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DIFFEOMORPHISMS ADMITTING SRB MEASURES

AND THEIR REGULARITY

Jin Hatomoto

Abstract

We are interested in the stochastic property of some ‘‘Anosov-like’’ system. In this

paper we will treat a transitive and partially hyperbolic di¤eomorphism f of a 2-

dimensional torus with uniformly contracting direction, and show that if f is of C 2 and

admits an SRB measure, then f is an Anosov di¤eomorphism. In our proof we use the

Pujals-Sambarino theorem for C 2 di¤eomorphisms with dominated splitting. In the

case of C 1þa the above statement is not true in general, i.e. we can construct a C 1þa

counter example of Maneville-Pomeau type.

1. Introduction

We know that if f is a C 2-Anosov di¤eomorphism of a compact manifold
M, then f admits an Sinai-Ruelle-Bowen measure m (or SRB measure), i.e., m has
absolutely continuous conditional measures on unstable manifolds (Sinai [23]).
This measure m is isomorphic to a Berunulli shift, and it has exponential decay of
correlations for Hölder continuous functions, and furthermore satisfies that

lim
n!y

1

n

Xn�1

j¼0

jð f jxÞ ¼
ð
j dm

for any continuous function j : M ! R and for Lebesgue almost every x A M.
This result has been extended to Axiom A attractors by Bowen and Ruelle
(e.g. [4]).

Let f be a C 1þa-di¤eomorphism of a 2-dimensional torus T2 ð0 < aa 1Þ
and G be an f -invariant set of T2, i.e. f ðGÞ ¼ G. We say that f is partially
hyperbolic with contracting direction on G if there exist a norm k � k on T2 and
0 < l1 < l2 with l1 < 1 so that each x A T2 has a Dx f -invariant decomposition
TxT

2 ¼ E1ðxÞlE2ðxÞ of subspaces E1ðxÞ and E2ðxÞ such that
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kDx f jE1ðxÞka l1; kDx f jE2ðxÞkb l2ð1:1Þ

(Here Dx f denotes the derivative of f at x). Moreover, when l2 > 1, f is called
hyperbolic on G (or G is a hyperbolic set for f ). We call that f is an Anosov
di¤eomorphism if f is hyperbolic on the entire space T2. f is said to be to-
pologically transitive if there exists a point x A T2 such that its orbit f f nðxÞgn AZ is
dense in T2.

The purpose of this paper is to show the following two theorems:

Theorem A. Let f be a C 2-di¤eomorphism of T2. Then f is an Anosov
di¤eomorphism if and only if the following holds:

(1) f is partially hyperbolic with contracting direction on T2,
(2) f is topologically transitive and
(3) f admits an SRB measure.

Theorem A is false in the case when f is of C 1þa ð0 < a < 1Þ, i.e.

Theorem B. For a A ð0; 1Þ there exists a C1þa-di¤eomorphism f such that
(1) f is partially hyperbolic with contracting direction on T2 but not an

Anosov di¤eomorphism,
(2) f is topologically transitive and
(3) f admits an SRB measure.

2. Definitions and preliminaries

Fix a A ð0; 1� and let f be a C1þa-di¤eomorphism of T2. Assume that f is
partially hyperbolic and has contracting direction. Then f has the decompo-
sition satisfying (1.1). Let m be an f -invariant probability measure on T2. By
Birkho¤ ’s ergodic theorem there exist a set Ym with full m-measure and real
numbers w1ðxÞ < w2ðxÞ ðx A YmÞ which satisfy the following:

lim
n!Gy

1

n
logkDx f

njEiðxÞk ¼ wiðxÞ ði ¼ 1; 2Þ:

We call wiðxÞ ði ¼ 1; 2Þ the Lyapunov exponents of m at x A Ym. By (1.1) we have

w1ðxÞa log l1 < log l2 a w2ðxÞ ðx A YmÞ:

We say that m is an SRB measure if (i) w2ðxÞ > 0 and (ii) m has the conditional
measures which are absolutely continuous w.r.t. the Lebesgue measures on un-
stable manifolds, which is defined as follows:

If w2ðxÞ > 0 for any x A Ym, then it is well known (see [16]) that there exists
e0 > 0 su‰ciently small and the local unstable manifold W u

locðxÞ such that

f �1ðWu
locðxÞÞHWu

locð f �1ðxÞÞ;

for any y A Wu
locðxÞ and nb 0
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d uð f �nðxÞ; f �nðyÞÞaCðxÞ expðð�w2ðxÞ þ e0ÞnÞd uðx; yÞð2:1Þ
and E2ðxÞ ¼ TxW

u
locðxÞ, where d u denotes the Riemannian metric on Wu

locðxÞ and
CðxÞ satisfies

lim
n!Gy

1

n
log Cð f nðxÞÞ ¼ 0:ð2:2Þ

The unstable manifold W uðxÞ is defined by

WuðxÞ ¼ 6
nb0

f nðWu
locð f �nðxÞÞÞ:

Since w1ðxÞ < 0 for any x A Ym, the local stable manifold W s
locðxÞ exists ([16])

and satisfies

f ðW s
locðxÞÞHW s

locð f ðxÞÞ;
for any y A W s

locðxÞ and nb 0

d sð f nðxÞ; f nðyÞÞaDðxÞ expððw1ðxÞ þ e0ÞnÞd sðx; yÞð2:3Þ
and E1ðxÞ ¼ TxW

s
locðxÞ, where d s denotes the Riemannian metric on W s

locðxÞ and

DðxÞ satisfies limn!Gyð1=nÞ log Dð f nðxÞÞ ¼ 0. The stable manifold W sðxÞ is also
defined.

