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MAPPING DEGREE AND EULER CHARACTERISTIC

T. Fukui and A. Khovanskii

Abstract

Let Vd denote a local level surface for function-germ f : ðRnþ1; 0Þ ! ðR; 0Þ. A

mapping degree formula for di¤erence of the Euler characteristics of Vd V fga 0g and

Vd V fgb 0g is given, when level surfaces of a function g : ðRnþ1; 0Þ ! ðR; 0Þ are

parallelizable.

It is classically known that mapping degree is closely related to Euler
characteristics. One of such relation is the following celebrated formula due to
G. N. Khimshiashvili ([7]): Let ðx0; x1; . . . ; xnÞ be a coordinate system of Rnþ1.
Let Bnþ1

e denote the open ball centered at 0 A Rnþ1 with radius e. Let
f : ðRnþ1; 0Þ ! ðR; 0Þ be an analytic function-germ and Vd denote the local level
surface of f , i.e.,

Vd ¼ Bnþ1
e V f �1ðdÞ for 0 < jdjf ef 1:

We denote its Euler characteristic by wðVdÞ. Then the Khimshiashvili’s formula
asserts that, when f defines an isolated singularity at 0,

degðdf Þ ¼ signð�dÞnþ1ð1� wðVdÞÞ
where df is the map-germ defined by

df : ðRnþ1; 0Þ ! ðRnþ1; 0Þ; x 7! ð fx0ðxÞ; fx1ðxÞ; . . . ; fxnðxÞÞ:
Here fxi denote the partial derivative of f by xi, i ¼ 0; 1; . . . ; n.

We consider a relative version of this formula. In [3], the first author
considered the mapping degree of map-germs

F : ðRnþ1; 0Þ ! ðRnþ1; 0Þ; x 7! ð f ðxÞ; fx1ðxÞ; . . . ; fxnðxÞÞ
and showed that, if F is finite, then

degðFÞ ¼ signð�dÞnþ1ðwðVdðx0 a 0ÞÞ � wðVdðx0 b 0ÞÞ
where Vdðx0 a 0Þ ¼ fx A Vd : x0 a 0g, and Vdðx0 b 0Þ ¼ fx A Vd : x0 b 0g.

In this paper, we consider an analytic function g : ðRnþ1; 0Þ ! ðR; 0Þ so that
there are Cy-vector fields v1; . . . ; vn which span the tangent space of a level set
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of g at each regular point of g. We assume that ‘g, v1; . . . ; vn agree with the

orientation of ðRnþ1; 0Þ at each regular point of g where ‘g is the gradient vector
of g. We define a map F by

F : ðRnþ1; 0Þ ! ðRnþ1; 0Þ; x 7! ð f ðxÞ; v1 f ðxÞ; . . . ; vn f ðxÞÞ:

The purpose is to show (Theorem 4.1) that, if F is finite, and Vd VSðgÞ ¼ j,
then

degðFÞ ¼ signð�dÞnþ1ðwðVdðga 0ÞÞ � wðVdðgb 0ÞÞÞð0:1Þ

where Vdðga 0Þ ¼ fx A Vd : gðxÞa 0g, and Vdðgb 0Þ ¼ fx A Vd : gðxÞb 0g.
This formula will be proved in §4 applying Morse theory to the restriction

of g to a level of f . In §1 we investigate the condition on the existence of such
vector fields v1; . . . ; vn and discuss explicit construction of them in some special
case in §2. Applying Morse theory to the restriction of f to a level of g, we also
show another topological interpretation of deg F in §3. In §4 we investigate the
condition that gjVd

is Morse and give a proof of (0.1) and its variant.
In the last section, we consider a kind of ‘product’ of dg and df and give a

topological interpretation of its mapping degree. It is motivated by Remark 2.1
which is a consequence of the explicit form of F .

The authors thank to Professor T. Mizutani for letting them know about the
use of Whitehead product. The authors also thank to the referee for his kind
comments on the earlier version including pointing out some gramatical and
typographic errors. Proposition 1.3 is inspired by the referee’s comment.

1. Condition (P) and the definition of the map F

Let L denote an oriented ðnþ 1Þ-dimensional Cy-manifold and g : L ! R be
a Cy-function on L. We fix a Riemannian metric on L and denote the gradient
of g by ‘g. We always consider the orientation of the set of regular points of
the level set of g so that ‘g and the orientation of the level set of g agree with the
orientation of L.

We consider the following condition on g.
(P): There exist Cy-vector fields v1ðxÞ; . . . ; vnðxÞ on L which span the tangent

space of the level set of g at a regular point x of g, and the orientation of a
level of g there coincides with the orientation defined by v1ðxÞ; . . . ; vnðxÞ.

Definition 1.1. Let g : L ! R be a Cy-function with Condition (P). We
define the map

F : L ! Rnþ1; by x 7! ð f ðxÞ; v1 f ðxÞ; . . . ; vn f ðxÞÞ;

where f : L ! R is a Cy-function.

In later sections, we investigate several topological interpretations of the mapping
degree of F . In the rest of this section, we investigate Condition (P) in general.
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1.1. Existence of vector fields v1; . . . ; vn in Condition (P). We show the
following

Proposition 1.2. Let g : ðRnþ1; 0Þ ! ðR; 0Þ be a Cy-function which defines
an isolated singularity at 0. Then, the following conditions are equivalent.

(i) There exist Cy-vector fields v1ðxÞ; . . . ; vnðxÞ near 0 which span the tangent
space of the level set of g at a regular point x of g.

(ii) One of the following conditions holds.
� n ¼ 1; 3; 7.
� n is odd, n0 1; 3; 7, and degðdgÞ is even.
� n is even, and degðdgÞ is zero.

First we consider more general set-up. Let L be a manifold of dimension
nþ 1, and let g : L ! R be a Cy-function. We denote L 0 ¼ L� SðgÞ, and
assume that L 0 is parallelizable. Let E denote the vector bundle on L 0 whose
fiber is the tangent space of each level of g. We investigate the following

Question. When E is a trivial bundle?
If E is C0-trivial, then this bundle is Cy-trivial and there exist Cy-vector

fields w1ðxÞ; . . . ;wnðxÞ on L 0 which span E. Then viðxÞ ¼ bðxÞwiðxÞ, i ¼ 1; . . . ; n,
satisfy Condition (P) where b is a Cy-function on L so that SðgÞ ¼ b�1ð0Þ and
that b is flat at SðgÞ, that is, all partial derivatives of order k, k ¼ 0; 1; 2; . . . ,
vanish at each point of SðgÞ.

