to m and n.

This investigation had its origin in a W, covering several tori each in three
sheets, where this situation is characterized by the existence on Wj, of certain
half-canonical linear series [3]. The goal was to show that if Wj¢ covered four
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such tori then W)y admitted an automorphism group isomorphic to an elementary
abelian group of order 27 (Section 7). It turns out that a substantial part of the
proof can be carried out when 3 is replaced by any odd prime p, and perhaps this
clarifies the proof. Section 5 carries out that part of the proof with 3 replaced
by p. Section 6 gives examples.

By Riemann’s solution to the Jacobi inversion problem the existence of half-
canonical linear series on W) is equivalent to the vanishing of the theta function
for the Jacobian of W) at certain half-periods (vanishing thetanulls) [5]. Thus
the existence on a W)y of such a group of order 27 is characterized by the
vanishing of certain thetanulls.

This paper deals with a subject and methods available to mathematicians in
the early part of the last century, if not ecarlier. Considering the extensive
literature already existing at that time, the author really has no idea whether
some if not all of the material in this paper is already part of the literature. If a
reader knows of any reference in the literature that pertains to the work here
presented, the author would be very grateful to know of it.

2. Preliminary results

First some notation. W, will always stand for a compact Riemann surface
with the lower case subscript denoting its genus, in this case g. Wy will always
denote a compact Riemann surface with a finite set of points, Ptp, deleted with
the upper case subscript denoting its fundamental group (in this case F) after a
suitable base point has been chosen. Wy will denote the compact Riemann
surface obtained by adding the points Pty to Wy; that is Wi — Pty = Wp. Wp
and W7 have the same genus. Occasionally we will use both kinds of notation,
W, and Wy, for the same compact Riemann surface.

If 4 is a subgroup of F of finite index m, then after suitable base points have
been chosen the topological mapping 7n4r : Wy — Wy is defined. (We will al-
ways assume, without further comment, such suitable base points chosen so that
coverings of Riemann surfaces with subgroup subscripts F,A4,B,ANB,..., will
correspond to the inclusion relations of the subgroups indicated; e.g., Wynp —
W,.) The covering map can be extended to myr : W — Wy where Pty maps
onto Ptp. (If W,* has genus & and W; has genus / we may denote nyr by 7.

Let Ax;,Ax;,...,Ax, be a coset decomposition of F. These cosets cor-
respond to the points on W, above the base point for F. The monodromy map
w: F — S, (the symmetric group on the first m digits) is as follows: u(f)(i) = j
if Ax;f = Ax;. (Here we will make no notational distinction between a path f
and its homotopy equivalence class.) Let A4, denote the kernel of x. Then
F /Ay is isomorphic to Im(u), the monodromy group of the covering n4r denoted
Mono(W,/Wr). By definition it is the monodromy group of the ramified
covering myp : W — Wy, and may be denoted Mono(W;*/W;) or Mono(W},/
W;). If f(e F) “circles” a point t e Ptp let oy,0,...,%0 = m, be the multi-
plicities of the points in Pty above 7. By renumbering the x’s we may assume
that x; /%!, xof x5!, ... are paths in 4 which circle the points in Pt4 above
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t. If feAdy there are m such paths and no ramification occurs above ¢ in
Piy.

Now assume A4 and B are two different subgroups of F of indices m and n
respectively. Also assume that F = AB and that 4N B has index mn in F. If
m and n are prime this will be the case. Let By, By,,... be another coset
decomposition of F.

Now suppose that f (e F) circles te Ptr. Suppose that xf*x~' (now
dropping subscripts) circles a point a in Pt; above ¢, and suppose that yfFy~!
circles a point b in Pty above ¢, where o and £ are minimum positive integers
with these properties. Since (AxNBy)f? = Axf? N Byf" we see that if y=
Lem.[o, f] then (AxN By)f” = (Ax N By) where y is the minimum positive integer
with this property. There is at least one point ¢ in Ptyng Where ¢ is above a, b,
and 7, and the ramification at ¢ for the covering mynp 4 is [0, f]/¢. The number
of such ¢’s is g.c.d.(«, ).

Lemma 2.1.  Assume the above discussion. If f € Ay then the multiplicities of
the points above any such a in the covering manp 4 are the same as those above t
in the covering ng . The covering mang p is unramified over any point in Ptp
above t. O

Lemma 2.2. Assume the above discussion. Suppose above ae€ Pty the
covering mynp 4 Is unramified and that xfox~! (e A) circles a. Then f* € B.

Proof (Exponentiation by an element in F denotes conjugation.).
fix e {(ANB) |ge A} = AN({B?|g e 4}

But F=AB so (\{B’|ge A} =(){BY|geF}=B,. Since By is normal in F
the result follows. 0

In this paper we have assumed (and will continue to assume) many well-
known facts from elementary group theory. However, for future reference we
wish to draw attention to the following.

LEmMMA 2.3. Let G be a finite group, the direct product of two normal
subgroups, M and N. Let A be a normal subgroup of G so that ANM =
ANN =<e). Then A is central in G, and A is isomorphic to a subgroup of M
which is central in M. O

Lemma 2.4.  With the same hypotheses as in Lemma 2.3, assume further that

A and M are isomorphic to subgroups of S, (p an odd prime) whose orders are
divisible by p. Then A and M are isomorphic to Z, (Cyclic group of order p).
]

(since the centralizer of Z, in S, is Z, itself.)
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LemMma 2.5 [2, p 23-25]. Let ny, : Wy — W), be an m-sheeted covering, and
let my : Wy — Wy be an n-sheeted covering where the two coverings admit no
common non-trivial factorization. Then the number of pairs of points, counted
with multiplicity, common to fibers of the two maps is finite. (This is the statement
that the algebraic curve Wy lying on the surface Wy x Wy has a finite number of
singularities.) O

