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DIFFEOMORPHISMS ADMITTING SRB MEASURES
AND THEIR REGULARITY

JIN HATOMOTO

Abstract

We are interested in the stochastic property of some “Anosov-like” system. In this
paper we will treat a transitive and partially hyperbolic diffeomorphism f of a 2-
dimensional torus with uniformly contracting direction, and show that if f is of C? and
admits an SRB measure, then f is an Anosov diffeomorphism. In our proof we use the
Pujals-Sambarino theorem for C? diffeomorphisms with dominated splitting. In the
case of C!'** the above statement is not true in general, i.e. we can construct a C!**
counter example of Maneville-Pomeau type.

1. Introduction

We know that if f is a C>-Anosov diffeomorphism of a compact manifold
M, then f admits an Sinai-Ruelle-Bowen measure p (or SRB measure), i.e., u has
absolutely continuous conditional measures on unstable manifolds (Sinai [23]).
This measure y is isomorphic to a Berunulli shift, and it has exponential decay of
correlations for Hoélder continuous functions, and furthermore satisfies that

1 n—1

lim > p(r7x) = [ du

j=0

for any continuous function ¢ : M — R and for Lebesgue almost every x € M.
This result has been extended to Axiom A attractors by Bowen and Ruelle
(e.g. [4)]).

Let f be a C'**-diffeomorphism of a 2-dimensional torus T> (0 < o < 1)
and ' be an f-invariant set of T2, i.. f(T)=T. We say that f is partially
hyperbolic with contracting direction on T if there exist a norm |- || on T? and
0 < A <A with 4; < 1 so that each x e T? has a D, f-invariant decomposition
T.T? = E|(x) ® E;(x) of subspaces Ej(x) and E,(x) such that
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(1.1) 1D/,

(Here D, f denotes the derivative of f at x). Moreover, when A, > 1, f is called
hyperbolic on T (or I" is a hyperbolic set for f). We call that f is an Anosov
diffeomorphism if f is hyperbolic on the entire space T2. f is said to be fo-
pologically transitive if there exists a point x € T? such that its orbit {f"(x)}, .y is
dense in T2.

The purpose of this paper is to show the following two theorems:

Y)H = /'{1’ ||D)Cf|E2(x)H = /12

THEOREM A. Let f be a C2-diffeomorphism of T2 Then f is an Anosov
diffeomorphism if and only if the following holds:

(1) f is partially hyperbolic with contracting direction on T?,

(2) f is topologically transitive and

(3) f admits an SRB measure.

Theorem A is false in the case when f is of C'** (0 < a < 1), ie.

THEOREM B. For o€ (0,1) there exists a C'**-diffeomorphism f such that

(1) f is partially hyperbolic with contracting direction on T? but not an
Anosov diffeomorphism,

(2) f is topologically transitive and

(3) f admits an SRB measure.

2. Definitions and preliminaries

Fix o€ (0,1] and let f be a C'**-diffecomorphism of T>. Assume that f is
partially hyperbolic and has contracting direction. Then f has the decompo-
sition satisfying (1.1). Let u be an f-invariant probability measure on T?. By
Birkhoft’s ergodic theorem there exist a set Y, with full y-measure and real
numbers y;(x) < x,(x) (x e Y,) which satisfy the following:

1 , o
Jimtog][Dof gl = (3 (1= 1,2).

We call y;(x) (i =1,2) the Lyapunov exponents of u at xe Y. By (1.1) we have
2n(x) <log i <log Ay < yr(x) (x€ Y,).