Let B denote the Borel s algebra of T2. For any measurable partition x of
T2 we denote by Bx the set of all Borel subsets which consist of the unions of the
elements of x. A measurable partition x of T2 defines a family of measures fmx

xg
(m-a.e.x) such that for m-a.e.x and B A B, mx

xðBÞ is a Bx-measurable function of x
and

mðE VBÞ ¼
ð
E

mx
xðBÞ dmðxÞ ðE A BxÞ:

If there exists a sequence fxigib1 of countable measurable partitions such that

x1 a x2 a � � �a 4
ib1

xi ¼ x;

then mx
xðxðxÞÞ ¼ 1 where xðxÞ denotes an element of x containing x. The

family of measures fmx
xg (m-a.e.x) is said to be the canonical system of conditional

measures of m w.r.t. x (see [20]).
We assume that a measurable partition xu of T2 is subordinate to the

W u-foliation, i.e., xu satisfies that (1) xuðxÞHWuðxÞ and (2) xuðxÞ contains
an open set in WuðxÞ for m-a.e.x. Let fmu

xg (m-a.e.x) denote a canonical
system of conditional measures of m w.r.t. xu and mu

x denote the Lebesgue
measure on WuðxÞ. If mu

x is absolutely continuous w.r.t. mu
x for m-a.e.x

(mu
x fmu

x ), then we say that m has the conditional measures which are
absolutely continuous w.r.t. the Lebesgue measures on unstable manifolds (see
[13]). If m is an SRB measure, then so does every element in the ergodic
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decomposition of m for a set of m-full measure. If mu
x fmu

x (m-a.e.x), then we
know that mu

x @mu
x jx uðxÞ (see [13], [14], [7]).

3. Proof of Theorem A

Let f be a C 2-partially hyperbolic di¤eomorphism with contracting di-
rection on T2 and m be an f -invariant probability measure on T2. Let us denote

Ie ¼ ½�e; e� for any 0 < ea 1 and Emb2ðI1;T2Þ as the set of C2-embeddings of I1
into T2 equipped with the C2-metric. We can find (see [9]) two continuous maps
fs : T2 ! Emb2ðI1;T2Þ and fcu : T2 ! Emb2ðI1;T2Þ such that for any 0 < ea 1
the local stable and center unstable manifolds ~WW s

e ðxÞ ¼ fsðxÞðIeÞ and ~WWcu
e ðxÞ ¼

fcuðxÞðIeÞ satisfies the following:
(i) Tx

~WW s
e ðxÞ ¼ E1ðxÞ and Tx

~WWcu
e ðxÞ ¼ E2ðxÞ,

(ii) for any e1 A ð0; 1Þ, f ð ~WW s
e1
ðxÞÞH ~WW s

e1
ð f ðxÞÞ,

(iii) for any e1 A ð0; 1Þ, there exists e2 A ð0; 1Þ such that f �1ð ~WWcu
e2
ðxÞÞH

~WWcu
e1
ð f �1ðxÞÞ.

Thus there exists d > 0 such that if dðx; yÞ < d (d denotes the Riemannian metric
on T2), then ~WW s

e ðxÞ and ~WWcu
e ðyÞ have a single transverse intersection point, so we

write

½x; y� ¼ ~WW s
e ðxÞV ~WWcu

e ðyÞ ðx; y A T2 with dðx; yÞ < dÞ:ð3:1Þ

We denote by ~dd s and ~dd cu the Riemannian metric on ~WW s
e ðxÞ and ~WWcu

e ðxÞ
respectively. Let Bðx; rÞ be the ball centered at x with radius r. Since e0 > 0
is small enough, without loss of generality we can assume that the diameater
of ~WWcu

e ðxÞ (respectively ~WW s
e ðxÞ) is greater than Wu

locðxÞ (respectively W s
locðxÞ) for

x A Ym.

Lemma 3.1. For any x A Ym, W
u
locðxÞ is contained in ~WW cu

e ðxÞ and W s
locðxÞ is

contained in ~WW s
e ðxÞ.

Proof. Let CðxÞ be as in (2.1) and d be as in (3.1). Firstly we prove
that Wu

locðxÞVBðx; dCðxÞ�1ÞH ~WWcu
e ðxÞ for x A Ym. To do so, assume that

there exist x A Ym and y A Wu
locðxÞVBðx; dCðxÞ�1Þn ~WWcu

e ðxÞ. By (2.1) we have
d uð f �nðyÞ; f �nðxÞÞ < d for nb 1 and then define

½ f �nðyÞ; f �nðxÞ� ¼ ~WW s
e ð f �nðyÞÞV ~WW cu

e ð f �nðxÞÞ ðnb 1Þ:

Since y0 x and ½ f �nðyÞ; f �nðxÞ� ¼ f �n½y; x�, we have

f �nð½y; x�Þ A ~WW s
e ð f �nðyÞÞ; f �nð½y; x�Þ0 f �nðyÞ ðnb 1Þ:

Since f is uniformly contracting along E1, we have kDz f
�njE1ðzÞkb l�n

1

ðz A ~WW s
e ðyÞÞ and then

e > ~dd sð f �nð½y; x�Þ; f �nðyÞÞb l�n
1

~dd sð½y; x�; yÞ ðnb 1Þ:

This is a contradiction.
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(2.1) and (2.2) ensure the existence of ib 1 such that

f �iðWu
locðxÞÞHWu

locð f �iðxÞÞVBð f �iðxÞ; dCð f �iðxÞÞ�1ÞH ~WWcu
e ð f �iðxÞÞ

for any x A Ym. Thus we have that Wu
locðxÞVBðx; eÞH ~WWcu

e ðxÞ for any x A Ym.
Next we use the similar argument to prove the last part of the lemma.

Assume that W s
locðxÞVBðx; dDðxÞ�1ÞQ ~WW s

e ðxÞ for some x A Ym. Here DðxÞ be as
in (2.3). Then there exists y A W s

locðxÞVBðx; dDðxÞ�1Þn ~WW s
e ðxÞ. From this, we

have d sð f nðyÞ; f nðxÞÞ < d for nb 1 and define

½ f nðyÞ; f nðxÞ� ¼ ~WW s
e ð f nðyÞÞV ~WWcu

e ð f nðxÞÞ ðnb 1Þ:

Notice that ½y; x�0 x because of ~WW s
e ðyÞV ~WW s

e ðxÞ ¼ j, and (2.3) shows that

~dd uð f nð½y; x�Þ; f nðxÞÞa ~dd sð f nð½y; x�Þ; f nðyÞÞ þ d sð f nðyÞ; f nðxÞÞð3:2Þ

a ln
1
~dd sð½y; x�; yÞ þDðxÞ expððw1ðxÞ þ e0ÞnÞd sðx; yÞ

ðnb 1Þ
! 0 ðn ! yÞ:

By the first statement of the lemma, ~WWcu
e ð f nðxÞÞIWu

locð f nðxÞÞVBð f nðxÞ; eÞ
and, since f nðWu

locðxÞVBðx; eÞÞ is expanding along E2, it doesn’t happen
that ~dd uð f nð½y; x�Þ; f nðxÞÞ ! 0 ðn ! yÞ. This contradicts (3.2). So we have
W s

locðxÞVBðx; dDðxÞ�1ÞH ~WW s
e ðxÞ for any x A Ym. Then as in the proof of the

first statement, we have that W s
locðxÞVBðx; eÞH ~WW s

e ðxÞ for any x A Ym. r

We say that I H ~WWcu
e ðxÞ is an interval if there exist y; z A Ie ðy < zÞ such that

I ¼ fcuðxÞð½y; z�Þ. For 0 < e 0 < e we identify ~WWcu
e 0 ðxÞ with Ie 0 HR if there is no

confusion. For any fixed point p, without loss of generality we can assume that
all the eigenvalues of Dp f are positive (by replacing f by f 2 if necessary).

Lemma 3.2 ([11] Lemma 4.1). Let p A T2 be a fixed point satisfying

kDp f jE2ðpÞk ¼ 1; f �1ð ~WWcu
e 0 ðpÞÞH ~WWcu

e 0 ðpÞ
for some 0 < e 0 < e. Then, for any interval JH ~WWcu

e 0 ðpÞ containing p,

Xy
i¼0

lð f �iðJÞÞ ¼ y:

Here lðIÞ denotes the length of I .

By kDp f jE1ðxÞk < l1 for any x A T2, the following statement is a result of
Pujals-Sambarino ([18]).

Lemma 3.3 ([18] Corollary 3.5). Assume that p A T2 is a fixed point such that

f �1ð ~WWcu
e 0 ðpÞÞH ~WWcu

e 0 ðpÞ
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for some 0 < e 0 < e and fix an interval JH ~WW cu
e 0 ðpÞ. Then there exists L ¼

LðJ; eÞ > 0 such that

L�1lð f �nðJÞÞa lð½ f �nðJÞ; q�ÞaLlð f �nðJÞÞ

for any q A ~WW s
e 0 ðpÞ and nb 0.

Remark 3.4. If f is topologically transitive, then any fixed point of f
satisfies the condition of Lemma 3.3.

Let G be an f -invariant compact set. We say that f has a dominated
splitting on G if there exist C > 0 and 0 < l < 1 such that each x A G is
decomposed TxT

2 ¼ E1ðxÞlE2ðxÞ into the sum of Dx f -invariant subspaces
E1ðxÞ and E2ðxÞ which satisfies

kDx f
njE1ðxÞk kDf nðxÞ f

�njE2ð f nðxÞÞkaCln ðnb 0Þ:

Clearly, if f is partially hyperbolic with contracting direction on G, then f has a
dominated splitting on G.

We denote by Wð f Þ the set of points x A T2 such that for any neighborhood
V of x there exists n > 0 satisfying f nðVÞVV 0j. We say that an n-periodic
point p is hyperbolic if the absolute values of eigenvalues of Dp f

n are di¤erent
from 1 and is sink (respectively source) if all the absolute values of eigenvalues
of Dp f

n are smaller(respectively larger) than 1. If m has positive and negative
Lyapunov exponents then the set of hyperbolic periodic points is not empty ([12]).

