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MAPPING DEGREE AND EULER CHARACTERISTIC
T. Fukul aAND A. KHOVANSKII

Abstract

Let V5 denote a local level surface for function-germ f : (R"! 0) — (R,0). A
mapping degree formula for difference of the Euler characteristics of V5N {g <0} and
VsN{g =0} is given, when level surfaces of a function g:(R"*',0) — (R,0) are
parallelizable.

It is classically known that mapping degree is closely related to Euler
characteristics. One of such relation is the following celebrated formula due to
G. N. Khimshiashvili ([7]): Let (xo,x1,...,X,) be a coordinate system of R"*!.
Let B! denote the open ball centered at 0eR"™ with radius e Let
f:(R"™1,0) = (R,0) be an analytic function-germ and Vs denote the local level
surface of f i.e.,

Vs=B""'nf 1) for 0 <|o|<ex 1.

We denote its Euler characteristic by y(¥s). Then the Khimshiashvili’s formula
asserts that, when f defines an isolated singularity at 0,

deg(df) = sign(=0)"" (1 = 1(V5))
where df is the map-germ defined by
df - (R™1,0) — R"1,0), x> (f, (x), fu (¥), - f, (¥))-

Here f,, denote the partial derivative of f by x;, i=0,1,...,n.
We consider a relative version of this formula. In [3], the first author
considered the mapping degree of map-germs

F:(R™0) = (R™,0), x> (F(%), fr,(X); -, fu, (X))
and showed that, if F is finite, then
deg(F) = sign(—0)"*" (x(Vs(xo < 0)) — x(Vs(x0 > 0))

where Vs(xp <0)={xe Vs:x0 <0}, and Vs(xp > 0) = {xe Vs:xo=>0}.
In this paper, we consider an analytic function g : (R"*!,0) — (R,0) so that
there are C*-vector fields vy,...,v, which span the tangent space of a level set
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of g at each regular point of g. We assume that Vg, vy,...,v, agree with the
orientation of (R"“,O) at each regular point of g where Vg is the gradient vector
of g. We define a map F by

F:(R™0) = R™10), x— (f(x),01£(x),...,0.f(x)).

The purpose is to show (Theorem 4.1) that, if F is finite, and V;NZ(g) = 0,
then

(0.1) deg(F) = sign(=0)""! (x(V3(g < 0)) — 2(Vs(g = 0)))

where Vs(g <0)={xe V;:g(x) <0}, and Vs(g =0) ={xe Vs :g(x) =0}.

This formula will be proved in §4 applying Morse theory to the restriction
of g to a level of f. In §1 we investigate the condition on the existence of such
vector fields vy,...,v, and discuss explicit construction of them in some special
case in §2. Applying Morse theory to the restriction of f to a level of g, we also
show another topological interpretation of deg F' in §3. In §4 we investigate the
condition that g|,, is Morse and give a proof of (0.1) and its variant.

In the last section, we consider a kind of ‘product’ of dg and df and give a
topological interpretation of its mapping degree. It is motivated by Remark 2.1
which is a consequence of the explicit form of F.

The authors thank to Professor T. Mizutani for letting them know about the
use of Whitehead product. The authors also thank to the referee for his kind
comments on the earlier version including pointing out some gramatical and
typographic errors. Proposition 1.3 is inspired by the referee’s comment.

1. Condition (P) and the definition of the map F

Let L denote an oriented (n + 1)-dimensional C*-manifold and g : L — R be
a C”-function on L. We fix a Riemannian metric on L and denote the gradient
of g by Vg. We always consider the orientation of the set of regular points of
the level set of g so that Vg and the orientation of the level set of g agree with the
orientation of L.
We consider the following condition on g.
(P):  There exist C*-vector fields v|(x),...,v,(x) on L which span the tangent
space of the level set of g at a regular point x of g, and the orientation of a
level of g there coincides with the orientation defined by v;(x),...,v,(x).

DeriNiTION 1.1. Let g : L — R be a C*-function with Condition (P). We
define the map

FiL—R"™, by x (f(x), 0 (x),.., 0,/ (x)),

where f: L — R is a C*-function.