We say that g is an SRB measure if (i) y,(x) >0 and (ii) # has the conditional
measures which are absolutely continuous w.r.t. the Lebesgue measures on un-
stable manifolds, which is defined as follows:

If y,(x) > 0 for any x € Y,,, then it is well known (see [16]) that there exists
g > 0 sufficiently small and the local unstable manifold W}! (x) such that

ST Wae)) = Wi (f (),

for any ye W/ (x) and n >0

loc
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(2.1) d'(f"(x), /7" (9)) = C(x) exp((—x2(x) + e0)n)d"(x, )

and E>(x) = T W% (x), where d" denotes the Riemannian metric on W% (x) and
C(x) satisfies

(2.2) lim ! log C(f"(x)) =0.

n—+towo n

The unstable manifold W"(x) is defined by

wH(x) = S (Wi (f"(x))-
n>0
Since x;(x) < 0 for any x € Y,,, the local stable manifold WS (x) exists ([16])
and satisfies

S Wie(x)) = W (f (%)),

for any ye W;.(x) and n>0
(2.3) d*(f"(x), /" (9)) < D(x) exp((x1 (x) + &o)n)d*(x, )

and E(x) = T W,.(x), where d° denotes the Riemannian metric on W,}.(x) and
D(x) satisfies lim,,_, 4, (1/n) log D(f"(x)) = 0. The stable manifold W*(x) is also
defined.

Let # denote the Borel o algebra of T>. For any measurable partition & of
T? we denote by 2. the set of all Borel subsets which consist of the unions of the
elements of ¢. A measurable partition ¢ of T? defines a family of measures {x¢}
(p-a.e.x) such that for u-a.e.x and B e %, uS(B) is a B:-measurable function of x
and

WENE) = | wi(B) dutx) (£ € %)

If there exists a sequence {¢;},.; of countable measurable partitions such that

H<bH<<\/ &g =¢

i>1

then u5(&(x)) =1 where &(x) denotes an element of ¢ containing x. The
family of measures {u:} (u-a.e.x) is said to be the canonical system of conditional
measures of p w.rt. & (see [20]).

We assume that a measurable partition & of T? is subordinate to the
Wi-foliation, i.e., &" satisfies that (1) &“(x) € W*(x) and (2) &"(x) contains
an open set in W¥(x) for p-aex. Let {u¥} (u-a.e.x) denote a canonical
system of conditional measures of x4 w.r.t. & and mY denote the Lebesgue
measure on W*(x). If u¥ is absolutely continuous w.r.t. m¥ for u-a.e.x
(u¥ <« m¥), then we say that p has the conditional measures which are
absolutely continuous w.r.t. the Lebesgue measures on unstable manifolds (see
[13]). If u is an SRB measure, then so does every element in the ergodic
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decomposition of u for a set of u-full measure. If p¥ <« m¥ (u-a.e.x), then we
know that uy ~my|zu (see [13], [14], [7]).

3. Proof of Theorem A

Let f be a CZ?-partially hyperbolic difftomorphism with contracting di-
rection on T? and u be an f-invariant probability measure on T2. Let us denote
I, = [—¢,¢ for any 0 < ¢ < 1 and Emb?(I;, T?) as the set of C2-embeddings of I;
into T? equipped with the C?-metric. We can find (see [9]) two continuous maps
¢*: T> — Emb*(1},T?) and ¢ : T? — Embz(Il,:l“z) such that for any 0 <e <1
the local stable and center unstable manifolds W' (x) = ¢*(x)(I;) and W, %(x) =
¢ (x)(I,) satisfies the following:

(i) T W} (x) = Ei(x) and T W"(x) = Es(x),

(i) for any e € (0.1), £(W(x)) = W(£ (%)), )

(iii) for any & €(0,1), there exists &€ (0,1) such that f~'(W "(x)) =

(7 ().
Thus there exists 6 > 0 such that if d(x, y) <J (d denotes the Riemannian metric
on T?), then W*(x) and W,*“(y) have a single transverse intersection point, so we
write

(3.1) [x, y] = I/f{gs(x) N I/f{g"“(y) (x,ye T? with d(x,y) <0).

We denote by d* and d“ the Riemannian metric on W/'(x) and W, (x)
respectively. Let B(x,r) be the ball centered at x with radius r. Since g > 0
is small enough, without loss of generality we can assume that the diameater
of W, (x) (respectively W°(x)) is greater than W) (x) (respectively W, (x)) for
xe Y,

(x) is contained in W, (x) and W},

Lemma 3.1. For any xe Y,, W}

= loc (X) is
contained in W} (x).