Lemma 3.5 ([18]). Assume that f has a dominated splitting on Wð f Þ and all
the periodic points in Wð f Þ are hyperbolic. Then Wð f Þ is represented as a union
Wð f Þ ¼ G1 UG2 of G1 and G2 where G1 is a hyperbolic set for f and G2 consists
of a finite union of periodic simple closed curves C1; . . . ;Cn such that each Ci is
normally hyperbolic and f mi : Ci ! Ci is conjugated to an irrational rotation (mi

denotes the period of Ci).
In particular, in the case when Wð f Þ ¼ T2, f is an Anosov di¤eomorphism.

Remark 3.6. If f is topologically transitive, then all the periodic points are
not sink nor source.

Proof of Theorem A. Assume that f is an Anosov di¤eomorphism. Then
f satisfies the conditions (1)–(3) of Theorem A. Indeed, the condition (1) is
obtained from the definitions of Anosov and partially hyperbolic di¤eomor-
phisms. Since any Anosov di¤eomorphism of T2 is topologically conjugate to
some hyperbolic toral automorphism ([6] Theorem 6.3) and hyperbolic toral
automorphisms are topologically transitive, we have the condition (2). The
condition (3) is the direct consequence of [23] as stated in Introduction.
Therefore it remains only to show that the converse statement holds.

To do so we prepare the following claim.
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Claim. All the periodic points of T2 are hyperbolic.

If we have the claim, then f satisfies the assumption of Lemma 3.5. Thus
we have the conclusion.

To show the claim, we choose an arbitrary periodic point p with period n.
To simplicity we replace f by f n. Then p is a fixed point of f . Since f is
uniformly contracting along E1, we have to show that kDp f jE2ðpÞk > 1. Since f

is topologically transitive, by Remark 3.6 it doesn’t happen that kDp f jE2ðpÞk < 1.
Assume that kDp f jE2ðpÞk ¼ 1. Then we lead a contradiction by using the method
in the proof of Theorem A in [11].

Fix 0 < e1 < minfe; d=ð2l1Þg and define a neighborhood P of p by

P ¼ f½y; x� j y A ~WW cu
e1
ðpÞ; x A ~WW s

e1
ðpÞg:

When we identify ~WWcu
e1
ðpÞ with an interval Ie1 HR and p is a fixed point of f , the

graph of f j ~WW cu
e1

ðpÞ satisfies j f j ~WW cu
e1

ðpÞðyÞj > jyj for any y A ~WWcu
e1
ðpÞnfpg (Figure 1)

because f is topologically transitive. Since f �1 is uniformly expanding along
E1, f �1ðPÞ intersects P transeversely along stable direction (see Figure 2).

Let xu be a measurable partition subordinate to the Wu-foliation and fmu
xg

(m-a.e.x) denote a canonical system of conditional measures of m w.r.t. xu. Since
m is an SRB measure, we can take a measurable function g : T2 ! R
satisfying

gðzÞ ¼
dmu

y

dmu
y

ðzÞ

for m-a.e.y and mu
y -a.e.z A xuðyÞ ([13]). Here mu

y denotes the Lebesgue measure

on WuðyÞ. Moreover it is known ([14] Corollary 6.1.4) that for m-a.e.y, g is
strictly positive on xuðyÞ and log g is Lipshitz continuous on xuðyÞ.

By the definition of xu, there exist r > 0, x0 A Ym and a closed set
AHYm VBðx0; rÞ with mðAÞ > 0 such that for any y A A

(a) xuðyÞIBuðy; 2rÞ where Buðy; 2rÞ denotes the ball centered at y with
radius 2r in WuðyÞ,

(b) limn!Gy
1

n
logkDz f

njE2ðzÞk ¼ w2ðzÞ > 0 for mu
y -a.e. z A xuðyÞ,

(c) there exists C0 > 0 (independent of y) such that for z A Buðy; 2rÞ
C�1

0 a gðzÞaC0:ð3:3Þ
Let huðyÞ denote the connected component of xuðyÞVBðx0; rÞ which

contains y A A and write Bu ¼ 6
y AA huðyÞ. For any y A A, by (b) we have that

lð f iðhuðyÞÞÞ ! y as i ! y, where lðIÞ denotes the length of an interval I in
the unstable manifold. Since f is topologically transitive, there exists k1 > 0
such that f k1ðBuÞ meets transversely one of the components of f �1ðPÞnP along

E2. This intersection is denoted by Qð1Þ, and clearly we have mu
y ðQð1ÞÞ > 0 for

y A Qð1Þ. Furthermore we can show that mðQð1ÞÞ > 0. Indeed, since m is f -
invariant and is an SRB measure,
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mðQð1ÞÞ ¼ mð f �k1ðQð1ÞÞÞ ¼
ð
mu
xð f �k1ðQð1ÞÞÞ dmðxÞð3:4Þ

¼
ð
Bu

ð
f �k1 ðQð1ÞÞ

g dmu
x

 !
dmðxÞ

¼
ð
Bu

ð
Qð1Þ

gð f �k1ðzÞÞkDz f
�k1 jE2ðzÞk dmu

f k1 ðyÞðzÞ
� �

dmðyÞ

bC�1
0 inf

z AQð1Þ
fkDz f

�k1 jE2ðzÞkg
ð
Bu

mu
f k1 ðyÞðQ

ð1ÞÞ dmðyÞ ð9 ð3:3ÞÞ

¼ C1

ð
mu

xðQð1ÞÞ dmðxÞ

where C1 ¼ C�1
0 inf z AQð1ÞfkDz f

�k1 jE2ðzÞkg. The last term of (3.4) is positive

because mðBuÞ > 0 and mu
f k1 ðyÞðQ

ð1ÞÞ > 0 for y A Bu.