LemMA 2.6 (Castelnuovo [2, p 26]). Suppose for Wy, W), and Wy in Lemma
2.5 we have equality in the Castelnuovo-Severi inequality. Then for x| and x; in
Wi mg(my) (x1)) is linearly equivalent to my(ny) (x2)). O

Lemma 2.7 (Castelnuovo Riemann Roch theorem) [2, p 27]. Let
n: Wy — Wy be an m sheeted covering. Let gX be a linear series on W, where
N —R< g—mh. Then any fiber of the map n imposes at most m — 1 linear
conditions on gﬁ. O

LemMA 2.8 [1]. Let W, admit a linear series g\, without fixed points, and a
half-canonical g, ,, where r > [n/2].  Then gl imposes at most [n/2] conditions
on gy ;. O

3. A generalization of the Castelnuovo-Severi inequality
Suppose that W, admits two coverings

Tgn : Wy — W), in m sheets

gk : Wy — Wy in n sheets

where the two coverings admit no non-trivial common factorization. This array
of coverings will be denoted Iv(g;h,m;k,n) where Iv stands for the letter “v”
inverted to resemble the arrows in the diagram of these two coverings (with W
on top).

Suppose further that W) covers another Riemann surface, W, in n sheets,
and W covers the same W, in m sheets and the square diagram of covers
commutes. (¥, on top and W, on the bottom.) We shall denote this array of
coverings by Sq(g;h,m;k,n;/). We will say that W, completes the Iv. (W, is
the unique completion since it corresponds to the intersection of two subfields of
the full field of meromorphic functions on W,.)

Let Wr = W, — Ptr where, as before, Pty is the set of points above which
ng is ramified. Let A be the fundamental group of W, —x; ! (Ptr) (= Wy),
of index n in F. Let B be the fundamental group of Wy — . }!(Ptr) (= Ws)
of index m in F. Then ANB is the fundamental group of W, — = !(Ptr)
(= Wunp) of index mn in F. Also F = AB.

Now we wish to find an upper bound on g given m, n, h, k, and /. This will
give a weak generalization of the Castelnuovo-Severi inequality since we are
assuming the Iv is completed.
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Since F = AB = BA let
Ab],Abz,...Abn b[EB
Bay,Bas,...Ba, ajeA

be coset decompositions of F. Let f (€ F) circle a point 7€ Ptp. If dy,ds,...
are the multiplicities of the points in W), above t (¥d; =n) then the total
ramification in W), above ¢ is X(d; — 1). If ej,ey,... are the multiplicities of
the points in W above ¢ (Xe; =m) then the total ramification in W) above
t is X(e;—1). The total ramification of all points in W, above ¢ is
2X(d;, ¢){ldi, ] — 1}

Remark. 1If d and e are positive integers then de —d —e+ (d,e) > 0.
Equality occurs if and only if (d —1)(e—1)=0.
Lemma 3.1
*) LX(dj, ep){[di )] — 1} <mE(d; — 1) + nZ(e; — 1).
Equality occurs if and only if one of the two terms on the right hand side of (¥) is
zero.
Proof
mZ(d; — 1) = (Ze;))Z(d; — 1) = ZX(ejd; — ¢5)
nZ(e; — 1) = (Xd;)X(ej — 1) = XX(die; — dj)
By the remark
(*) (ejd; — €;) + (die; — d;) > (di, ¢;){[di, ¢)] — 1}

Summing on i and j proves the inequality. If we have equality in (*) we have
equality in all the inequalities (*;). If a term (e; — 1) # 0 then (d; — 1) =0 for
all 7. O

DErFINITION.  Suppose for a point ¢ in W, for the square Sq(g; h, m; k,n; /) at
most only one of the two coverings of W, is ramified. The ramification at such a
point will be said to be pure. If the ramification at every point of W, is pure
then the covering 7, will be said to have separated ramification.

THEOREM 3.2. Suppose we have a square Sq(g;h,m;k,n;/). Then
(3.1) 29 =2+ mn(2/ —2) <m(2h —2) +n(2k — 2)
(or g+mnt <mh+nk+ (m—1)(n—1))

Equality in (3.1) implies that the ramification for my, is separated.

Proof. By the Riemann-Hurwitz formula (with obvious notation)
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2g — 2 =m(2h — 2) 4+ ram(g, h)
2g — 2 = n(2k — 2) + ram(g, k)
2g — 2 =mn(2/ —2) +ram(g, /)
(3.2) 2g —2+mn(2f —2) +ram(g, /) = m(2h — 2) + n(2k — 2)
+ ram(g, i) + ram(g, k)

But
ram(g, /) = ram(g, h) + m ram(h,/) = ram(g, k) + n ram(k, /)
By Lemma 3.1
(3.3) ram(g,/) < mram(h,/) +nram(k, /)
Therefore

ram(g, k) < mram(h,/)

And so: ram(g,/) > ram(g,h) + ram(g, k). Together with (3.2) this proves the
inequality in the statement of the theorem.

If we have equality in (3.1) then we have equality in all the above
inequalities, especially (3.3). Thus we have equality in (*) of Lemma 2.1 for
each point of Ptp; that is, the ramification at each point of Pty is pure. []

COROLLARY 3.3. Equality in (3.1) of Theorem 3.2 is equivalent to the fol-
lowing. (The K’s refer to canonical series.)
1) ram(g,/) = ram(g, h) + ram(g, k)
2) ram(g,h) = nram(k, /)
3) ram(g,/) = nram(k, /) + m ram(h,/)
4) The ramzﬁcatlon of mys is separated.
)

(3.4) 5) Ky + 71} (K)) = my} (Ky) + 7y (Ki)

Proof. That 4) implies 3) together with the proof of Theorem 3.2 shows this
corollary is true for the first four statements in the conclusion. We need only
show that equality in (3.1) implies (3.4) since the converse is immediate. Let By,
denote the ramification divisor on W, for the covering 7., (with similar notation
for other coverings.)