Proof. Let C(x) be as in (2.1) and 6 be as in (3.1). Firstly we prove
that W (x) N B(x,0C(x)"") = W (x) for xeY,. To do so, assume that

loc ~
there exist xe Y, and ye W,;‘C(x)ﬂB(x,éC(x)fl)\I/I{g"“(x). By (2.1) we have
d*(f7"(y), f"(x)) <o for n =1 and then define

") SR = W) N W (X)) (n= 1),
Since y # x and [f"(y), f"(x)] = f"[»,x], we have
S ) e WD), S # ST () (m= 1),

Since f is uniformly contracting along Ei, we have |[D.f™"[g |l =4"
(ze W'(y)) and then

e>d*(f (v, x]) S () 2 A"y, 0], y) (n= 1),

This is a contradiction.
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(2.1) and (2.2) ensure the existence of 7 > 1 such that
ST W) < W ) N B (0),0C(F ' (0)) ) = W (71 (x)
for any x e Y,. Thus we have that W (x)NB(x,e) =« W, %(x) for any x € Y,

Next we use the similar argument to prove the last part of the lemma
Assume that W, (x) N B(x,0D(x)"") & WS (x) for some x € Y,. Here D(x) be as

loc

in (2.3). Then there exists y e W, .(x) N B(x,0D(x)" )\WS( . From this, we
have d*(f"(y), f"(x)) <J for n > 1 and define

/), S ()] = W2 (f" () N
Notice that [y,x] # x because of WS*(y)N W*(x

(
(32)  d"(f"([y.x]), f"(x) < d°(S"([y,x]), S () + d* (" (), /" (x)
< 27d*([y,x], y) + D(x) exp((z, (x) + e0)n)d"(x, )
(n=1)

-0 (n— o).

f”( ) (n=1).

W
) =0, and (2.3) shows that

By the first statement of the lemma, W “(f"(x)) > WL (f"(x))NB(f"(x),e)
and, since f"(Wi(x )ﬂB(x ¢)) is expanding along E,, it doesn’t happen
that d"(f"([y, x)), f”( )) =0 (n— o0). This contradicts (3.2). So we have
W2 (x) N B(x,0D(x)"") = Ws(x) for any x € Y,. Then as in the proof of the

I
first statement, we have that W;.(x) N B(x,¢) = W*(x) for any x € Y,. O

loc

We say that I = W,%“(x) is an interval if there exist y,z € I, (y < z) such that
I=¢"“(x)([y,z]). For 0 <e <e we identify W,*(x) with I, = R if there is no
confusion. For any fixed point p, without loss of generality we can assume that
all the eigenvalues of D,f are positive (by replacing f by f? if necessary).

LemMa 3.2 ([11] Lemma 4.1). Let peT? be a fixed point satisfying
1Dl =1, SH WS (P)) = Wi(p)

for some 0 < ¢&' <e Then, for any interval J = WS (p) containing p,

S

i=0

Here /(I) denotes the length of I.

By [[Dpf gl <41 for any x e T?, the following statement is a result of
Pujals- Sambarlno ([18])

Lemma 3.3 ([18] Corollary 3.5).  Assume that p € T is a fixed point such that
ST WM (p)) = Wi(p)
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for some 0<¢& <e¢ and fix an interval J < W;{”(p). Then there exists L =
L(J,e) >0 such that

L) < () q) < LA(f())
for any qe W5(p) and n = 0.

Remark 3.4. If f is topologically transitive, then any fixed point of f
satisfies the condition of Lemma 3.3.

Let ' be an f-invariant compact set. We say that f has a dominated
splitting on T if there exist C >0 and 0 <A< 1 such that each xeI is
decomposed T,T? = E|(x) @ E>(x) into the sum of D, f-invariant subspaces
Ei(x) and E,(x) which satisfies

1D f " gy o)l 1Ppno) S " |y o I < A" (n 2 0).

Clearly, if f is partially hyperbolic with contracting direction on I, then f has a
dominated splitting on T

We denote by Q(f) the set of points x € T? such that for any neighborhood
V of x there exists n > 0 satisfying f"(V)NV # 0. We say that an n-periodic
point p is hyperbolic if the absolute values of eigenvalues of D,f" are different
from 1 and is sink (respectively source) if all the absolute values of eigenvalues
of D,f" are smaller(respectively larger) than 1. If 4 has positive and negative
Lyapunov exponents then the set of hyperbolic periodic points is not empty ([12]).