Since L 0 is parallelizable, there is an oriented orthonormal frame e0; e1; . . . ; en
of the tangent bundle of L 0, and we can define the following Gauss map:

a : L 0 ! Sn; x 7! ða0; a1; . . . ; anÞ where
‘g

k‘gk ¼ a0e0 þ a1e1 þ � � � þ anen:

Let SOðnÞ denote the group of orthogonal n� n matrices with determinant 1.
Let us consider the map defined by

p : SOðnþ 1Þ ! Sn; A 7! the first column of A:

Proposition 1.3. Under the above assumption, the following conditions are
equivalent.

(i) The vector bundle E is C 0-trivial (and, thus Cy-trivial ).
(ii) There is a continuous map b : L 0 ! SOðnþ 1Þ so that a ¼ p � b.
(iii) One of the following conditions holds.

� n ¼ 1; 3; 7.
� n is odd, n0 1; 3; 7, and the induced map aa : pnðL 0Þ ! pnðSnÞ is even.
� n is even, and the induced map aa : pnðL 0Þ ! pnðSnÞ is zero.

Here we say that a map a : G1 ! G2 between two abelian groups G1, G2 is
even if for any g1 A G1 there is g2 A G2 with f ðg1Þ ¼ 2g2.

We say that a map p : E ! B is a fibration in the sense of Serre if the
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following condition holds: for a CW complex X and a homotopy at : X ! B,
0a ta 1, if there is a map b0 : X ! E with p � b0 ¼ a0, then there is a
homotopy bt : X ! E, 0a ta 1, with p � bt ¼ at for 0a ta 1.

We remark that the locally trivial fibration is a fibration in the sense of
Serre.

Proof of Proposition 1.3. (i) ) (ii): If E is trivial, then the associated
SOðnÞ-bundle with E is trivial, and thus have non-zero section. This means (ii).

(ii) ) (i): If there is a continuous map b : L 0 ! SOðnþ 1Þ so that a ¼ p � b,
then there is an orthonormal frame which spans E, and we thus conclude that E
is trivial.

(ii) ) (iii): Since the map p : SOðnþ 1Þ ! Sn is a fibration with fiber SOðnÞ,
we have the following homotopy exact sequence:

pnðSOðnþ 1ÞÞ !pa pnðSnÞ ! pn�1ðSOðnÞÞ !ia pn�1ðSOðnþ 1ÞÞ ! 0ð1:2Þ

where i : SOðnÞ ! SOðnþ 1Þ denote an inclusion. Remark that the map b : L 0 !
SOðnþ 1Þ induces ba : pnðL 0Þ ! pnðSOðnþ 1ÞÞ with pa � ba¼ aa. Then the
following fact (see [6, Chapter 8, Ex. 8]) implies (iii).

Kernel of ia ¼
0; if n ¼ 1; 3; 7;

Z=2Z; if n is odd and n0 1; 3; 7;

Z; if n is even:

8<
:ð1:3Þ

(iii) ) (ii): We show this implication as an application of the obstruction
theory.

Let Sk, k ¼ 0; 1; . . . ; n� 1, be a k-dimensional sphere in L 0, and set
ak ¼ ajS k . The map ak : Sk ! Sn represents the zero element of pkðSnÞ, since
pkðSnÞ ¼ 0. Take a map b 0

k : Sk ! SOðnþ 1Þ which represents the zero ele-
ment of pkðSOðnþ 1ÞÞ. Since the map p � b 0

k also represents zero of pkðSnÞ, there
is a homotopy ft : S

k ! Sn, 0a ta 1, with f0 ¼ p � b 0
k and f1 ¼ ak. Since

p : SOðnþ 1Þ ! Sn is a fibration in the sense of Serre, there is a map bk : Sk !
SOðnþ 1Þ so that p � bk ¼ ak. If there is a ðk þ 1Þ-dimensional ball Bkþ1 in L 0

which bounds the sphere Sk in L 0, then bk can be extended to Bkþ1, since bk
represents the zero in pkðSOðnþ 1ÞÞ.

Let Sn be an n-dimensional sphere in L 0 and set an ¼ ajS n . By (iii), the
homotopy class of an is in the kernel of ia in (1.2), because of (1.3). Since
p : SOðnþ 1Þ ! Sn is a fibration in the sense of Serre, there is a map bn : S

n !
SOðnþ 1Þ so that p � bn ¼ an.

Since L 0 is not compact, L 0 has a homotopy type of a CW complex of
dimensiona n, and we complete the proof. r

Remark 1.4. Let g1 : ðRn; 0Þ ! ðR; 0Þ be a Cy-function. Let U be a
neighborhood of 0 and assume that g1 is defined on U . Let p : Rnþ1 ! Rn be a
linear projection. Setting g ¼ g1 � p and L ¼ p�1ðUÞ, we have L 0 ¼ L� SðgÞF
ðU � Sðg1ÞÞ � R, that has a homotopy type of a CW complex of dimensiona
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n� 1. By the above proof of the implication (iii) ) (ii), we conclude that g
satisfies Condition (P).

Next we present two propositions which gives su‰cient conditions for Con-
dition (P).

Proposition 1.5. Under the same assumption as Proposition 1.3, the vector
bundle E is trivial if there is a continuous map g : L 0 ! PnðRÞ so that j � g is
homotopic to a where j : PnðRÞ ! Sn is the map defined by

½x� ¼ ½x0 : x1 : � � � : xn� 7!
1

S
ð2x2

0 � S; 2x1x0; . . . ; 2xnx0Þ where S ¼
Xn
i¼0

x2
i :

Let q : Sn ! PnðRÞ denote the map defined by ðx0; x1; . . . ; xnÞ 7!
½x0 : x1 : � � � : xn�. For a unit vector x ¼ ðx0; x1; . . . ; xnÞ and y ¼ j � qðxÞ, we see
that 0, e0, x, and y are in the same plane and 2Ke00x ¼Ke00y. We remark that
the map j is generically one-to-one and sends the set defined by fx0 ¼ 0g to a
point.

Proof. Let x ¼ ðx0; x1; . . . ; xnÞ be a non-zero vector in Rnþ1. Let cx :
Rnþ1 ! Rnþ1 denote the reflection sending the vector x to �x. We remark that
the map cx is represented by the matrix

di; j �
2xixj
S

� �
i; j¼0;1;...;n

where di; j ¼
1; if i ¼ j;

0; otherwise;

�

and the first column of the matrix for ce0
� cx represents the map j : PnðRÞ ! Sn.

Let ht denote a homotopy with h0 ¼ j � g and h1 ¼ a. We remark that there is a
continuous map g1 : L

0 ! SOðnþ 1Þ with j ¼ p � g1. In fact, the map g1 ¼ c � g
satisfy j ¼ p � g1 where c : PnðRÞ ! SOðnþ 1Þ is the embedding defined by ½x� 7!
ce0

� cx. Since p : SOðnþ 1Þ ! Sn is a fibration in the sense of Serre, we obtain
there is a continuous map a1 : L

0 ! SOðnþ 1Þ with a ¼ p � a1, and we complete
the proof. r

Proposition 1.6. Under the same assumption as Proposition 1.3, the vector
bundle E is trivial when one of the following conditions holds.