Figure 1. The graph of f j ~WW cu
e1

ð pÞ

Figure 2. A transverse intersection of f �1ðPÞVP
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Define

QðiÞ ¼ fz A Qð1Þ j f jðzÞ A P; ð1a ja iÞg ðib 2Þ
and remark that QðiÞ IQð jÞ, f iðQðiÞÞV f jðQð jÞÞ ¼ j for 1a i < j and

6
ib1

f iðQðiÞÞHP. Let p : Qð1Þ ! ~WWcu
e ðpÞ be the projection sliding along local

stable manifolds. Since the fixed point p satisfies the condition of Lemma 3.3,
there exists L1 > 0 such that

mu
xðQðiÞÞbL1m

u
p ðpðQðiÞÞÞð3:5Þ

for any x A Qð1Þ (see Figure 3). In (3.4), replacing Qð1Þ by QðiÞ, we have

mðQðiÞÞbC1

ð
mu

xðQðiÞÞ dmðxÞ ðib 1Þ:ð3:6Þ

By (3.5), (3.6) and mu
p ðpðQðiÞÞÞ ¼ mu

p ð f �iðpðQð1ÞÞÞÞ,
mðQðiÞÞbC1L1m

u
p ð f �iðpðQð1ÞÞÞÞ:

Then, since m is f -invariant,

m
Xy
i¼1

f iðQðiÞÞ
 !

¼
Xy
i¼1

mð f iðQðiÞÞÞ ¼
Xy
i¼1

mðQðiÞÞbC1L1

Xy
i¼1

mu
p ð f �iðpðQð1ÞÞÞÞ:

The last expression above goes to y by Lemma 3.2. This is a contradiction
with mðT2Þ ¼ 1. Therefore kDp f jE2ðpÞk > 1, i.e., p is hyperbolic. This com-
pletes the proof. r

4. Proof of Theorem B

In this section we deal with a C1þa-di¤eomorphism f of T2 ð0 < a < 1Þ
which has a non-hyperbolic fixed point p and satisfies the following three
assumptions:

Figure 3. The figure of QðiÞ
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Assumption 1. There exist a norm k � k on T2, 0 < l < 1 and a Dx f -
invariant decomposition TxT

2 ¼ E1ðxÞlE2ðxÞ into subspaces E1ðxÞ and E2ðxÞ
which satisfy

kDx f jE1ðxÞka l; kDx f jE2ðxÞk
¼ 1 ðx ¼ pÞ;
> 1 ðx0 pÞ:

�

For any 0 < e < 1, if we denote the local stable and unstable manifolds
~WW s
e ðxÞ and ~WWu

e ðxÞ at x A T2 by

~WW s
e ðxÞ ¼ fy A T2 j dð f nðyÞ; f nðxÞÞa e; ðnb 0Þg and

~WWu
e ðxÞ ¼ fy A T2 j dð f �nðyÞ; f �nðxÞÞa e; ðnb 0Þg

respectively, then it follows from Assumption 1 that ~WW s
e ðxÞ and ~WWu

e ðxÞ are C 1þa-
manifolds with Tx

~WW s
e ðxÞ ¼ E1ðxÞ and Tx

~WWu
e ðxÞ ¼ E2ðxÞ ([9]). To obtain the

Lipschitz continuity of the holonomy map along local stable manifolds (Lemma
4.3), we impose the following assumption.

Assumption 2. (1) For any x A T2 and 0 < e < 1, each local unstable

manifold ~WWu
e ðxÞ is a C2-embedding and (2) Wu-foliation f ~WWu

e ðxÞ j x A T2g is
C2-continuous, i.e. the correspondence x 7! ~WWu

e ðxÞ is C2-continuous.

Assumption 3. If we identify ~WWu
e ðpÞ with Ie ¼ ½�e; e�, then the graph of

f j ~WW u
e ðpÞ can be represented as

f j ~WW u
e ðpÞðxÞ ¼

xþ x1þa þ oðx2Þ ðxb 0Þ;
x� jxj1þa � oðx2Þ ðx < 0Þ:

�

Assumption 3 implies that f is of C1þa on ~WWu
e ðpÞ and it is crucial in proving

the existence of an SRB measure.

Remark 4.1 ([19] Chapter VIII 8.8). We can construct a C 1þa-
di¤eomorphism f above as follows: Let f0 be a hyperbolic toral automorphism
of T2 with two di¤erent eigenvalues 0 < l1 < 1 < l2. We slowly deform f0 near
the origin along only unstable direction until it satisfies Assumptions 1 and 3.