Lemma 3.5 ([18]). Assume that [ has a dominated splitting on Q(f) and all
the periodic points in Q(f) are hyperbolic. Then Q(f) is represented as a union
Q(f)=T1UT, of T'y and Ty where Ty is a hyperbolic set for f and Ty consists
of a finite union of periodic simple closed curves €,,...,%, such that each €; is
normally hyperbolic and f™ : €; — €; is conjugated to an irrational rotation (m;
denotes the period of ;).

In particular, in the case when Q(f) = T2, f is an Anosov diffeomorphism.

Remark 3.6. 1If f is topologically transitive, then all the periodic points are
not sink nor source.

Proof of Theorem A. Assume that f is an Anosov diffeomorphism. Then
[ satisfies the conditions (1)—(3) of Theorem A. Indeed, the condition (1) is
obtained from the definitions of Anosov and partially hyperbolic diffeomor-
phisms. Since any Anosov diffeomorphism of T? is topologically conjugate to
some hyperbolic toral automorphism ([6] Theorem 6.3) and hyperbolic toral
automorphisms are topologically transitive, we have the condition (2). The
condition (3) is the direct consequence of [23] as stated in Introduction.
Therefore it remains only to show that the converse statement holds.

To do so we prepare the following claim.
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CLAamM. All the periodic points of T2 are hyperbolic.

If we have the claim, then f satisfies the assumption of Lemma 3.5. Thus
we have the conclusion.

To show the claim, we choose an arbitrary periodic point p with period n.
To simplicity we replace f by f”. Then p is a fixed point of f. Since f is
uniformly contracting along Ej, we have to show that | D, f|g, [ > 1. Since f
is topologically transitive, by Remark 3.6 it doesn’t happen that [|D,f]g,, [l < 1.
Assume that || D, f g, || = 1. Then we lead a contradiction by using the method
in the proof of Theorem A in [11].

Fix 0 <& < min{¢,d/(24;)} and define a neighborhood 2 of p by

? =A{lyAlye W (p),xe Wi(p)}

When we identify W;”( p) with an interval I;, = R and p is a fixed point of f, the
graph of f|W8fu(p> satisfies |f|ng,»u(p>(y)| > |y| for any y e W, (p)\{p} (Figure 1)
because f is topologically transitive. Since f~! is uniformly expanding along
E;, f~1(2) intersects 2 transeversely along stable direction (see Figure 2).

Let £ be a measurable partition subordinate to the W*-foliation and {u"}
(u-a.e.x) denote a canonical system of conditional measures of x w.r.t. £“. Since
u is an SRB measure, we can take a measurable function ¢:T?> — R
satisfying

duy
06) = i @
for p-a.e.y and my-a.e.zec"(y) ([13]). Here my denotes the Lebesgue measure
on W"(y). Moreover it is known ([14] Corollary 6.1.4) that for w-a.e.y, g is
strictly positive on &“(y) and log g is Lipshitz continuous on &“(y).

By the definition of &", there exist r>0, xpeY, and a closed set
A < Y, N B(xo,r) with u(A4) >0 such that for any ye 4

(a) &"(y) o B¥(y,2r) where B"(y,2r) denotes the ball centered at y with

radius 2r in W¥(y),

, 1
(b) lim,— 4+ . log|| D= /" g, | = 22(z) > 0 for my-ae. zel"(y),
(c) there exists Cy > 0 (independent of y) such that for z e B“(y,2r)
(3.3) Gl <9(2) < Go.