We show first that By, = ng*kl (Bis). mke 1s ramified only at points ¢ in Ptg
where the f’s that circle the s are in Ay, since the ramification of =, is
separated. These are the only points over which n,,h is ramified. Above these
points 7, and 7y are unramified. Thus B qh =Ty (Bk/)

Now K, = By, + 7, (K;). Since n,/)(K/) =n,!(n,/)(K/)) and By, =

(Bk/) we have

Ky +7,) (K/) =m0y (Bis + m) (Kr)) + 7y (Kn) = ! (Ki) + 7 (Ki) O
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COROLLARY 3.4. Suppose for Iv(g; h,m;k,n) we have
g+ mnly >mh+nk+ (m—1)(n—1)
If the Iv is completed by W, then ( < {. O

COROLLARY 3.5. Assume we have equality in Theorem 3.2 and | =0. Then
Mono(W,/W;) = Mono(Wj/W;) x Mono(Wi/W;)

Proof. If f circles a point in Pty then f € Ay or f € By but not both.
Such f’s generate F' so F = AyBy;. Now

MOI’IO(VVg/VV/) = F/(A()ﬂB()) = A()/(A()nBo) X Bo/(AQﬂB())
But MOHO(W/,/VV/)%F/A()EBQ/(A()HB())... etc. |:|

The following corollaries apply to Section 5.

DEerFINITION.  For a prime p, p*||n, will mean that p* divides n but p**! does
not. We say that p* strictly divides n.

COROLLARY 3.6. Suppose we have a Sq(g;h, p;k, p;/) where p is an odd
prime. Then F = AoB, p||[F : Ao] and p*||[F : Ao N Bo).

Proof. To show F = AyB it suffices to show that 4y ¢ B since [F : B] = p.
If A9 = B then Ay = By and so Ay = AoNBy. But F/A4p is isomorphic to a
subgroup of S,, and so p||[F: 4g]. But 4)NBy <= ANB and p*> = [F: ANB].
This contradiction shows that F = AyB.

Now F/Ay~B/A¢NB. 1t follows that [dyo:AoNB]=p. Also
(V{(40NB)?|ge Ay} = AoN By since F = AgB. Consequently p || [4o : Ao N By
and so p?||[F : 4o N By). O

COROLLARY 3.7. Suppose we have equality in Theorem 3.2 and m =n = p,
an odd prime.  Suppose there exists another subgroup C < F of index p containing
ANB. Then the covering Wy, — Wg is unramified.

Proof. CN(ANB)=ANB=ANC=CNB. Since 4, B, and C have
index p F=ACy= AyC = BCy = ByC. We apply Lemma 2.1. Suppose f € F
circles t € Ptp. If f € Ay the covering (W, =) W — W¢ is unramified over f.
If f e By the covering (W, =) Wy, — W{ is unramified over f. All points of
Pty have been accounted for. O

COROLLARY 3.8. Suppose we have the hypotheses of Corollary 3.7 and
{=0. Then F/(AoﬂBo)%ZpXZp.

Proof. Consider the finite group F/(AyN By); that is, we assume 4y N By =
AoNCy=CoNBy=<ey. Cp is a normal subgroup of F, the direct product
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of Ay and By, and AyNCy= CyN By =<e)y. The Corollary now follows from
Lemma 2.4 since Ay, By, and Cy, whose orders are divisible by p, are subgroups
of §,. O

4. Equality in the Castelnuovo-Severi inequality

DEerINITION.  For a covering 7y, : W, — W), and a divisor D on W, define
agn(D) ==y, '(ng(D)) a divisor of degree (deg m,)(deg D)

Suppose W, completes Iv(g;h,m;k,n). If xe W, then aq/(x) can be
described in two ways: gy (g,4(x)) or gyu(ou(x)). For almost all x in W, g,/(x)
is a divisor of mn distinct points. If x is not in g,,(y) then g,/ (x )ﬂaJ/( y)=0.
If /=0 then the g,(x)’s form a g!,.

Lemma 4.1. Suppose we have an 1Iv(g;h,m;k,n), and for all but a
Sinite number of x on Wy oy (0y(x)) = (o (x)). Then there exists a W,
(= {og(ggn(x)) | x € Wy} which completes the Iv and o,,(x) = gy (ggn(x)).

Proof. W[ := {x e W,;|deg gy (og(x)) = mn and gy (o (X)) = ggn(ogk(x))}.
Then W~ = Wq {a finite number of points}. We first show that if x;, y e W~
and ye ng(%h(xl)) then ayk(agn(x1)) = ggi(agn(p)). Now let ggp(x1) = x1 + -
+Xxp,. There is an i such that yeou(x;). Thus gu(gm(y)) :agh(agk(y)) =
(g (X)) = Ok (0gn(X:)) = gk (Ogn(x1)).

Define W™ = {oy(dgn(x)) |x € W7}, The maps from W, to W, and Wi,
restricted to W~ define topological maps from the latter to suitably punctured
Riemann surfaces W)™ and W;~. Then W,” completes the Iv formed by W
W, and W,>. Giving W, an analytic structure in the obvious manner and
adding points to all the punctured Riemann surfaces completes the proof. []

DEerINITION. A Castelnuovo-Severi Iv, denoted CSIv(g;h, m; k,n), will be an
Iv where

g=mh+nk+n—-1)(m-1) O

It is difficult to believe that the following result is not somewhere in the
literature of the last century.

THEOREM 4.2. Let q be a prime in a CSlv(g;h,m;k,q). Assume h >
(g—1)(g—2)/2. Then the CSIv admits a completion.

Proof. For each point x € W, ng;l(ng’kl (x)) is a divisor of degree ¢ belonging
to a single g; on W) by Lemma 2.6. Since ¢ is prime, r > 1 implies that W
admits a plane model of degree ¢ and so & < (¢—1)(¢—2)/2. Thus r=1.