By Assumption 1, f is partially hyperbolic with contracting direction but
not an Anosov di¤eomorphism and there exists d > 0 such that if dðx; yÞ < d,
then ~WW s

e ðxÞ and ~WWu
e ðyÞ have a single transverse intersection point ½x; y� ¼

~WW s
e ðxÞV ~WWu

e ðyÞ ([9] Theorem 5.5). Thus f is expansive, i.e. there exists h > 0
such that if x; y A T2 and dð f iðxÞ; f iðyÞÞ < h ði A ZÞ then x ¼ y.

Moreover we can check that f satisfies the uniformly shadowing property
([2] Theorem 5.4, [3] Theorem 2.2.17).

A sequence fxigi AZ HT2 is called a b-pseudo orbit for f if dð f ðxiÞ; xiþ1Þ < b
for all i A Z. A point x A T2 is called an a-shadowing point for a b-pseudo orbit
fxigi AZ if dð f iðxÞ; xiÞ < a ði A ZÞ. We call that f satisfies uniformly shadowing
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property if for any a > 0 there exists b > 0 such that for a d-pseudo orbit there
exists at least one a-shadowing point. Since f is expansive and satisfies the
uniformly shadowing property, f is topologically conjugate to some hyperbolic
toral automorphism ([8] Theorem) and is topologically transitive.

To conclude Theorem B it is enough to show the following:

Proposition 4.2. If 0 < a < 1, then f admits an SRB measure.

In [11] Hu and Young gave a direct proof of the Lipschitz continuity of the
holonomy map along the stable leaves for C 2-almost Anosov di¤eomorphisms.
We emphasize that in their proof they use only Assumptions 1 and 2. So the
Lipschitz continuity also holds for our case:

Lemma 4.3 ([1] Proposition 2.5). There exists L > 0 such that for any
y A T2, interval JH ~WWu

e ðyÞ and q A ~WW s
e ðyÞ with dðy; qÞ < d,

L�1lðJÞa lð½J; q�ÞaLlðJÞ:

By Assumption 3, we have the following ([24] p. 180):

Lemma 4.4 ([11], [24]). For any interval JH ~WWu
e ðpÞXy

i¼0

lð f �iðJÞÞ < y:

For any z A T2 we denote by

Re 0 ðzÞ ¼ f½y; x� j y A ~WWu
e 0 ðzÞ; x A ~WW s

e 0 ðzÞg ð0 < e 0 a eÞ
a rectangle of z. Combining Lemma 4.3 with the proofs of Proposition 3.1 in
[11] and Lemma 5 in [24], we have the following:

Lemma 4.5 ([11], [24]). For any small rectangle P of p, there exist d1 > 0
and K > 0 such that for any x A T2 and any interval JH ~WWu

e ðxÞ with lðJÞa d1 and
J VP ¼ j

1

K
a

jdetðDy f
�njE2ðyÞÞj

jdetðDz f �njE2ðzÞÞj
aK ðy; z A g; nb 1Þ

where detðDy f jE2ðyÞÞ denotes the Jacobian at y of f restricted to E2ðyÞ.

Now we introduce here the notion of a Markov partition. For any
rectangle R and x A R, let gsðxÞ be the stable ðs ¼ sÞ and unstable ðs ¼ uÞ leaf
which is the connected component of ~WW s

e ðxÞVR containing x. A rectangle
RHT2 is said to be proper if ClðintðRÞÞ ¼ R where ClðAÞ and intðAÞ denote
the closure and interior of a set A respectively. We say that fRigr�1

i¼0 is a

Markov partition if (i) each Ri is proper, (ii) fRigr�1
i¼0 is a cover of T2, (iii)
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intðRiÞV intðRjÞ ¼ j for i0 j and (iv) for any x A intðRiÞV f �1ðintðRjÞÞ,
f ðg sðxÞÞH gsð f ðxÞÞ and f ðguðxÞÞI guð f ðxÞÞ.

Since f is expansive and satisfies uniformly shadowing property, f has a
Markov partition fRigr�1

i¼0 with arbitrary diameter (see [3]). So we can assume
that the diameter of fRigr�1

i¼0 is less than 0 < e2 < d=2. Moreover, since f is
topologically conjugate to some hyperbolic toral automorphism, each element of

fRigr�1
i¼0 is homeomorphic to a parallelogram ([22] Theorem 4.1) and its boundary

consists of two stable leaves and two unstable leaves.
We consider elements of fRigr�1

i¼0 containing the fixed point p. Then p is
contained in the interior of some Ri or, in the boundaries of some Ris. If the
latter happens, one of the boudary leaves of Ri is an unstable or stable leaf with
p. This implies that the cardinarity of the set of all Ri containing p is less than
4. Since we can assume that all the eigenvalues of Dp f are positive (by replacing
f by f 2, if necessary), we have

(a) f ðintðRiÞÞV intðRiÞ0j whenever p A Ri, and
(b) f ðintðRiÞÞV intðRjÞ ¼ j whenever p A Ri VRj ði0 jÞ.