� n is odd, and the induced map a� : HnðSn;ZÞ ! HnðL 0;ZÞ is even.
� n is even, and the induced map a� : HnðSn;ZÞ ! HnðL 0;ZÞ is zero.

Proof. Assume first that n is even and the induced map a� : HnðSn;ZÞ !
HnðL 0;ZÞ is zero. Then, by Hopf ’s theorem (see [5, Chapter II, 8]) there is a
homotopy A : L 0 � ½0; 1� ! Sn, Aðx; tÞ ¼ atðxÞ, with the following properties:

� a0 ¼ a.
� If n is odd, then there are continuous maps a : L 0 ! Sn and b : Sn ! Sn so
that b is of degree two and a ¼ b � a. We may assume that b factors
through the map j.
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� If n is even, then Im a1 is a point.
Since p : SOðnþ 1Þ ! Sn is a fibration in the sense of Serre, we complete the
proof as in the same way in the previous proposition. r

Proof of Proposition 1.2. (i) ) (ii): If (i) holds, then (iii) of Proposition 1.3
holds, and (ii) holds.

(ii) ) (i): The implication (iii) ) (i) of Proposition 1.3 implies (ii) ) (i).
The explicit construction of v1; . . . ; vn in the next section gives another proof
when n ¼ 1; 3; 7. When n0 1; 3; 7, Proposition 1.6 also gives another proof by
Hopf ’s theorem (ibid.). r

2. Explicit construction of vector fields v1; . . . ; vn in Condition (P)

Let g : ðRnþ1; 0Þ ! ðR; 0Þ be a polynomial (resp. analytic) function. Assume
that one of the conditions in Proposition 1.3 (iii) (or in Proposition 1.2 (ii) when g
defines isolated singularity at 0) holds. Then are there polynomial (resp. an-
alytic) vector fields v1; . . . ; vn which span the tangent space of the level of g at a
regular point of g? The answer is a‰rmative if one of the following conditions
holds.

(a) n ¼ 1; 3; 7.
(b) gx0 is not negative.

We are going to prove this assertion to construct vector field v1; . . . ; vn explicitly.

Let L ¼ Rnþ1 and we denote by qxi the unit vector ei ¼ ð0; . . . ; 1
iþ1

; . . . ; 0Þ for
i ¼ 0; 1; . . . ; n.

2.1. Case (a). If n ¼ 1; 3; 7, our explicit construction of the vector fields
v1; . . . ; vn is based on the multiplicative structure of complex, quotanion, Cayley
numbers, respectively.

Case n ¼ 1: We consider the complex numbers C ¼ Rþ Ri where i2 ¼ �1, and
identify it with R2. Under this identification ‘g ¼ gx0 þ gx1 i. Then i‘g ¼
�gx1 þ gx0 i span the tangent space of the level set of g at a regular point of g.
In other words, the vector field v1 in Condition (P) is given by the following:

v1 ¼ i‘g ¼ �gx1qx0 þ gx0qx1 :

Case n ¼ 3: We consider the quotanion numbers Q ¼ Rþ Ri þ Rj þ Rk with

i2 ¼ j2 ¼ k2 ¼ �1; ij ¼ �ji ¼ k; jk ¼ �kj ¼ i; ki ¼ �ik ¼ j:

We set x ¼ a0 � a1i � a2 j � a3k when x ¼ a0 þ a1i þ a2 j þ a3k. Since xx ¼P3
i¼0 a2i , x has the inverse x=ðxxÞ if x0 0. We identify Q with R4. We remark

that hx; yi :¼ ReðxyÞ (x; y A Q) is the Euclidean inner product of R4. Under
this identification we have that ‘g ¼ gx0 þ gx1 i þ gx2 j þ gx3k. Since ð1; i; j; kÞ
forms an orthonormal frame of the tangent space of R4, ð‘g; i‘g; j‘g; k‘gÞ
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forms also an orthogonal frame of the tangent space of R4, when ‘g0 0. This
implies that i‘g, j‘g, k‘g span the tangent space of the level set of g at a regular
point of g. In other words, the vector fields v1, v2, v3 in Condition (P) are given
by the following:

v1 ¼ i‘g ¼ �gx1qx0 þ gx0qx1 � gx3qx2 þ gx2qx3 ;

v2 ¼ j‘g ¼ �gx2qx0 þ gx3qx1 þ gx0qx2 � gx1qx3 ;

v3 ¼ k‘g ¼ �gx3qx0 � gx2qx1 þ gx1qx2 þ gx0qx3 :

Case n ¼ 7: We consider Cayley numbers C ¼ QþQe with

ðqþ reÞðsþ teÞ ¼ ðqs� trÞ þ ðtqþ rsÞe; q; r; s; t A Q:

We set x ¼ q� re when x ¼ qþ re. Since xx ¼ qqþ rr, x has the inverse x=ðxxÞ
if x0 0. We identify C with R8 and remark that hx; yi :¼ ReðxyÞ ðx; y A CÞ is
the Euclidean inner product of R8. Under this identification we have that ‘g ¼
gx0 þ gx1 i þ gx2 j þ gx3kþ ðgx4 þ gx5 i þ gx6 j þ gx7kÞe. Then i‘g, j‘g, k‘g, e‘g,
ie‘g, je‘g, ke‘g span the tangent space of the level set of g at a regular point of
g. In other words, the vector fields v1; . . . ; v7 in Condition (P) are given by the
following:

v1 ¼ i‘g ¼ �gx1qx0 þ gx0qx1 � gx3qx2 þ gx2qx3 � gx5qx4 þ gx4qx5 þ gx7qx6 � gx6qx7 ;

v2 ¼ j‘g ¼ �gx2qx0 þ gx3qx1 þ gx0qx2 � gx1qx3 � gx6qx4 � gx7qx5 þ gx4qx6 þ gx5qx7 ;

v3 ¼ k‘g ¼ �gx3qx0 � gx2qx1 þ gx1qx2 þ gx0qx3 � gx7qx4 þ gx6qx5 � gx5qx6 þ gx4qx7 ;

v4 ¼ e‘g ¼ �gx4qx0 þ gx5qx1 þ gx6qx2 þ gx7qx3 þ gx0qx4 � gx1qx5 � gx2qx6 � gx3qx7 ;

v5 ¼ ie‘g ¼ �gx5qx0 � gx4qx1 þ gx7qx2 � gx6qx3 þ gx1qx4 þ gx0qx5 þ gx3qx6 � gx2qx7 ;

v6 ¼ je‘g ¼ �gx6qx0 � gx7qx1 � gx4qx2 þ gx5qx3 þ gx2qx4 � gx3qx5 þ gx0qx6 þ gx1qx7 ;

v7 ¼ ke‘g ¼ �gx7qx0 þ gx6qx1 � gx5qx2 � gx4qx3 þ gx3qx4 þ gx2qx5 � gx1qx6 þ gx0qx7 :