Let w; be a point on W, so that the mq points gy (g, (w1)) are unramified
for my and 7wy ogg(wi) =wi+ -+ Wy, and gy (ggp(w1)) = gg(w1) + -+ -+
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og(wm). Each of the divisors 7y (g (w1)), .- ., Tgn(gg (W) belong to g; and all
have the same point 7, (w;) in common. Therefore, they are all the same
divisor on Wj. It follows that n;,,l(ngh(agk(l/vl))) = gy(om(w1)). The result
follows from Lemma 4.1. O

The following theorems are rather small steps in characterizing those CSIv’s
which have completions where the hypotheses of Theorem 4.2 do not hold. We
shall be considering a CSIv(pg + 1;1, p; 1,¢q) where p and ¢ are odd primes. We
believe that a completion for such an Iv is characterized by the existence on
Wpy+1 of a complete half-canonical linear series g2+¢~ which is unique. We shall
prove this only when p or ¢ is 3.

Let g=pg+1, let n: W, — W; be the p-sheeted covering, and let 0:
W, — T) be the g-sheeted covering. Assume that W, admits a complete half-
canonical llnear series g””’ 3. By the Castelnuovo Riemann-Roch theorem for
x on W, n~!(x) imposes at most p — 1 conditions on ghri~ 3. The problem is
to show that the words ““at most” can be replaced by the Word “precisely.”

We first prove two lemmas from which our results follow.

Lemma 4.3. Suppose for a CSIv(pg+1;1,p;1,q), W, admits a half-
canonical gl 1~ e e > 0. Suppose there is a gi~ i on Wy so that |n’1(g3’1)| =
g“’] 3+e, Then if yvoeT, and 6~ ( 0) conmsists of q distinct points no two of
whlch lie in a fiber of & (there are a finite number of fibers omitted, by Lemma 2.5)
then 071( Yo) imposes precisely q — 1 conditions on glf; 9=3+¢,

Proof. Let 07! (y) =Zi,...,2Z4. Suppose zi,...,z, impose ¢ independent
conditions on g},’;q*”e, so that if Degll,’;rq*”e and D contains zi,...,z; then
D contains z;1,...,z,. We want to show that 1 >¢g— 1. Assume otherwise.
n(z1+ - +z4-1) are ¢ — 1 points on W which determine a divisor in gg’l. Let
that divisor be 7(z; + -+ +z,.1) +x. Then |n(z,-1) + x| = g} on W,. Choose
a divisor C in g} so that n='(C)N{z,-1,2,} is empty. Then n~'(n(zy +---+
z42) + C) is a divisor in g2 t4=3* containing z) +--- + 2z, » but not z, | + z,.
This contradiction proves the lemma. O

Lemma 4.4. Suppose for a CSIv(pg+1;1,p;1,q), W, admits a half-
canonical gp+‘1 3¢ £>0. Suppose there exists in Wi an xo so that n~'(x)
imposes preusely p—1 condlllons on ghri= 3¢ Thene=0. IfDe gh 3 and D
contains n~"'(x) then D =n"'(D,) where D, is a divisor of degree q on W).

Proof 1If x; e Wl, X1 # Xo then |x| + xo| is a g3 on W. On W, n~'(xo) +
n~'(x1), being a gzp, imposes p conditions on gp+‘1 3¢ (Lemma 2.8). Thus
7~ '(x) imposes one condition on gl’+‘1 SRR 1(xo) (= gg2r); that is, g¢ 2F
is composite being the lift of a g7 1 on Wy, and so ¢ = 0. gﬁ’; 93 is now seen to
be the completion of the lift of a ¢g¢9~' on W;. Thus the divisor in g]f; -3

containing 7~ (xo) is the lift of a divisor in g¢~'.
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THEOREM 4.5. Consider the CSIv(pg + 1;1, p;1,q), where p and q are odd
primes and the Iv admits a completion. Then W,, 1\ admits a complete, simple
half-canonical g;jq*q’3.

Proof. Since the completion W, has genus zero formula 3.4 in Corollary
3.3 insures that the g] on W, lifts to be half-canonical on W,. g} lifted to W,
completes to be g¢~', and lifted to T\ completes to a g#~'. Lifted to W, g|
therefore has dimension at least (p — 1)+ (¢—1) —1. Lemma 4.3 insures that
there is a yo on 7} so that 0~'(y,) imposes precisely ¢ — 1 conditions on the half-
canonical ¢g”+4=3*¢ and Lemma 4.4 implies ¢ = 0. Since p and ¢ are prime it
follows that g2~ is simple. O

THEOREM 4.6. For the CSIv(3p + 151, p; 1,3), suppose that Wi, admits a
half-canonical gfp. Then the Iv admits a completion.

Proof First we show that g} is simple. Suppose that it is composite.
Since g3 is not trlgonal (by CSI), ijng must cover a W, in two sheets. The
non- ﬁxed points of g3 is the lift of a complete g(Sp 2 on W, where f is odd.
Since the Clifford index is negative ¢ = (p — f)/2 and again this violates CSI.

Let g=3p+1, let n: W, — W; be the p-sheeted coverlng, and let 0:
W, — T1 be the 3-sheeted covermg Choose yp € T} so that 6~ ( 0) Is a d1v1s0r
of three distinct points. Then 6~ ( ¥o) imposes at most two conditions on g by
the Castelnuovo Riemann-Roch theorem. If 0~ ( o) imposed one condltlon
g317 would be composite, a contradiction. Thus 6~ ( 0) imposes precisely two
conditions. By Lemma 4.4 any divisor in g3p containing 6~ ( o) is the lift of a
divisor on 7; of degree p. By Lemma 4.3, for a general choice of xy on W,
7 (x0) imposes precisely p — 1 conditions on gé’p. By Lemma 4.4, again, any
divisor in g3p containing such a = 1(xo) is the lift of a divisor of degree 3 on
Wi. Fora general point zy on W, n~'(n(z)) imposes p — 1 condltlons on g3
A divisor in g3 requires an one additional condition to contain 6~'(6(z)).
Thus it requlres exactly p conditions for a divisor in g3 to contain 7! (n(z))
and 0~ (0(20)), and so to be simultaneously lifted from divisors in W, and

T,. This gives a g31p in g3p which completes the Iv. O

In this case the half-canonical g3 is the unique linear series on W3,y of
dimension p and degree 3p.