If we take a neighborhood P of p where

P ¼ int 6
p ARi

Ri

 !
;

then f is uniformly hyperbolic outside P (by Assumption 1). By (a) and (b) we

have f ðPÞVP ¼ intð6
p ARi

f ðRiÞVRiÞ.
Let RðxÞ be the smallest positive integer such that ð f RÞðxÞ ¼ f RðxÞðxÞ A

T2nP for x A T2nP. By Assumption 1, the first return map f R is defined for

m-a.e.x A T2nP where m denotes the Lebesgue measure on T2. We set

Gi ¼ fy A T2nP jRðyÞ ¼ ig ðib 1Þ;

then f RðxÞ ¼ f iðxÞ for x A Gi. We define

QðiÞ ¼ fz A f �1ðPÞnP j f jðzÞ A P; ð1a ja iÞg ðib 1Þ:

Then f iðQðiÞÞV f jðQð jÞÞ ¼ j for i0 j, P ¼ 6
ib1

f iðQðiÞÞ and QðiÞ ¼ 6
jbiþ1

Gj.

For any rectangle R, any unstable leaf gu and any r > 0, we say that Vr HR
is a u-subset of gu with radius r if Vr ¼ 6

y A ~BBsðx;rÞ g
uðyÞ for x A gu, where ~BBsðx; rÞ

denotes the closed ball in ~WW s
e ðxÞ centered at x with radius r. For any interval

oH gu, So is an s-subset corresponding to o if So ¼ 6
y Ao g sðyÞ. We denote

qsðRÞ the two stable leaves which contain the di¤erent extreme points of any
unstable leaf gu HR. quðRÞ is also defined. The boudary of R, qðRÞ, is
represented as qðRÞ ¼ qsðRÞU quðRÞ.

Let xu be the measurable partition subordinate to Wu-foliation. For an
f R-invariant probability measure n on T2nP, let fnuxg (n-a.e.x) denote the ca-
nonical system of conditional measures of n w.r.t. xu and mu

x denote the Lebesgue
measure on guðxÞ.
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Lemma 4.6. There exists an f R-invariant Borel probability measure m such
that mu

x fmu
x (m-a.e.x).

Proof. Let g0 be an unstable leaf which intersects one of the components
of f �1ðPÞnP and mu

0 be the Lebesgue measure on g0. To simplicity we assume
that mu

0 ðg0Þ ¼ 1, and so define a probability measure of T2nP by

mn ¼
1

n

Xn�1

j¼0

Xy
i¼1

ð f RÞ j�ðmu
0 jGi

Þ ðnb 1Þ:

Here ð f RÞ j�ðmu
0 jGi

Þ is the push-forward of mu
0 jGi

by ð f RÞ j. Then there exist a
probability measure m on T2nP and a subsequence fmnj

gjb1 H fmngnb1 such that
mnj

! m ð j ! yÞ. Clearly m is f R-invariant.

To obtain the conclusion it is enough to show that there exists K1 > 0 such
that for m-a.e.x and any interval oH guðxÞ

1

K1
mu

xðoÞa mu
xðoÞaK1m

u
xðoÞ:ð4:1Þ

For any x A T2, to simplicity set g ¼ guðxÞ and choose any interval oH g.
So denotes the s-subset corresponding to o and Vr the u-subset of g with radius
0 < r < d=2. Firstly we prove that there exists K0 > 0 such that

1

K0

mu
xðoÞ

mu
xðgÞ

a
mnðVr VSoÞ

mnðVrÞ
aK0

mu
xðoÞ

mu
xðgÞ

:ð4:2Þ

To see this, we use the arguments in the proof of Lemma 5.2 in [11] and Theorem
1 in [25]. We set g

j
i ¼ ð f RÞ jðg0 VGiÞVVr . Since f is topologically transitive,

for n > 0 large enough there exist ib 1 and 0a ja n� 1 such that g j
i 0j. By

Lemma 4.3 there exists L > 0 such that for 0a ja n� 1 and ib 1 with g
j
i 0j,

1

L2

mu
xðoÞ

mu
xðgÞ

a

mu

g
j
i

ðg j
i VSoÞ

mu

g
j
i

ðg j
i Þ

aL2 m
u
xðoÞ

mu
xðgÞ

:ð4:3Þ

By Lemma 4.5, (4.3) and by using the fact that ð
Py

i¼1 aiÞ=ð
Py

i¼1 biÞa
sup1aifai=big for ai; bi > 0 ðib 1Þ and

Py
i¼1 ai < y,

Py
i¼1 bi < y, we can find

K > 0 such that

1

KL2

mu
xðoÞ

mu
xðgÞ

a
ð f RÞ j�ðmu

0 ÞðVr VSoÞ
ð f RÞ j�ðmu

0 ÞðVrÞ
aKL2 m

u
xðoÞ

mu
xðgÞ

:ð4:4Þ

By (4.4) and the fact above again, we have (4.2).
We can choose Vr such that their boundary qðVrÞ has m-zero measure.

Indeed, it is enough to show that mðgsÞ ¼ 0 for any unstable leaf gs. Since there
exist at most countable r > 0 such that mðquðVrÞÞ > 0, except for such r > 0,
we have that mðquðVrÞÞ ¼ 0. If we have the claim above, then mðqsðVrÞÞ ¼ 0.
Therefore mðqðVrÞÞ ¼ 0.