Remark 2.1. In the above construction, the map F (Definition 1.1) coin-
cides with

pð‘g;‘f Þ : Rnþ1 ! Rnþ1; x 7! pð‘gðxÞ;‘f ðxÞÞ

except the first component, where p : Rnþ1 � Rnþ1 ! Rnþ1 is the product of the
complex, quotanion, Cayley numbers, respectively. In fact, the ei component,
i ¼ 1; . . . ; n, of F is hei‘g;‘f i¼ Reðpð�ei‘g;‘f ÞÞ ¼ Reðpð�ei; pð‘g;‘f ÞÞ, which
is the ei component of pðð‘g;‘f ÞÞ. Here we use the fact ReððabÞcÞ ¼ ReðaðbcÞÞ
for any complex, quotanion, Cayley numbers a, b, c, respectively.

2.2. Case (b). Assume that gx0 is not negative. This means that the map-
ping degree of dg is zero. We define vector fields vi, i ¼ 1; . . . ; n, by
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vi ¼ gxiqx0 þ
Xn
j¼1

ðgxigxj � di; jTÞqxj where T ¼ gx0 þ
Xn
j¼1

g2xj :

Then v1; . . . ; vn span the tangent space of each level of g at each regular point
of g.

It is clear that these v1; . . . ; vn are polynomial (resp. analytic) vector fields
when g is a polynomial (resp. analytic).

Proof. It is easy to see that h‘g; vii ¼ 0 for i ¼ 1; . . . ; n. So it is enough
to show that ‘g, v1; . . . ; vn are linearly independent on Rn � SðgÞ. The co-
e‰cient matrix of vector fields ‘g, v1; . . . ; vn is

M ¼
gx0 gxi
gxj gxi gxj � di; jT

� �
i; j¼1;...;n

and its determinant is T n�1
Pn

i¼0 g2xi . This implies that ‘g, v1; . . . ; vn are linearly
dependent only on fT ¼ 0gUSðgÞ. By assumption fT ¼ 0gUSðgÞ ¼ SðgÞ, and
we are done. r

Remark that Me0 ¼ ‘g, M‘g ¼ k‘gk2e0, and Mv ¼ �Tv when hv; e0i ¼
hv;‘gi ¼ 0.

Remark 2.2. The matrix appeared in the proof of Proposition 1.5 suggests
another explicit construction of the vector field v1; . . . ; vn in some special case.
Let us find an x with jðxÞ ¼ ‘g=k‘gk where ‘g denotes the gradient of g.

Looking the first component, we have
2x2

0

S
� 1 ¼ gx0

k‘gk and

1� gx0
k‘gk

� �
x2
0 ¼ ðx2

1 þ � � � þ x2
nÞ 1þ gx0

k‘gk

� �
:

We then obtain

x0

1þ gx0
k‘gk

0
BB@

1
CCA
2

¼ x2
1 þ � � � þ x2

n

gx1
k‘gk

� �2
þ � � � þ gxn

k‘gk

� �2

¼ x2
1 þ � � � þ x2

n

2x1x0
S

� �2
þ � � � þ 2xnx0

S

� �2 ¼ S

2x0

� �2
:

We thus conclude

ðx0; x1; . . . ; xnÞ ¼ kð‘gG k‘gke0Þ where k ¼ S

2x0k‘gk
:
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Choosing the sign þ, and setting k ¼ 1, we have

vi :¼ jðeiÞ ¼
1

k‘gk gx0qx0 þ
Xn
j¼1

gxigxj
k‘gk þ gx0

þ di; jk‘gk
� �

qxj

 !
; i ¼ 1; . . . ; n:

They are the desired vector fields which make sense whenever ‘gþ k‘gke0 0 0.
Remark that the last condition implies the mapping degree of dg is zero. But,
in this construction, it is not clear that v1; . . . ; vn are polynomial (resp. analytic)
vector fields when g is a polynomial (resp. analytic).

3. Restricting f to the level of g

Theorem 3.1. Let L be a Cy-manifold of dimension nþ 1 and f ; g : L ! R
Cy-functions. We assume that 0 is a regular value of g : L ! R and set N ¼
g�1ð0Þ. We assume that g satisfies Condition ðPÞ and the map

F : N ! Sn; x 7! ð f ðxÞ; v1 f ðxÞ; . . . ; vn f ðxÞÞ
kð f ðxÞ; v1 f ðxÞ; . . . ; vn f ðxÞÞk

;

is well-defined and finite.
(i) If Lþ ¼ fx A L : f ðxÞb 0g is compact, then

deg F ¼ wðNð f b 0Þ;Nð f ¼ 0ÞÞ

where Nð f b 0Þ denotes the set fx A N : f ðxÞb 0g, and so on.
(ii) If L� ¼ fx A L : f ðxÞa 0g is compact, then we obtain

deg F ¼ ð�1Þnþ1wðNð f a 0Þ;Nð f ¼ 0ÞÞ:

Proof. Take the point ð1; 0; . . . ; 0Þ and consider its preimage by F . They
are the critical points of f : N ! R in the region f f > 0g. If f jN is Morse (we
can assume this after small perturbation of f if necessary), we obtain

Hessð f jNÞðxÞ ¼
qF

qy
ðxÞ;

where y denotes an oriented coordinate system of N. This implies the first
equality.

Next take the point ð�1; 0; . . . ; 0Þ and apply the similar discussion for �f on
the region f f a 0g. We then obtain the second equality. r

When F induces a finite map germ F0 : ðL;F�1ð0ÞÞ ! ðRnþ1; 0Þ, deg F ¼
deg F0.

Remark 3.2. Assume that L is compact. If n is odd, we have that
deg F ¼ 1

2 wðNð f ¼ 0ÞÞ and wðNð f b 0ÞÞ ¼ wðNð f a 0ÞÞ. We consider the fol-
lowing Gauss map
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G : Nð f ¼ 0Þ ! Sn�1; x 7! ðv1 f ðxÞ; . . . ; vn f ðxÞÞ
kðv1 f ðxÞ; . . . ; vn f ðxÞÞk

:

Using the fact stated in [8, §6], we obtain that the degree of this Gauss map is
equal to the sum of indices of ‘f in Nð f b 0Þ, which is equal to deg F . So we
conclude that deg G ¼ 1

2 wðNð f ¼ 0ÞÞ.