In later sections, we investigate several topological interpretations of the mapping
degree of F. In the rest of this section, we investigate Condition (P) in general.
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1.1. Existence of vector fields v;,...,v, in Condition (P). We show the
following

PrOPOSITION 1.2. Let g: (R"1,0) — (R,0) be a C*-function which defines
an isolated singularity at 0. Then, the following conditions are equivalent.
(i) There exist C*-vector fields vi(x),...,v,(x) near O which span the tangent
space of the level set of g at a regular point x of g.
(i) Ome of the following conditions holds.
cn=1,3,7.
*nis odd, n#1,3,7, and deg(dg) is even.
* n is even, and deg(dyg) is zero.

First we consider more general set-up. Let L be a manifold of dimension
n+1, and let g: L - R be a C®-function. We denote L' =L —X(g), and
assume that L’ is parallelizable. Let E denote the vector bundle on L’ whose
fiber is the tangent space of each level of g. We investigate the following

QUESTION. When FE is a trivial bundle?

If E is CP-trivial, then this bundle is C*®-trivial and there exist C®-vector
fields wy(x),...,w,(x) on L’ which span E. Then v;(x) = b(x)w;(x), i=1,...,n,
satisfy Condition (P) where b is a C*-function on L so that X(g) = b~!(0) and
that b is flat at X(g), that is, all partial derivatives of order k, k =10,1,2,...,
vanish at each point of Z(g).

Since L' is parallelizable, there is an oriented orthonormal frame ey, ey, ..., e,
of the tangent bundle of L', and we can define the following Gauss map:

w:L — S"  xw~ (ay,ay,...,a,) where = apey + aje; + -+ + aye,.

Vg
Vgl
Let SO(n) denote the group of orthogonal n x n matrices with determinant 1.
Let us consider the map defined by

p:SO(m+1)—S" A+ the first column of A.

ProPOSITION 1.3.  Under the above assumption, the following conditions are
equivalent.

(i) The vector bundle E is C°-trivial (and, thus C*-trivial).

(i) There is a continuous map f: L' — SO(n+1) so that o= pof.

(iii) One of the following conditions holds.
*n=1,3,7.
* nisodd, n+#1,3,7, and the induced map oy : 7,(L") — 7,(S") is even.
* n is even, and the induced map oy : m,(L') — 7,(S") is zero.

Here we say that a map a: Gy — G, between two abelian groups Gi, G is
even if for any g; € Gy there is g, € G, with f(g1) = 2¢».
We say that a map p: E — B is a fibration in the sense of Serre if the
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following condition holds: for a CW complex X and a homotopy o, : X — B,
0<t<]1, if there is a map f,: X — E with pof; =0, then there is a
homotopy f,: X — E, 0<t <1, with pof,, =0, for 0 <7< 1.

We remark that the locally trivial fibration is a fibration in the sense of
Serre.

Proof of Proposition 1.3. (i) = (ii): If E is trivial, then the associated
SO(n)-bundle with E is trivial, and thus have non-zero section. This means (ii).

(ii) = (i): If there is a continuous map f: L' — SO(n+ 1) so that a = po f3,
then there is an orthonormal frame which spans E, and we thus conclude that E
is trivial.

(ii) = (iil): Since the map p: SO(n+ 1) — S” is a fibration with fiber SO(n),
we have the following homotopy exact sequence:

(12)  7(SO(n+1)) 2 7,(S") — m,_1(SO(n)) 5 7,1 (SO(n + 1)) — 0

where 1 : SO(n) — SO(n+ 1) denote an inclusion. Remark that the map f: L' —
SO(n+1) induces f,:m,(L') — m,(SO(n+1)) with pyopf, =oay. Then the
following fact (see [6, Chapter 8, Ex. 8]) implies (iii).

0, ifn=1,3,7,
(1.3) Kernel of 1, =4 Z/2Z, if nis odd and n # 1,3,7;
Z, if n is even.

(iii) = (ii): We show this implication as an application of the obstruction
theory.