Let #“(y) denote the connected component of &“(y)N B(xp,r) which
contains y € A and write B = U},EA n*(y). For any y e A, by (b) we have that
I(f"(n"(y))) — oo as i — oo, where [(I) denotes the length of an interval [ in
the unstable manifold. Since f is topologically transitive, there exists k; > 0
such that /%1 (B“) meets transversely one of the components of f~!(2)\Z along
E,. This intersection is denoted by 2 and clearly we have my”(,Q(l)) >0 for
ye 2. Furthermore we can show that u(2") > 0. Indeed, since u is f-
invariant and is an SRB measure,
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FiGURe 1. The graph of fja(,
A

M cu P
& (p)\? / .':_1(P)
|
P

’, (o)

FIGURE 2. A transverse intersection of f~!(2)N2

(34) w2y = (7 (2M) = Jﬂ,i’(f”“ (21)) du(x)

- (j ngi‘> du()
pe\Jrhn) "

_ J u (L( o ENID-S | i (Z)> duly)
= Gy il (1D ol [y (0 i) 2 3

= ¢1 [mt(2) dut)

where Cy = Gyl inf__ o {||D.f |, I}. The last term of (3.4) is positive
because p(B*) >0 and m}‘,(wy)(a@(l)) >0 for ye B".
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Define
20 =1ze2W|fiz)er,(1<j<i)} (i=2)
and remark that 20 520 120N fi(2U)=¢ for 1<i<, and
Ui>1fi(,@<i>) c?. Let n:20) — Wn‘”(p) be the projection sliding along local
stable manifolds. Since the fixed point p satisfies the condition of Lemma 3.3,
there exists L; > 0 such that

(3.5) m¥(2%) > Lim!(n(2"))
pjmm
0(i)
By \ Iy
[ —
V| L L
f(p) L1

cu ( . )
L., Q")
FIGURE 3. The figure of 2)

for any xe 2 (see Figure 3). In (3.4), replacing 20 by 200 we have

(3.6) W(20) > Cy [mt(27) dutx) (12 1)
By (3.5), (3.6) and m!(x(200)) = m(f~i(z(20)))),
4(20) = CLmi(~(x(2)).

Then, since u is f-invariant,

u(iﬂfﬁ)) = iu(f"(fz“))) = u(2") = Ly Zm:m;‘(f*"(ﬂ(a@“’)))-
i=1 i=1 i=1

0
The last expression above goes to co b

i1

y Lemma 3.2. This is a contradiction

with #(T?) = 1. Therefore IDpf gyl > 1, ie., p is hyperbolic. This com-
pletes the proof. O

4. Proof of Theorem B

In this section we deal with a C'**-diffeomorphism f of T? (0 <« < 1)
which has a non-hyperbolic fixed point p and satisfies the following three
assumptions:
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AsSUMPTION 1. There exist a norm |[-|| on T?, 0<i<1 and a D.f-
invariant decomposition T,T? = E|(x) @ E,(x) into subspaces Ej(x) and E(x)
which satisfy

(x=p),
(x # p).

~ For any 0 <e< 1, if we denote the local stable and unstable manifolds
Ws(x) and W(x) at x e T? by

&

=1
Diflpll <7 |IDs
Dol <4 10l 2

Wi(x)={yeT?|d(f"(y),["(x)) <& (n>0)} and
Wi (x) = {yeT|d(f"(y),f"(x) <& (n>0)}

respectively, then it follows from Assumption 1 that W*(x) and W(x) are C'**-
manifolds with T, W'(x) = E|(x) and T, W}*(x) = Ex(x) ([9]). To obtain the
Lipschitz continuity of the holonomy map along local stable manifolds (Lemma
4.3), we impose the following assumption.

AssUMPTION 2. (1) For any xeT? and 0<e< 1, each local unstable
manifold W"(x) is a C*-embedding and (2) W*“-foliation {(WH(x)|xeT?} is
C2-continuous, i.e. the correspondence x — W,*(x) is C2-continuous.

AssumpPTION 3. If we identify W"(p) with I, = [—¢,¢], then the graph of
f |Vfé"(/?) can be represented as
x+xT4o(x?)  (x>0),

Sp (%) = {x — 3" = o(x?) (x<0).

Assumption 3 implies that f is of C!** on VK“(p) and it is crucial in proving
the existence of an SRB measure.

Remark 4.1 ([19] Chapter VI 8.8). We can construct a Cl!*-
diffeomorphism f above as follows: Let f; be a hyperbolic toral automorphism
of T? with two different eigenvalues 0 < 4; < 1 < /5. We slowly deform f; near
the origin along only unstable direction until it satisfies Assumptions 1 and 3.