4. Restricting g to the level of f

Theorem 4.1. Let f ; g : Bnþ1
e ! R be analytic functions with f ð0Þ ¼

gð0Þ ¼ 0. We assume that the singular set of ð f ; gÞ, which is defined by

X ¼ x A Bnþ1
e : rank

fx0ðxÞ fx1ðxÞ � � � fxnðxÞ
gx0ðxÞ gx1ðxÞ � � � gxnðxÞ

� �
< 2

� �
;

is of dimension 1. We choose e > 0 small enough so that
� the number of connected components of ðX � f0gÞVBnþ1

e 0 does not change if
0 < e 0 a e, and

� the functions f and g do not change the sign on each connected component
of X � f0g.

We choose d, a regular value of f , which is close enough to 0, and set Vd ¼
fx A Bnþ1

e : f ðxÞ ¼ dg. We assume that g satisfies Condition ðPÞ. If Vd VSðgÞ
¼ j, gjVd

is a Morse function, and the map-germ

F : ðRnþ1; 0Þ ! ðRnþ1; 0Þ; x 7! ð f ðxÞ; v1 f ðxÞ; . . . ; vn f ðxÞÞ;ð4:1Þ
is finite, then we have the following:

degðF Þ ¼ signð�dÞnþ1ðwðVdðga 0ÞÞ � wðVdðgb 0ÞÞÞð4:2Þ

¼ signð�dÞnþ1ðwðVsignðdÞ�Þ � wðVsignðdÞþÞÞð4:3Þ

Here we denote by Vdðga 0Þ the set fx A Vd : gðxÞa 0g, and so on. We also
denote by VsignðdÞG the set fx A Sn

e : signðdÞ f ðxÞb 0;GgðxÞb 0g for 0 < ef 1.

Remark 4.2. Consider the jet space J ¼ J 1ðRnþ1;R2Þ with coordinates

ðx0; x1 . . . ; xn; y; z; p0; p1; . . . ; pn; q0; q1; . . . ; qnÞ;

so that the jet section of a map ð f ; gÞ : Rnþ1 ! R2 is defined by

y ¼ f ðxÞ; pi ¼ fxiðxÞ; z ¼ gðxÞ; qi ¼ gxiðxÞ; i ¼ 0; 1; . . . ; n:

Let Si, i ¼ 0; 1; 2, be the submanifolds of the jet space J defined by

rank
p0 p1 � � � pn

q0 q1 � � � qn

� �
¼ i:

If the map ð f ; gÞ : ðRnþ1; 0Þ ! ðR2; 0Þ is transverse to S0, S1 and S2 on
ðRnþ1 � 0; 0Þ, then the singular set X of ð f ; gÞ is of dimension 1, and the num-
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ber of connected components of ðX � f0gÞVBnþ1
e 0 does not change if 0 < e 0 f 1.

This means that the condition on X is a generic condition, if e > 0 is small
enough.

Lemma 4.3. Let g : ðR; 0Þ ! ðX ; 0Þ be a Cy-map with f � gðtÞ0 0 when
0 < jtjf 1. We then obtain ‘f ðgðtÞÞ is not identically zero. Since gðtÞ A X , there
are real numbers lðtÞ so that ‘gðgðtÞÞ ¼ lðtÞ‘f ðgðtÞÞ, when 0 < jtjf 1.

(i) If g � gðtÞ is identically zero, then lðtÞ is also identically zero.
(ii) If g � gðtÞ is not identically zero, then sign l ¼ signðg=f Þ along gðtÞ, 0 <

jtjf 1.

Proof. Assume that ‘f ðgðtÞÞ is identically zero. We then have

d

dt
f � gðtÞ ¼

Xn
i¼0

qf

qxi
ðgðtÞÞ d

dt
ðxi � gðtÞÞ1 0;

which implies f � gðtÞ is constant. This shows the first assertion. If g � gðtÞ is
identically zero, then

0 ¼ d

dt
ð f � gðtÞ � g � gðtÞÞ ¼ g � gðtÞ d

dt
f � gðtÞ þ f � gðtÞ d

dt
g � gðtÞ

¼ lðtÞ f � gðtÞ d
dt

f � gðtÞ

and we conclude lðtÞ is identically zero. This completes the proof of (i). The
assertion (ii) is a consequence of Cauchy’s mean value theorem. r

Take a point x A X � f0g.
� If d ¼ f ðxÞ is a regular value of f , then x is a critical point of gjf f¼dg.
� If d 0 ¼ gðxÞ is a regular value of g, then x is a critical point of f jfg¼d 0g.

The following lemma clarifies when gjVd
is a Morse function.

Lemma 4.4. Let d be a regular value of f . For x A X VVd there exists a real
number l so that ‘gðxÞ ¼ l‘f ðxÞ. Then gjVd

is Morse at x, if and only if

0 fxj
fxi gxixj � lfxixj

����
����
i; j¼0;1;...;n

0 0 at x:

Proof. It is enough to prove the lemma assuming fx0ðxÞ0 0. Then there is
a function jðx1; . . . ; xnÞ with

f ðjðx1; . . . ; xnÞ; x1; . . . ; xnÞ1 d:ð4:4Þ

Di¤erentiating (4.4) by xi, i ¼ 1; . . . ; n, we obtain

fx0jxi þ fxi 1 0;ð4:5Þ
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and jxi ¼ �f �1
x0

fxi . Di¤erentiating (4.5) by xj, j ¼ 1; . . . ; n, we obtain that

fx0x0jxijxj þ fx0xjjxi þ fx0xijxj þ fxixj þ fx0jxixj 1 0:ð4:6Þ

We consider the Hessian of the function Gðx1; . . . ; xnÞ :¼ gðjðx1; . . . ; xnÞ; x1; . . . ; xnÞ
at its critical point x. Similar computation shows that Gxi ¼ gx0jxi þ gxi , i ¼
1; . . . ; n, and l ¼ gx0 f

�1
x0

at x A X . We also obtain that

Gxixj ¼ gx0x0jxijxj þ gx0xjjxi þ gx0xijxj þ gxixj þ gx0jxi ;xj

¼ ðgx0x0 � lfx0x0Þjxijxj þ ðgx0xj � lfx0xj Þjxi þ ðgx0xi � lfx0xiÞjxj þ ðgxixj � lfxixj Þ

at x by (4.6). Therefore we conclude that

detðGxixj Þi; j¼1;...;n ¼

�1 0 0 0

0 0 �1 0

0 �1 0 0

0 0 0 Gxixj

���������

���������
i; j¼1;...;n

¼

�1 0 0 ðgx0x0 � lfx0x0Þjxj
0 0 �1 jxj
0 �1 0 gx0xj � lfx0xj
jxi jxi gx0xi � lfx0xi gxixj � lfxixj

���������

���������
i; j¼1;...;n

¼

�1 0 gx0x0 � lfx0x0 0

0 0 �1 jxj
1 �1 0 gx0xj � lfx0xj
0 jxi gx0xi � lfx0xi gxixj � lfxixj

���������

���������
i; j¼1;...;n

¼

�1 0 gx0x0 � lfx0x0 0

0 0 �1 jxj
0 �1 gx0x0 � lfx0x0 gx0xj � lfx0xj
0 jxi gx0xi � lfx0xi gxixj � lfxixj

���������

���������
i; j¼1;...;n

¼ �f �2
x0

0 fxj
fxi gxixj � lfxixj

����
����
i; j¼0;1;...;n

;

at x, which completes the proof. r

If x is a regular point of f and g, then we have

Lemma 4.5. sign Hessð f jfg¼d 0gÞ ¼ signðð�lÞn Hessðgjf f¼dgÞÞ at x A X near 0.