5. Several Castelnuovo-Severi coverings

DEerINITION.  For p an odd prime, let g(p) = p3 —2p*> +1 and let i(p) =

(r—1(p-2)/2

In this section we shall always assume that all the CSIv(g(p);h(p), p; h(p),
p)’s which occur have completions. This generalizes the case p = 3, where we
have given conditions which insure that completions occur [3].
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Consider the fundamental group, F, of a punctured Riemann surface Wrp,
together with three subgroups 4, B, and C, all of index p in F. Then we have
three additional subgroups AN B, ANC, and BN C, which we assume all have
index p? in F, and we have 4N BN C which we assume has index p® in F.
Then Wy is covered by seven Riemann surfaces Wy with fundamental group H,
where H is any one of the seven proper subgroups of F mentioned above. In
this array of eight Riemann surfaces Wy will be called the 0™ or bottom level;
Wy, H=A,B, or C will be called the first level;, Wy, H=ANB,ANC, or
BN C will be called the second level, and Wj;npnc will be called the third or top
level. The Riemann surfaces on the same level (ith) will always be assumed to
have the same genus (4;). This array of eight Riemann surfaces will be denoted
Cu(hs, hy, hi, ho). This array can be visualized as a cube standing on one of
its vertices, the vertices standing for the Riemann surfaces and the edges pointing
downward standing for the covering maps. The cubes of interest will be
Cu(g(p),h(p),0,0) which we will abbreviate by Cu(p).

We shall also consider the possibility of four subgroups of F, A, B, C, D all
of index p in F, the corresponding six subgroups, ANB,ANC,...,CND all of
index p? in F, the four subgroups ANBNC,...,BNCND all of index p* in F
and ANBNCND of index p* in F. There are five levels for the corresponding
Riemann surfaces, and if /4; is the genus of all Riemann surfaces at the ith level,
this array of 16 Riemann surfaces will be denoted HyCu(ha, h3, ha, hy, hy). This
can perhaps be visualized as a hypercube standing “vertically” on one of its
vertices, with vertices and downward pointing edges standing for Riemann sur-
faces and covering maps as in a cube. Our purpose will be to show that a
HyCu(g(p),h(p),0,0,0), denoted HyCu(p), does not exist.

Then we will show that a W, covering four different W), ’s, each in p
sheets with all Iv’s admitting completions, must admit a group of automorphlsms
1somorph1c to the elementary abelian group of order p3, with four subgroups of
order p giving rise to the four coverings W,y — Wj,. Except for p =3, we
will avoid the problem of completing the Iv(g(p);i(p), p; h(p), p). If we have
such an Iv completed to a square we will denote it Sq(g(p),%s(p),0) or more

simply Sq(p).

LemMa 5.1. Suppose W, admits three coverings Wy, — Wy, W, — W,
W, — W,, in p, q, and r sheets respectively (all primes). Suppose the three 1v's
(Iv(g,h pik,q) ete) all have completions. Then the array of seven Riemann
surfaces with three coverings and three squares can be completed to a cube of eight
Riemann surfaces.

Proof. For almost all we W, we want a divisor of degree pqr containing w,
equal to gy (Gye (k) (G4e(r)(w))) for any permutation 7 of the letters 4, k, /. Now
041 (Ogic(0gr(W))) = gi(04r (o (w))). But for each point ve gy (w) gun(ou(v)) =
gk (agn(v)).  Therefore a(,h(aqk(aq/(w))) = oy (agn(oy(w))). Therefore, any per-
mutation of the og-symbols is possible. The proof is now completed as in
Lemma 4.1. Ul
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An entirely analogous proof gives:

LemMA 5.2. Suppose W, admits 4 coverings Wy — Wy g' =h,k,/,m, all
of prime degree. Suppose all 6 IV's have completions. Then the array of 15
Riemann aurfaces (4 coverings, 6 squares, and 4 cubes) can be completed to a
hypercube of 16 Riemann surfaces. O

Let us summarize the results of Theorem 3.2 in the case of a Sq(p). Let
F be the fundamental group of the punctured P', Wy. Let 4 and B be the
subgroups of F which are the fundamental groups for the two punctured Wj,.
Then AN B is the fundamental group of the punctured W,. If € Ptr and
f(e F) circles ¢ then f € AgU By since the ramification of W,y — Wy (= Pl) is
separated. Therefore, F = AyBy since Ay and By are normal in F. W} = P
Mono(W,(,)/Wy) = Mono(W, /Wy) x Mono(Wy /Wy).

Now we examine the cube Cu(p). Assume that the corresponding array of
subgroups of F arise from subgroups 4, B, and C (all of index p in F). In this
case Wy, Wy, and W/ are all of genus zero.

Corollary 3.6 says that F = ABy. We also obtain true statements by re-
placing 4 and B by any two of the letters A, B, or C. We shall have further
results stated in terms of a set of subgroups of F where the result holds for the
statement modified by permuting the names of the subgroups. We shall use such
statements by referring to the original statement without further comment.

LemMmA 5.3. In the cube Cu(p), suppose te Pty and f(e F) circles t. If
feA, then f e ByUC,.

Proof. Let Axi,...,Ax, be a coset decomposition of F. The points above
¢ in W, are circled by the p curves x;fx;!. Since W, g — W, has separated
rami-fication, x;/x;' e (\{(4NB)*|ae ) or x;fx;' e N{(ANC)"|ae ). By
Lemma 2.2, f e By or f e Cp. O

LemMmA 5.4. For a Cu(p) let f(e F) circle a point t in Pfp. If f ¢ AgU
BoUCy then fPGAomBoﬂCO.