By Assumption 1, f is partially hyperbolic with contracting direction but
not an_Anosov diffeomorphism and there exists 6 > 0 such that if d(x,y) <9,
then W'(x) and W'"(y) have a single transverse intersection point [x, )] =
WS(x)N W"(y) ([9] Theorem 5.5). Thus f is expansive, i.e. there exists 5 > 0
such that if x, y e T? and d(f'(x),f (y)) <#n (i€Z) then x = y.

Moreover we can check that f satisfies the uniformly shadowing property
(2] Theorem 5.4, [3] Theorem 2.2.17).

A sequence {x;};., < T? is called a f-pseudo orbit for f if d(f(x;),xi1) < f
for all ie Z. A point x € T? is called an o-shadowing point for a f-pseudo orbit
{xi}iez i d(f(x),x;)) <o (ieZ). We call that f satisfies uniformly shadowing
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property if for any o > 0 there exists f > 0 such that for a J-pseudo orbit there
exists at least one o-shadowing point. Since f is expansive and satisfies the
uniformly shadowing property, f is topologically conjugate to some hyperbolic
toral automorphism ([8] Theorem) and is topologically transitive.

To conclude Theorem B it is enough to show the following:

ProrosiTiON 4.2. If 0 <o <1, then f admits an SRB measure.

In [11] Hu and Young gave a direct proof of the Lipschitz continuity of the
holonomy map along the stable leaves for C2-almost Anosov diffeomorphisms.
We emphasize that in their proof they use only Assumptions 1 and 2. So the
Lipschitz continuity also holds for our case:

Lemma 4.3 ([1] Proposition 2.5). There exists L >0 such that for any
yeT?, interval J = W' (y) and qe W*(y) with d(y,q) <9,
L'7(J) </(J,q) < LL(T).

By Assumption 3, we have the following ([24] p. 180):

Lemma 4.4 ([11], [24]). For any interval J = W (p)

&

((fH(J)) < o.
i=0
For any z e T? we denote by
Z(2) = {[yx] | ye Wi xe W)} (0<é <)
a rectangle of z. Combining Lemma 4.3 with the proofs of Proposition 3.1 in

[11] and Lemma 5 in [24], we have the following:

Lemma 4.5 ([11], [24]). For any small rectangle 2 of p, there exist 61 > 0
and K > 0 such that for any x € T and any interval J = W (x) with I(J) < &, and
JNZ =0

1 |det(Dyf ", (1)]
- < - <K (yzeyn=1
K = J8el(D.f )l 1 )

where det(Dyf|g,,)) denotes the Jacobian at y of [ restricted to E>(y).

Now we introduce here the notion of a Markov partition. For any
rectangle # and x € Z#, let y?(x) be the stable (6 = s) and unstable (6 = u) leaf
which is the connected component of W.”(x) % containing x. A rectangle
% < T? is said to be proper if Cl(int(#)) = # where Cl(4) and int(4) denote
the closure and interior of a set A respectively. We say that {%};:é is a

Markov partition if (i) each %; is proper, (ii) {;%};;5 is a cover of T2, (iii)
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int(%;) Nint(#;) =0 for i##j and (iv) for any xeint(%;)N f~'(int(%))),
£ () =7 (f() and £(G(x)) 2 7 (F(¥)):

Since f is expanswe and satisfies uniformly shadowing property, f has a
Markov partition {@} w1th arbitrary diameter (see [3]). So we can assume
that the diameter of {,@} o 1s less than 0 <& < d/2. Moreover, since f is
topologically conjugate to some hyperbolic toral automorphism, each element of
{%};;(} is homeomorphic to a parallelogram ([22] Theorem 4.1) and its boundary
consists of two stable leaves and two unstable leaves.

We consider elements of {,%}f;é containing the fixed point p. Then p is
contained in the interior of some #; or, in the boundaries of some %;s. If the
latter happens, one of the boudary leaves of #; is an unstable or stable leaf with
p. This implies that the cardinarity of the set of all #; containing p is less than
4. Since we can assume that all the eigenvalues of D, f are positive (by replacing
f by f?, if necessary), we have

(a) f(int(%;)) Nint(%;) # 0 whenever p € %;, and

(b) f(int(2;)) Nint(#;) = O whenever pe ;N R; (i # ).