Proof. Since x is a regular point of g, there exists a coordinate system
ðx0; x1; . . . ; xnÞ centered at x so that x0 ¼ gðxÞ. We consider f as a functions
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of ðx0; x1; . . . ; xnÞ and write f ¼ f ðx0; x1; . . . ; xnÞ. By implicit function theorem,
there exists a Cy-function cðx1; . . . ; xnÞ so that f ðcðx1; . . . ; xnÞ; x1; . . . ; xnÞ ¼ d.
Then we obtain that

fx0cxi
þ fxi ¼ 0; for i ¼ 1; . . . ; n; and

fx0cxixj
þ fxixj 1 0 mod cxi

; for i; j ¼ 1; . . . ; n:

This means fxixj ðxÞ ¼ �fx0cxixj
ðxÞ, which implies the lemma. r

Proof of Theorem 4.1. We choose a non-zero number d close enough to 0
so that the numbers of connected components of fx A X : 0 < signðdÞ f ðxÞ < eg do
not depend on e with 0 < e < jdj. Let aðeÞ, 0 < signðdÞe < jdj, denote the half-
branch of X which contains x. We assume that f ðaðeÞÞ ¼ e. We extend the
function e to a neighborhood of X near x and denote it by the same letter e. We
consider functions g1; . . . ; gn so that X ¼ fg1 ¼ � � � ¼ gn ¼ 0g near x and so that
‘giðxÞ ¼ viðxÞ for i ¼ 1; . . . ; n. We see that ðe; g1; . . . ; gnÞ and ðg; g1; . . . ; gnÞ are
systems of coordinates near x. Then we obtain that

qF

qðg; g1; . . . ; gnÞ
¼ qðe; g1; . . . ; gnÞ

qðg; g1; . . . ; gnÞ
qF

qðe; g1; . . . ; gnÞ
¼ l�1 1 �

0 vivj f

����
���� at x;

since vi f ðaðeÞÞ ¼ 0 and h _aa;‘f i ¼ 1. By Lemma 4.5, we conclude that

sign
qF

qðg; g1; . . . ; gnÞ
¼ signðð�lÞnþ1 Hessðgjf f¼dgÞÞ at x:ð4:7Þ

Applying Morse theory to g on f f ¼ d; gb 0g, we obtain that

wðVdðgb 0Þ;Vdðg ¼ 0ÞÞ ¼
X

x AXVVd:gðxÞ>0

sign Hessðgjf f¼dgÞðxÞ:

Applying Morse theory to �g on f f ¼ d; ga 0g, we also obtain that

wðVdðga 0Þ;Vdðg ¼ 0ÞÞ ¼ ð�1Þn
X

x AXVVd:gðxÞ<0

sign Hessðgjf f¼dgÞðxÞ:

Taking the di¤erence, we thus conclude that

wðVdðgb 0ÞÞ � wðVdðga 0ÞÞ ¼
X

x AXVVd;gðxÞ00

signðgðxÞÞnþ1 Hessðgjf f¼dgÞðxÞ:ð4:8Þ

By Lemma 4.3 (i), the condition Vd VSðgÞ ¼ j implies that 0 is a regular value of
gjVd

, and we have

ð4:8Þ ¼
X

x AXVVd

signðgðxÞÞnþ1 Hessðgjf f¼dgÞðxÞ:ð4:9Þ
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By Lemma 4.3 (ii), signð f lÞ ¼ signðgÞ along each connected component of
X � f0g, and we obtain that

ð4:9Þ ¼
X

x AXVVd

signð f ðxÞlÞnþ1 Hessðgjf f¼dgÞðxÞ

¼ signð�dÞnþ1
X

x AXVVd

signð�lÞnþ1 Hessðgjf f¼dgÞðxÞ

¼ signð�dÞnþ1
X

x AXVVd

sign
qF

qðg; g1; . . . ; gnÞ
ðxÞ ðby ð4:7ÞÞ

¼ signð�dÞnþ1 deg F ;

which implies the formula (4.2). The equality (4.3) follows from the deformation
argument due to [9, §11]. r

Corollary 4.6. Let V be an analytic set of dimension nþ 1 defined near 0
in Rmþnþ1. Let L be the nonsingular locus of V VBmþnþ1

e for small e > 0 and
assume that L is oriented. Let g : ðRmþnþ1; 0Þ ! ðR; 0Þ be an analytic function-
germ. We assume that there are Cy-vector fields v1ðxÞ; . . . ; vnðxÞ on Bmþnþ1

e so
that v1ðxÞ; . . . ; vnðxÞ span the tangent space of gjL at each x A L and the orientation
of the level of gjL there coincides with the orientation defined by v1ðxÞ; . . . ; vnðxÞ.
Let f : ðRmþnþ1; 0Þ ! ðR; 0Þ be an analytic function-germ. We assume that

Vd ¼ fx A V VBe : f ðxÞ ¼ dg

is nonsingular for a non-zero number d which is su‰ciently close to 0. If Vd V
SðgÞ ¼ j, the map-germ

F : ðL; 0Þ ! ðRnþ1; 0Þ; x 7! ð f ðxÞ; v1 f ðxÞ; . . . ; vn f ðxÞÞ:

is finite and gjVd
is Morse, then

degðFÞ ¼ signð�dÞnþ1ðwðVdðga 0ÞÞ � wðVdðgb 0ÞÞÞð4:10Þ

¼ signð�dÞnþ1ðwðVsignðdÞ�Þ � wðVsignðdÞþÞÞ

where VsignðdÞG ¼ fx A V VSn
e : signðdÞ f ðxÞb 0;GgðxÞb 0g for 0 < ef 1.