Proof. Suppose the multiplicities of the covering maps over ¢ are as follows:

With respect to W;* — Wy they are o,02,...,%0, = p
With respect to Wy — Wy they are f,,5,,...,28, = p
With respect to Wi — Wy they are y;,p,,...,2p, =p

We wish to show that oy = #;, =y, = p. Suppose otherwise. Assume o', one of
the o’s, is the smallest of all the o’s, f’s, and »’s, 1 <o’ < p. We claim that
there is a f, call it ' so that ' > «'. If not, all the f’s equal o', and so o
divides p. Thus o’ =1 and so f € By. Contradiction.

Similarly there is a ' so that y' > &'
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Let Buvi,...,Buv, be a coset decomposition of F. There is a v, call it v,
so that Bu;f B = Bu; and f' is the smallest positive integer with this property.
Therefore ijf“' # Buj, so f* ¢ By. Similarly, f* ¢ C.

But there is an x so that Axf* = Ax or xf*x ' e A. Since W,z — W,'
has separated ramification xf* x' e (ANBy)U(4NCp) or f* € ByUCy. This
contradiction proves the lemma. ]

We summarize the discussion so far in a theorem.

THEOREM 5.5. Let the cube Cu(p) correspond to the fundamental group F of
Wpg.  Let F have subgroups A, B, and C as before. For te Pty let f € F circle
t. Then either f S (A() n Bo) U (A() n Co) U (B() N Co) or fp e AyNByNCy. That
is, for the coverings Wj; — Wy, H = A,B, C, above t, either two of the three are
unramified or all are ramified with multiplicity p. Above one and only one point
t € Pty does the latter hold.

Proof. Only the last sentence needs verification. Since the ramification is
not separated from level two to level zero, there must be at least one such point.
If there were two such points all the ramification between Riemann surfaces of
level one and level zero would be accounted for since these Riemann surfaces are
all Riemann spheres. This is a contradiction. O

COROLLARY 5.6. Continue the hypotheses of Theorem 5.5. Then F =
Ao(Bo N Cyp).

Mono(Wyngne/ Wr) = Mono(W,/Wr) x Mono(Wg/Wr) x Mono(W¢/Wk).

Proof. That F = A(ByN Cyp) is shown by a proof analogous to that of
Corollary 3.6. Theorem 5.5 implies that F is generated by elements in Ay N By,
AoNCy, and ByNCy. For notational convenience assume that 4oNByN Cy =
{e), that is F is now isomorphic to Mono(Wyngnc/Wr) and F = (49N By) X
(AgN Cp) x (ByN Cp). Now it is seen that F = Ag(ByN Cy). Mono(W,/Wr) =
F/A() x~ (B() N C()) etc. [l

THEOREM 5.7. A HyCu(p) does not exist.

Proof. Suppose such a hypercube does exist. Let the fundamental groups
at the various levels be F, 4, B, C, D, ANB,...,ANBNC,..., ANBNCND.
For te Pty let f e F circle . We show

1) If f € A() then f € (B() n C()) U (B() ﬂD()) U (CQ ﬂDo).

2) If f¢AOUBoUC()UDO then fp EA()ﬂBoﬂCOHDQ.

1) As in Lemma 5.3, suppose f € Ag. If Axi,...,Ax, is a coset decom-
position for F then x;fx;! e A4y for all i. The covering W, \pzcnp — Wi is a
Cu(p), so either x,-fxi’l € (A() n (Bo n Co)) U (A() N (B() N Do)) U (AQ N (Co n D())) or
xifPx; l'e 40N ByN CyNDy. But this latter alternative would hold for all paths
x;fx; 1 circling the in Pty above . Since there is at most only one point in Py
above ¢ with this property (Theorem 5.5) the second alternative is ruled out.
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2) If f¢A)UByUCoUDy then there are four coverings Wy, — Wy, H =
A,B,C,D, and all are ramified over r. Using the arguments of Lemma 5.4
(multiplicities over ¢ with respect to W — Wy are 61,0,...,%0, = p) let o', the
smallest of all the o’s, f’s, 7’s, &’s. We can then find ', 7/, ', so that ' > o/,
Y >a', 0 >0o'. Asin Lemma 5.4 we conclude that f* ¢ ByU CoUDy. There
is a x; so that Ax;f* = Ax; or x1f*x;'eA. Let xf*x;! circle ae Pty.
Since W,\pncnp — Wi is a Cu(p) the ramification of W, — W/ (H =B, C,
D) is not pure above a. We conclude that (xlf“'xl’l)” e AN By N CyN Dy.

Consider the square with Wi, at the top and Wy at the bottom. a is the
point in Pz4 above ¢t where the multiplicity of 7y r is o’. Let b be the point in
Pty above ¢ where the multiplicity of np r is /. If ¢ is a point in Ptyqz above t
that maps onto a and b, the last paragraph shows that the multiplicity of m4npg, r
at ¢ is o’p. But by the discussion preceding Lemma 2.1 this multiplicity is also
[',8]. Since o' < p’ < p, it follows that B’ = p. Similarly y’ =6" = p.

Since o’ < p, there is another point e € Pty over t. If ¢ is the multiplicity of
m4r at e then ¢ < p. Since we know that f' =)' =6 = p we have ' =7’ =
6" = p >e.  The same argument as above now shows that there is a x, so that
x2f?x;' e and (x2fx3')’ € ANByNCyNDy. W, has two points, a and e,
over which each of the three coverings W, — W, H = B,C,D has ramifi-
cation p. Since this contradicts Theorem 5.5, we conclude that o/ = p, and so
fp EA()ﬂBoﬂCoﬂD().

We now conclude the proof. As before there is one and only one point in
Pty where alternative 2) holds. This implies that the ramification for any square
between levels one and three is separated. Since this is not the case, this con-
tradiction shows that a HyCu(p) does not exist. O

For Theorem 5.7 a proof similar to the one presented appears necessary for
there exists a HyCu((3p* — 5p® +2)/2,9(p), h(p),0,0) where items 1) and 2) in
the proof are satisfied.