If we take a nelghborhood 2 of p where

1nt< U 2)

then f is uniformly hyperbolic outside 2 (by Assumption 1). By (a) and (b) we

have f( ) 1nt(UpE%if(%) N @,)

Let R(x ) be the smallest positive integer such that (fF)(x) = fR¥(x)e
T?\2 for x e Tz\ﬂ’. By Assumption 1, the first return map f® is defined for
m-a.e.x € T?\? where m denotes the Lebesgue measure on T>. We set

Li={yeT\?|R(y) =i} (i=1),
then fR(x) = fi(x) for xeI;. We define
W ={zefM2\2|f/ D) ez,(1<j<i} (i=]),

Then fi(29)N f71(2V)) =0 for i # j, P = Ul>1f‘ @) and 20 = Ujsir I

For any rectangle A, any unstable leaf " and any p > 0, we say that 7, c #
is a u-subset of y* with radius p if ¥, = UyeB\ p)? “(y) for x € y¥, where Bs(x p)
denotes the closed ball in W(x) centered at x with radius p. For any interval
w <y, S, 1s an s-subset corresponding to o if ¥, = U <o V(). We denote
0°(Z) the two stable leaves which contain the different extreme points of any
unstable leaf y* < #. 0“(#) is also defined. The boudary of %, d(%), is
represented as (%) = 0°(#)U 3"(R).

Let £“ be the measurable partition subordinate to W¥-foliation. For an
fR-invariant probability measure v on T?\2, let {v"} (v-a.e.x) denote the ca-
nonical system of conditional measures of v w.r.t. £" and m¥ denote the Lebesgue
measure on p*(x).
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LeEMMA 4.6. There exists an fR-invariant Borel probability measure u such
that p <« m¥ (p-a.e.x).

Proof Let y, be an unstable leaf which intersects one of the components
of f~1(2)\? and m( be the Lebesgue measure on y,. To 51mp11c1ty we assume
that m{(y,) = 1, and so define a probability measure of T*\Z by

S Ul (= 1)

Here (fR)/ (m0|r) is the push forward of mg|r, by (f Ry/ Then there exist a
probability measure x on T? \7 and a subsequence {un}is1 = {unty=1 such that
Ky — H (j — ). Clearly u is f®-invariant. -

To obtain the conclusion it is enough to show that there exists K; > 0 such
that for g-a.e.x and any interval o < y"(x)

1
K

j=1

4.1 mi(w) < pi(w) < Kimi(w).

X

For any x € T2, to simplicity set y = y¥(x) and choose any interval o < y.
S, denotes the s-subset corresponding to @ and ¥, the u-subset of y with radius
0 < p<9d/2. Firstly we prove that there exists Ky > 0 such that

1 mZ(w) < uiz(%n<%u) <K m”(w)

- < - < 0 X A

Ko mi(y) 1n(7y) mi{(y)

To see this, we use the arguments in the proof of Lemma 5.2 in [11] and Theorem
1 in [25]. We set y/ = (f®)/(yoNT;)N¥,. Since f is topologically transitive,

for n > 0 large enough there exist i > 1 and 0 < j < n— 1 such that y/ # 0. By
Lemma 4.3 there exists L > 0 such that for 0 < j <n—1 and i > 1 with y/ # 0,

1 omiw) _"U0S) o)
L2my) = muGh T omiO)
By Lemma 4.5, (4.3) and by usmg the fact that (37, a)/ (X2 b)) <

sup; - {a:i/bi} for ai,b; >0 (i>1) and > a; < o0, D2, b; < o0, we can find
K >0 such that

(4.2)

(4.3)

1 m¥(w) (f®/ (mo)(Vﬂyw) , m¥(w)
44 KL mi(y) = (SR (mi)(7;) =&t m(y)

By (4.4) and the fact above again, we have (4.2).