For any stable leaf g s and 0 < h < e2 we set
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Uðgs; hÞ ¼ f½y; z� A T2nP j z A gs; dðz; yÞ < hg:
Then

Uðgs; hÞ ¼ 6
l

k¼1

ðUðgs; hÞVRmk
Þ

for Rmk
0R0 ðk ¼ 1; . . . ; lÞ with Uðgs; hÞVRmk

0j. For any k ¼ 1; . . . ; l,
there exist yk A Rmk

, an interval ohðykÞH guðykÞ and rðykÞ > 0 such that (a) the
u-subset Vrð ykÞ of guðykÞ and the s-subset SohðykÞ corresponding to ohðykÞ satisfy

Uðg s; hÞVRmk
¼ VrðykÞ VSohðykÞ, (b) mu

yk
ðohðykÞÞ ! 0 as h ! 0. By (4.2), for

any nb 1,

mnðUðgs; hÞVRmk
ÞaK0

mu
yk
ðohðykÞÞ

mu
yk
ðguðykÞÞ

! 0 ðh ! 0Þ:ð4:5Þ

Since 6 l

k¼1
Uðgs; hÞVRmk

contains gs and is open in T2nP w.r.t. the relative
topology, we have

mðgsÞa m 6
l

k¼1

Uðg s; hÞVRmk

 !
ð4:6Þ

a lim sup
j!y

mnj
6
l

k¼1

Uðgs; hÞVRmk

 !
:

By (4.5) and (4.6), we have mðgsÞ ¼ 0.
Thus we can choose the finite measurable partition x1 which consists of

Vr VSoj
with mðqðVr VSoj

ÞÞ ¼ 0 ð1a ia qÞ and set xu ¼ fguðxÞVVr VSoj
j

x A Ri; intðRiÞVP ¼ j;Vr VSoj
A x1g. Then we can find the sequence fxlglb1

of finite measurable partition such that

x1 a x2 a � � �a 4
lb1

xl ¼ xu:

By Doob’s theorem we have ml
x ! mu

x (m-a.e.x) as l ! y, where fml
xg (m-a.e.x)

denotes the canonical system of conditional measures w.r.t. xl. Here we remark
that mlxðAÞ ¼ mðVrl VSoj

VAÞ=mðVrl VSoj
Þ for any Vrl VSoj

A xl, any Borel set A
and x A Vrl VSoj

VA.
Since (4.2) holds for Vrl VSoj

A xl ð1a ja qÞ instead of Vr and any interval
oHoj with mðqðVrl VSoÞ ¼ 0, by taking n ! y in (4.2), we have

1

K0

mu
xðoÞ

mu
xðgVSoj

Þ a
mððVrl VSoj

ÞVSoÞ
mðVrl VSoj

Þ aK0
mu

xðoÞ
mu

xðgVSoj
Þ :ð4:7Þ

Doob’s theorem ensures that we have

1

K0

mu
xðoÞ

mu
xðguðxÞVSoj

Þ a mu
xðoÞaK0

mu
xðoÞ

mu
xðguðxÞVSoj

Þ ðm-a:e:xÞð4:8Þ
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as l ! y in (4.7). Since Ri VSoj
is a rectangle ð0a ia r� 1; 1a ja qÞ, by

Lemma 4.3 there exists K1 > 0 such that for any x A Ri,

1

K1
< mu

xðguðxÞVSoj
Þ < K1:ð4:9Þ

Therefore we have (4.1) by (4.8) and (4.9). r

Proof of Proposition 4.2. Let m be the f R-invariant Borel probability
measure on T2nP in Lemma 4.6. Then

m ¼ mþ
Xy
i¼1

f i
� ðmjQðiÞ Þ

is a finite measure. To see this, it is enough to prove that mðPÞ < y.
Let p : Qð1Þ ! guðpÞ be the projection sliding along local stable manifolds.

As in proof of Theorem A, by Lemma 4.3 there exists L > 0 such that for any

x A f �1ðPÞnP,

mu
xðQðiÞÞaLmu

p ðpðQðiÞÞÞ ðib 1Þ:ð4:10Þ
By (4.1) there exists K > 0 such that

mðQðiÞÞ ¼
ð
mu
xðQðiÞÞ dmðxÞaK

ð
mu

xðQðiÞÞ dmðxÞ ðib 1Þ:ð4:11Þ

By (4.11), (4.10) and mu
p ðpðQðiÞÞÞ ¼ mu

p ð f �iðpðQð1ÞÞÞÞ,
mðQðiÞÞa 2KL �mu

p ð f �iðpðQð1ÞÞÞÞ ðib 1Þ:ð4:12Þ
By P ¼ 6y

i¼1
f iðQðiÞÞ, f iðQðiÞÞV f jðQð jÞÞ ¼ j ði0 jÞ, mð f iðQðiÞÞÞ ¼ mðQðiÞÞ and

(4.12), we have

mðPÞ ¼
Xy
i¼1

mðQðiÞÞa 2KL
Xy
i¼1

mu
p ð f �iðpðQð1ÞÞÞÞ:

Lemma 4.4 ensures that the last term above converges.
By Lemma 4.6 the normalized measure of m is an SRB measure. This

concludes the proposition. r
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