THEOREM 5.8.  Let Wy, cover four different Wy ,)'s, each in p sheets, so that
each of the six Iv's admit completions.  Then W,y admits an automorphism group,
G, iso-morphic to Z, X Z, X Z,, and the four W), ,’s are Wy, modulo four of the
Z,’s in G.

Proof. Three of the coverings W,y — W), give rise to a Cu(p) since
three of these coverings cannot be in a square (Corollary 3.7). The fourth such
covering must occur within this cube (Theorem 5.7); that is, there are four cubes
within one cube. Let 4, B, C, D be the four subgroups of F of index p,
as before. Then ANBNC=ANBND=---=ANBNCND. For notational
convenience let AgNByNCyNDy=<ey. By Theorem 5.6 F is equal to a
product of three different groups HyN Ly where Hy # Lo and {H,L} is any of
the three pairs in a subset of {4, B, C,D} of order three. Then (49N By) x
(A() N Co) X (B() N Co) = (A()nt) X (A() ﬂDo) X (B() ﬂDo), and so (A() ﬂD()) is a
normal subgroup of (4¢N Cy) x (ByN Cy) intersecting each factor in the direct
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product in <e). AyN Dy is isomorphic to Mono(Ws/Wr) and so is isomorphic
to a subgroup of S,, a subgroup whose order is divisible by p. By Lemma 2.4
Ao N Dy is isomorphic to Z,. By similar arguments we complete the proof of the
theorem. O

6. Examples

Let Wr=P' — {ti,t2,...,1;}, the s-fold punctured Riemann sphere. Let
fisfo, ..y fs, be paths in Wp which circle the s so that F = <{fi, fa,..., f;|
fifa---fs=e>. Let G be a finite group generated by aj,az,...,a, 1. Let u:
F — G be defined by u(fi)=a; for i=1,2,...,s—1, and u(fy) = (q1az---
as,l)fl. u extends to a homomorphism from F onto G. Let H be a subgroup
of G of index n such that Hy = <e). Let A =y '(H). Then Wy is an n-sheeted
covering of Wy corresponding to H and F/Ay =~ G. Suppose G has order m.
W is the Galois closure for the covering W;" — Wy

NoOTATION. W, (f1, f2,-..,fs) will denote W,,, W, will be denoted by
Wn(ﬁ7ﬁ7 .o 7f5)

In the following we will consider only cyclic groups, Z,, and dihedral groups,
D,, as subgroups of S,, in order to build our direct products, G. Any other
subgroup of S, containing Z,, such as 4, or S,, would do, although the com-
putations would be more complicated. Dihedral groups will be denoted <{a,a),
(b, B>, {c,y> where a®> =b*> =c* =a? = B’ = y? = e, and cyclic groups will be
denoted simply by <a), {f>, {y>. Thus a 2p-sheeted dihedral Galois covering of
P! is denoted W, (a,ax,o"), and the p-sheeted covering of P!, Wy, (a,an, o)/
ay, is denoted by W,(a,ao,o ). There are, of course, many such p-sheeted
coverings correspondmg to the conjugates of <a> in D).

An example of a Sq((p 1) ;0, p; 0, p;0) is given by W (a,a,ao,ax,b,b,bp,
bp) where G = D, x D,,. Examples of Cu(g(p),h(p),0,0) are:

(i)  Wp(a,aob,b,c,cp, (afy)”") G=D,xD,xD,
(i)  Wp(a,aob, by, (afy) ") G=D,xD,xZ,
(i) W, (a,ax, B,7, (o)) G=D,xZ,%xZ,
(iv)  Wy(o 8,7, (o)) G=2yx2Zyx 2

As an example we will work out the case (ii). Let A be the genus of
I/V4])3 (aa ad., b7 bﬁa Vs (aﬁy)_l ) Then
20 —2=—8p> +4(4p*/2) + 2(4p*(p — 1))
W, is a 4-sheeted Galois covering of W, (a,ax, b,bf,y, (ocﬁy)fl) of genus g.

W, = W, /<a,by where {a,b) ~Z, x Z,. Since an involution in D, has p
conjugates, an involution in <a, o) will have 2(4p*/2)/p (= 4p?) fixed points. ab
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is an involution without fixed points. Thus the total ramification for W, — W,
is 2(4p?) and so

2, —2=4(2g—2)+8p% and so g=g(p).

To find the genus of the Riemann surface covered by W, in p sheets, call
it W), we could either consider W, (b,bp,y, (ﬁy)fl) and proceed as above, or
consider W;/<{a,o,b). In the latter case {a,a,b) has p-+1 involutions with
ramification 2p? for each. All the other subgroups are unramified or contain one
of the ramified involutions. Therefore,

2/ —2=4p(2h —2)+ (p+ 1)4p*, or h=h(p).

W, /{a,b,y) also has genus A(p) since the ramification accounted for in {a,b,y)
is 2(4p?) +4p*(p - 1).

In case (iv) we have four coverings W,y — Wj,, one for each of the four
punctures in P!, The kernel of u: F — Z, x Z, x Z, 1s a characteristic subgroup
of F, so any fractional linear transformation (FLT) of P! that permutes the four
points lifts to W,). There is always a Z, x Z, of such FLT’s, but by special
arrangements of the four points we can have a dihedral group D4 (order 8) or an
alternating group A4 (order 12) permuting the four points. Thus W, always
admits an automorphism group of order 4p3, but can also admit groups of order
8p> and 12p3.

7. Genus ten

On a Riemann surface Wiy a quartet is a set of four complete half-canonical
linear series: g3, h3, k3, /;, whose sum is bicanonical, and where /; is the
unique linear series on Wj, of dimension 3 and degree 9. By Riemann’s solution
to the Jacobi inversion problem [5] this is equivalent to the vanishing of the theta
function for W)y at four half periods, whose sum is zero, to orders 3, 3, 3, 4,
where the last half-period is the only point on the Jacobian where the theta
function vanishes to order 4 or more.