We can choose 7, such that their boundary 0(7,) has u-zero measure.
Indeed, it is enough to show that u(y*) = 0 for any unstable leaf y*. Since there
exist at most countable p > 0 such that u(0“(7,)) >0, except for such p >0,
we have that u(0"(7,)) =0. If we have the claim above, then u(0°(7,)) =0.
Therefore u(0(7,)) = 0.

For any stable leaf »* and 0 <# <& we set
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Uy n) ={ly.z] e T\Z|ze " d(z, y) <n}.
Then

i
u@y',n) = kQI(U(y“’,n) O R, )

for Ry, # Ry (k=1,...,1) with U@ n)N Ry, #0. For any k=1,...,1,
there exist yx € Z,,, an interval w,(yr) < y*(yx) and p(yx) > 0 such that (a) the
u-subset 7,y of y"(yx) and the s-subset ¥, (,,) corresponding to w,(yx) satisfy
U@*sn) N R, = Vi3 NS o (70)s (b) m¥ (wy(yx)) = 0 as n — 0. By (4.2), for

Vi
any n > 1,
4.5) (UG ) N ) < Ko1)o
. n y Ky ) S 80— —7— 7% .
' myk(y (k)

Since U,i:IU(yS,n)ﬂ%mk contains y* and is open in T?\? w.r.t. the relative
topology, we have

(4.6) wy*) < u(lkl)l U@y*,n) ﬂ%mk>

I

< limsup p, <U u@’,n) ﬂ%mk)
j— oo k=1

By (4.5) and (4.6), we have u(y*) =0.

Thus we can choose the finite measurable partition &; which consists of
VNS, with u(0(V,NF,)) =0 (1 <i<gq) and set &"={y"(x)N7¥,NS, |
x€ R, int(#)NP =0,7,N,, €& }. Then we can find the sequence {¢,},.,
of finite measurable partition such that

H<h<o<\/ & =80

/>1

By Doob’s theorem we have u/ — p! (p-a.e.x) as £ — oo, where {u’} (u-a.e.x)
denotes the canonical system of conditional measures w.r.t. £,. Here we remark
that (A) = u(4,, NS0, N A) /(7,0 S,,) for any ¥, NS, €&, any Borel set A
and xe€ v, NS, NA.

Since (4.2) holds for 7,, N7, €& (1 < j < q) instead of ¥, and any interval
o < w; with u(d(7,, NY,) =0, by taking n — oo in (4.2), we have

(4.7 1 m)'j(w() < 1(7, n}«%u,) NS%w) < K mg(w() .

Doob’s theorem ensures that we have

48) s < (o) < Ko b

Fo W W)ny@) (p-a.e.x)
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as / — oo in (4.7). Since #;NY,, is a rectangle (0 <i<r—1,1<j<gq), by
Lemma 4.3 there exists K; >0 such that for any x € %;,

1
4.9) — <mi(y"(x)N ) < K.
K, )
Therefore we have (4.1) by (4.8) and (4.9). O

Proof of Proposition 42. Let u be the fR-invariant Borel probability
measure on T>\? in Lemma 4.6. Then

0

A=pt+ Y S ul)

i=1

is a finite measure. To see this, it is enough to prove that i(2) < oo.
Let 7: 21 — y“(p) be the projection sliding along local stable manifolds.
As in proof of Theorem A, by Lemma 4.3 there exists L > 0 such that for any

xe fH(2)\2,
(4.10) m(2Y) < Lm!(n(27)) (i >1).
By (4.1) there exists K > 0 such that

@1 a2 = (w20 du) < K [mi(29) du) > ).
By (4.11), (4.10) and m!(x(2! )) mi(f i (m(20),
(4.12) u(20) <KL mi (£ (2 1)) (i 1).

By 7 =)~ f(2"), f‘<£<f>>ﬂff<ﬂ<f>> 0 (i#j), a(fi(2%)=pu2") and

(4.12), we have

0

H(#) =3 u(20) 2 KLY mi(f (x(2)).

i=1 i=1

Lemma 4.4 ensures that the last term above converges.
By Lemma 4.6 the normalized measure of i is an SRB measure. This
concludes the proposition. O
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