Remark 4.7. We sketch how to find the formula (Theorem 4.3) in [2]. Let
ðx0; x1; . . . ; xmþnþqÞ denote a coordinate system of Rmþnþqþ1 at the origin. Let
n ¼ 1; 3; 7, and let m, q be non-negative integers. Let f ; g : ðRmþnþqþ1Þ ! ðR; 0Þ
denote two analytic functions, and h ¼ ðh1; . . . ; hmÞ : ðRmþnþqþ1; 0Þ ! ðRm; 0Þ a
Cy-map. We assume that g and h do not depend on the last q variables
xmþnþ1; . . . ; xmþnþq. Set V ¼ h�1ð0Þ and L is the set of regular points of V (i.e.,
L ¼ V � SðhÞ). Since L is orientable, we fix an orientation of L. Define vector
fields v1; . . . ; vnþq by
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ðv1; . . . ; vnÞ ¼

ðv0;1Þ n ¼ 1;

ðv0;1 þ v2;3; v0;2 � v1;3; v0;3 þ v1;2Þ n ¼ 3;

ðv0;1 þ v2;3 þ v4;5 þ v6;7; v0;2 � v1;3 � v4;6 þ v5;7; n ¼ 7;

v0;3 þ v1;2 þ v4;7 þ v5;6; v0;4 � v1;5 þ v2;6 � v3;7;

v0;5 þ v1;4 � v2;7 � v3;6; v0;6 � v1;7 � v2;4 þ v3;5;

v0;7 þ v1;6 þ v2;5 þ v3;4Þ

8>>>>>>>><
>>>>>>>>:

where vi; j ¼

qxi qxj qxnþ1
� � � qxnþm

gxi gxj gxnþ1
� � � gxnþm

ðh1Þxi ðh1Þxj ðh1Þxnþ1
� � � ðh1Þxnþm

..

. ..
. ..

. . .
. ..

.

ðhmÞxi ðhmÞxj ðhmÞxnþ1
� � � ðhmÞxnþm

�������������

�������������
; 0a i < ja n;

and vnþ1 ¼ qxmþnþ1
; . . . ; vnþq ¼ qxmþnþq

. We remark that these vectors are the same
as the vectors defined in subsection 2.1 when ðm; qÞ ¼ ð0; 0Þ. Consider the map

F : ðL; 0Þ ! Rnþqþ1; x 7! ð f ; v1 f ; . . . ; vnþq f Þ:
By (4.10), we obtain that

deg F ¼GðwðVdðga 0ÞÞ � wðVdðgb 0ÞÞ:
By the discussion in [3, §3], we obtain that degðFÞ ¼ degfðF 0; hÞ : ðRmþnþqþ1; 0Þ !
ðRmþnþqþ1; 0Þg where F 0 is an extension of F to ðRmþnþqþ1; 0Þ, and find Theorem
4.3 in [2].

Remark 4.8. Let g : ðRnþ1; 0Þ ! ðR; 0Þ be a Cy-function and let v1; . . . ; vn
be vector fields on ðRnþ1; 0Þ so that h‘g; vii ¼ 0, i ¼ 1; . . . ; n. We denote by
Sv the set of points where v1; . . . ; vn are linearly dependent. Let f : ðRnþ1; 0Þ !
ðR; 0Þ be a Cy-function so that Vd VSð f Þ ¼ j, Vd VSðgÞ ¼ j and Vd VSv ¼ j,
where Vd ¼ fx A ðRnþ1; 0Þ : f ðxÞ ¼ dg. If the map F defined by (4.1) is finite and
gjVd

is Morse, then the same proof works and we obtain the formulas (4.2),
(4.3). This observation is sometimes useful if we know Sv explicitly.

Here is an example that Sv can be expressed explicitly. Set p ¼ 1; 3; 8.
Define

vi ¼
the same as in subsection 2:1 replacing n by p there i ¼ 1; . . . ; p

gxi‘g� k‘gkqxi i ¼ pþ 1; . . . ; n

�

Then we obtain Sv ¼ fgx0 ¼ � � � ¼ gxp ¼ 0g. Suppose that gðxÞ ¼
Pn

i¼0 x2
i . Then

Sv ¼ fx0 ¼ � � � ¼ xp ¼ 0g. If f : ðRnþ1; 0Þ ! ðR; 0Þ defines an isolated singularity
with f ðSvÞ ¼ 0, and the map F defined by (4.1) is finite, then we obtain that

deg F ¼ ð�1Þnwfx A Sn
e : f ðxÞb 0g:

To state a global consequence of our theorem, we introduce the following
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Definition 4.9. Let M be a Cy-manifold and let j : M ! R be a Cy-
function. We say that Morse theory is applicable to j on the closed interval ½a; b�
if the following two conditions hold.

(1) j has at most finitely many critical points in j�1½a; b�, and all critical
points are Morse singularities, that is, the Hessian determinant HessðjÞðxÞ
of j is non zero at each critical point x.

(2) there is ‘‘no surgery at infinity’’ on ½a; b�, which means that fx A M :
jðxÞa c� eg and fx A M : jðxÞa cþ eg are di¤eomorphic each other
for su‰ciently small e > 0 when c is not a critical value of j with
c A ½a; b�.

Theorem 4.10. Let L be a real analytic manifold of dimension nþ 1 and let
f ; g : L ! R be analytic functions. We assume that Vd ¼ fx A L : f ðxÞ ¼ dg is
nonsingular for a non-zero number d with 0 < jdjf 1 and Morse theory is ap-
plicable for gjVd

on ½b0; bk�. We assume that g satisfies Condition ðPÞ, and that the
map

F : L ! Rnþ1; x 7! ð f ðxÞ; v1 f ðxÞ; . . . ; vn f ðxÞÞ;
is finite. We set F�1ð0Þ ¼ fP1; . . . ;Pkg and ci ¼ gðPiÞ for i ¼ 1; . . . ; k, and
assume that b0 < c1 < c2 < � � � < ck < bk. Taking bi with ci < bi < ciþ1 for i ¼
1; . . . ; k � 1, we have

degðF Þ ¼ signð�dÞnþ1
Xk
i¼1

ðwðVdðbi�1 a ga ciÞÞ � wðVdðci a ga biÞÞÞ:ð4:11Þ

Moreover, if n is odd, we have

degðF Þ ¼ wðVdðb0 a ga bkÞ;Vdðg ¼ b0ÞÞ:ð4:12Þ

Proof. By Theorem 4.1, we obtain that

degðFÞ at Pi ¼ signð�dÞnþ1ðwðVdðbi�1 a ga ciÞÞ � wðVdðci a ga biÞÞÞ:
This implies (4.11). When n is odd, the proof of Theorem 4.1 implies

degðF Þ ¼
X

x AXVVd

HessðgjVd
ÞðxÞ

and the right hand side is equals to

wðVdðb0 b gb bkÞ;Vdðg ¼ b0ÞÞ;
which completes the proof of (4.12). r

5. Mapping degree of pð½dg�; ½df �Þ

We denote by p : Rnþ1 � f0g ! Sn the projection defined by x 7! x=kxk.
Let f : ðRnþ1; 0Þ ! ðR; 0Þ be a Cy-function-germs. We define a map ½df � :
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Sn
e ! Sn by x 7! p � df ðxÞ where Sn

e denotes the n-sphere centered at 0 with
radius e and Sn denotes the unit sphere centered at 0. Suggested by Remark 2.1,
we are interesting in the following: Let f ; g : ðRnþ1; 0Þ ! ðR; 0Þ be two Cy-
function-germs. We consider a smooth map p : Rnþ1 � Rnþ1 ! Rnþ1 and set
~ZZ ¼ p�1ð0Þ. We investigate the mapping degree of the map

pð½dg�; ½df �Þ : Sn
e ! Sn; x 7! p � pð½dg�ðxÞ; ½df �ðxÞÞ

when Z :¼ ~ZZV ðSn � SnÞ is empty.