In [3] it was shown that the existence of a quartet on a W), is equivalent to
the existence of a full three-sheeted covering Wiy — W) (“full” means that K is
the completion of the lift of a gg on W;). Unfortunately, the methods do not
appear to distinguish between cyclic and dihedral coverings.

The existence of two quartets, (necessarily with the same /) gives a CSIv
which admits a completion by Theorem 4.6. The existence of three quartets
leads to a Cu(10,1,0,0). The existence of four quartets leads to the existence of
an elementary abelian group of order 27 on Wy, four subgroups of order three
giving rise to the four coverings W)y — W; (Theorem 5.8).

Conversely, the existence of such a group of automorphisms on Wiy implies
the existence of six CSIv(10;1,3;1,3)’s all of which have completions. The
proof of Theorem 4.5 shows that all the coverings Wiy — W) are full. Thus
W1 admits four quartets.
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THEOREM 7. For a Riemann surface of genus 10, Wy, the following two

statements are equivalent.

(1) Wi admits an elementary abelian group of order 27. Four cyclic sub-
groups give rise to quotients of genus one, and the remaining 9 cyclic
subgroups are fixed point free.

(2) Wi admits 4 quartets.

Remarks. 1) The Wy in Theorem 7 can be simply described as a W
admitting an elementary abelian group, G, of order 27 so that the genus of
Wio/G is zero.

2) By the remarks at the end of Section 6 we have the following. Any such
Wiy admits an automorphism group of order 4-27. There are such Wjy’s
admitting automorphism groups of order 8-27 and 12-27.

3) The curve x®+4 y®+2%=0 is not such a Riemann surface since the
3-Sylow subgroup is not abelian.

8. Coverings of the Riemann sphere

In this section we consider CSIv(g;0, p;0,¢)’s where g = (p — 1)(¢ — 1), and
p and ¢ need not be prime.

We first do some naive dimension counting. A generic W, on the top of
such an Iv admits a plane model as a plane curve of degree p+ ¢ with two
ordinary singularities of multiplicities p and ¢. The dimension of such a family
of plane curves is [(p+¢q+3)(p+q) —p(p+1)—q(q+1)]/2—4=pg+p+
q —4. The two singularities arise from picking a divisor from each of the two
distinguished linear series on the Riemann surface, so the dimension in moduli
space for genus pg+1 is pg+ p+qg—6.

To find the dimension for Sq(g;0, p;0,4;0)’s we want the fundamental
group, F, for the punctured Riemann sphere to have the maximum number of
punctures. Note that Riemann spheres occur at the two middle levels of the
square. Let G, as in the examples in Section 6, be S, x S,, and let the square
arise from

Wip-tyg-(a,az, ... ay 2;b1,by, ... by 2)

where the «&’s are transpositions generating S,, and the b’s are transpositions
generating S,. So the dimension in moduli space for genus (p —1)(¢ —1) for
such squares is (2p —2)+ (2¢—2)—3=2p+2g—7. It’s codimension in the
space of the above Iv’s is (p —1)(g —1).

We now give a geometric interpretation for a Sq((p — 1)(¢ — 1);0, p;0,4;0).

Let C,4, be a plane curve of degree p + ¢ with two ordinary singularities
R,, R, of multiplicities p and ¢ (genus = (p — 1)(¢ — 1)). Let x be a point on
the curve. A line through x and R, cuts the curve in ¢ points. ¢ lines connect
these ¢ points to R,. A line through x and R, cuts the curve in p points. p
lines connect these p points to R,. This set of p + ¢ lines intersect (in general) in
pq points. At least p+ ¢ — 1 of these points lie on the curve.



316 ROBERT D. M. ACCOLA
DEeriniTION.  x will be called total of all pg points lie on the curve.
THEOREM 8.1.  If one point of C,yq is total then all points of C,y4 are total.
We will prove this theorem in several steps.
Lemma 8.2. Let g be the fibers of the p-sheeted covering in the Iv. Let
é be the fibers in the qsheeted covering in the Iv. Then (q— 1)gp (and also

(p— l)gq) is not special.

Proof.  Suppose (g — l)g‘,l is special. Fix a divisor, E, in K, — (¢ — l)gp
Let y; be a general point in W,. Let yi+y,+---+ yq be the divisor in q

containing y;. Let D;, i=2,3,...,¢, be the d1V1sors in qp containing y;. Then
¥D; is a divisor in (¢ — 1)g not containing y;. By Riemann-Roch y; is in £
since gq is always special. Thls contradiction proves the lemma. O

LemMa 8.3. The CSIv(g;0, p;0,q) admits a completion if and only if pg; is
equivalent to qgll.

Proof. For notational convenience denote the above CSIv by CSIV(g;h, D;
k,q) so that h =k =0. If this Iv admits a completion P!, then the g! on P! lifts
to a g" on Wy, wh1ch lifts in turn to qg on W,. Lifting g} thru Wj gives a pg
on W,, and so pg is equivalent to qg For the converse note that | P9, ' =
gl’+‘1 since pg is not special. The 1ncomplete qgli has dimension ¢ and the
1ncomplete pg(} has dimension p. Thus there is a g in g“‘] ! common to both
of these incomplete linear series. This gpq completes the IV O

Note that this shows that completing the CSIv is equivalent to all points on
C,+4 being total.

Proof of Theorem 8.1. If one point is total then pg, is equivalent to gg,.
The result follows from the above lemmas. J

For g =4, the completion of the Iv is equivalent to 3gi =3hl. Since
g3 + h} is canonical this is equivalent to 6g) being tricanonical. By Riemann’s
theorem this in turn is equivalent to the theta function vanishing to order 2 at a
1/6M-period (which is not a half-period).

Alan Landman has shown that Theorem 8.1 is a special case of a theorem
where the hypotheses are quite a bit more general and the conclusion is the same.
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