Lemma 5.1. Let M be an oriented manifold of dimensionb n and let o be
the volume form of the sphere Sn so that

Ð
S n o ¼ 1. We consider a Cy-map

f : M ! Sn. Then degð f jX Þ ¼
Ð
X
f �o for any oriented n-cycle X of M so that

f jX is proper and finite.

The proof is similar to the proof of Theorem 12 in [10, Chapter 8].

Proof. Let y be a regular value of f jX and let U be an open neigh-
borhood of y. Let o 0 be an n-form of Sn which is cohomologous to o and
suppðo 0ÞHU . Let fx1; . . . ; xkg be the preimage of y. Choosing U small we
may assume that ð f jX Þ

�1ðUÞ ¼ U1 U � � �UUk where each Ui is an open neigh-
borhood of xi in X and each Ui is di¤eomorphic to U . Then we haveÐ
Ui
ð f jX Þ

�o 0 ¼G
Ð
U
o 0 ¼G1 where the sign is þ (resp. �) when f jUi

is orientation
preserving (resp. reversing). Thus we have

degð f jX Þ ¼
Xk
i¼1

ð
Ui

ð f jX Þ
�o 0 ¼

ð
X

ð f jX Þ
�o 0 ¼

ð
X

ð f jX Þ
�o ¼

ð
X

f �o;

and this completes the proof. r

Let ei, i ¼ 0; 1; . . . ; n, denote the unit vector ð0; . . . ; 1
iþ1

; . . . ; 0Þ in Rnþ1. We
investigate when Z is empty. When Z ¼ j, we can consider the following map:

p : Sn � Sn ! Sn; ðx; yÞ 7! p � pðx; yÞ:
We define the class of p, denoted by hðpÞ, the image of the fundamental class of
Sn by the map

HnðSn;ZÞ !p
�

HnðSn � Sn;ZÞ ¼ Z2;

where the last equality presents the natural identification between the cohomology
group HnðSn � Sn;ZÞ and the free Z-module generated by the cohomology
classes corresponding to Sn � e0 and e0 � Sn.

Proposition 5.2. There is a Cy-map p : Sn � Sn ! Sn so that hðpÞ ¼
ðk1; k2Þ if and only if one of the following conditions holds.

� n ¼ 1; 3; 7.
� n is odd, n0 1; 3; 7, and k1k2 1 0 ðmod 2Þ.
� n is even, and k1k2 ¼ 0.
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Proof. Assume first that n is even. Let o denote the volume form of Sn.
Let pi : S

n � Sn ! Sn, i ¼ 1; 2, denote the i-th projection. We remark that
p�o is cohomologous to k1ðp1Þ�oþ k2ðp2Þ�o. The assertion comes from the
following:

0 ¼ ðp�oÞ5ðp�oÞ ¼ ðk1ðp1Þ�oþ k2ðp2Þ�oÞ5ðk1ðp1Þ�oþ k2ðp2Þ�oÞ
¼ 2k1k2ðp1Þ�o5ðp2Þ�o:

We next consider the case that n is odd. Let fi : S
n ! Sn be a Cy-map

of degree ki. We remark that their homotopy classes is kiin where in is the
identity map of Sn. It is enough to determine all ðk1; k2Þ so that the White-
head product ½k1in; k2in� ¼ k1k2½in; in� vanishes. By the theorem of J. Adams [1,
Theorem 1.1.1], ½in; in� ¼ 0 if and only if n ¼ 1; 3; 7. This implies the second
assertion. Since ½in; in� is of order 2 when n0 1; 3; 7, we obtain the last assertion.

r

When n ¼ 1; 3; 7, and a map p with ðk1; k2Þ ¼ ð1; 1Þ, is induced by the
product of complex, quotanion, Cayley numbers respectively.

When n ¼ 1, we identify R2 with C by ðx; yÞ 7! z ¼ xþ yi. The map
pk1;k2 : R

2 � R2 ! R2 defined by ðz1; z2Þ 7! zk11 zk22 represents a map which class is
ðk1; k2Þ. Remarking z�1 ¼ z on S1, we see all the classes ðk1; k2Þ are represented
by polynomial maps.

When n is odd, a map Sn � Sn ! Sn with ðk1; k2Þ ¼ ð1� k; kÞ is represented
by the following way: Take x; y A Sn, and consider the great circle containing
x, y. The image of ðx; yÞ is z in the great circle defined by Kx0z ¼ kKx0y de-
scribed in the following picture in the case k ¼ �2.

0
2y

y

y

x

z

An explicit formula for this map is described by the following: For x; y A Sn, we
set z ¼ pkðu; vÞxþ qkðu; vÞðy� uxÞ where u ¼ hx; yi, v ¼ jy� uxj. Here pkðu; vÞ
and qkðu; vÞ denote real polynomials defined by ðuþ viÞk ¼ pkðu; vÞ þ qkðu; vÞvi.

Proposition 5.3. Let p : Sn � Sn ! Sn be a Cy-map with hðpÞ ¼ ðk1; k2Þ,
and let fi : S

n ! Sn, i ¼ 1; 2, be two Cy-maps. We define a map by
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f :¼ pð f1; f2Þ : Sn ! Sn; x 7! pð f1ðxÞ; f2ðxÞÞ:
Then we have degð f Þ ¼ k1 degð f1Þ þ k2 degð f2Þ.

Proof. Let o denote the volume form of Sn with
Ð
S n o ¼ 1. Let pi :

Sn � Sn ! Sn, i ¼ 1; 2, denote the i-th projection. We remark that p�o is
cohomologous to k1ðp1Þ�oþ k2ðp2Þ�o. Then we have degð f Þ ¼

Ð
S n f

�o ¼Ð
S nðk1ðp1Þ�oþ k2ðp2Þ�oÞ ¼ k1 degð f1Þ þ k2 degð f2Þ. r
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