Let S¥, k=0,1,...,n—1, be a k-dimensional sphere in L', and set
oy = o|gx. The map o : S% — S” represents the zero element of 7, (S™), since
n.(S") =0. Take a map f; : S¥ — SO(n+ 1) which represents the zero ele-
ment of 7, (SO(n + 1)). Since the map p o 8, also represents zero of 7 (S"), there
is a homotopy ¢,: Sk — S" 0<t<1, with ¢y=pof, and ¢ =ox. Since
p:SO(n+1) — S" is a fibration in the sense of Serre, there is a map S, : S¥ —
SO(n+1) so that pof, = ox. If there is a (k + 1)-dimensional ball B¥*! in L’
which bounds the sphere S¥ in L', then 8, can be extended to B**!, since f,
represents the zero in 7;(SO(n + 1)).

Let S” be an n-dimensional sphere in L’ and set &, = o|s.. By (iii), the
homotopy class of o, is in the kernel of 1, in (1.2), because of (1.3). Since
p:SO(n+1) — S is a fibration in the sense of Serre, there is a map S, : S" —
SO(n+1) so that pof, = o,.

Since L’ is not compact, L’ has a homotopy type of a CW complex of
dimension < n, and we complete the proof. O

Remark 1.4. Let g;:(R",0) — (R,0) be a C*-function. Let U be a
neighborhood of 0 and assume that ¢; is defined on U. Let 7: R""! — R" be a
linear projection. Setting g = gj ox and L ="' (U), we have L' = L — X(g) ~
(U —-2(g1)) x R, that has a homotopy type of a CW complex of dimension <
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n—1. By the above proof of the implication (iii) = (ii), we conclude that g
satisfies Condition (P).

Next we present two propositions which gives sufficient conditions for Con-
dition (P).

PropPoSITION 1.5.  Under the same assumption as Proposition 1.3, the vector
bundle E is trivial if there is a continuous map y: L' — P"(R) so that povy is
homotopic to o where ¢ : P"(R) — S" is the map defined by

1
[X] =[x0:x1:- x5 — —(ng —8,2x1x0,...,2x,X0) where S = x,»z.

S

n
i=0

Let ¢g:S"— P"(R) denote the map defined by (xo,x1,...,%,)—
[xo:xy:---:x,). For a unit vector x = (xo,x1,...,%,) and y = pog(x), we see
that 0, ey, x, and y are in the same plane and 24 e)0x = £e,0y. We remark that
the map ¢ is generically one-to-one and sends the set defined by {xp =0} to a
point.

Proof. Let x = (xp,X1,...,X,) be a non-zero vector in R"*!. Let y_:
R™! — R""! denote the reflection sending the vector x to —x. We remark that
the map , is represented by the matrix

2X;X; 1, ifi=j
0ij——=2 where 6; ;=< '
( " S )i,jo,l,..,,n b {0, otherwise,

and the first column of the matrix for , oy, represents the map ¢ : P"(R) — S".
Let 4; denote a homotopy with iy = ¢ oy and h; = «. We remark that there is a
continuous map y; : L' — SO(n+ 1) with ¢ = poy,. In fact, the map y, =y oy
satisfy ¢ = p o y; where  : P"(R) — SO(n + 1) is the embedding defined by [x] —
Yo, 0 Y. Since p:SO(n+1) — S" is a fibration in the sense of Serre, we obtain
there is a continuous map o : L’ — SO(n+ 1) with o = p o a;, and we complete
the proof. O

PrOPOSITION 1.6.  Under the same assumption as Proposition 1.3, the vector
bundle E is trivial when one of the following conditions holds.

* n is odd, and the induced map o* : H"(S™;Z) — H"(L';Z) is even.

* n is even, and the induced map o* : H"(S™;Z) — H"(L';Z) is zero.

Proof.  Assume first that n is even and the induced map «* : H"(S";Z) —
H"(L';Z) is zero. Then, by Hopf’s theorem (see [5, Chapter II, 8]) there is a
homotopy A4 : L' x [0,1] — S", A(x,t) = o,(x), with the following properties:

* 0y = o.

+ If n is odd, then there are continuous maps a : L' — S" and b : " — S" so

that b is of degree two and o« = bhoa. We may assume that b factors
through the map ¢.
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« If n is even, then Im ¢; is a point.
Since p:SO(n+ 1) — S” is a fibration in the sense of Serre, we complete the
proof as in the same way in the previous proposition. O

Proof of Proposition 1.2. (i) = (ii): If (i) holds, then (iii) of Proposition 1.3
holds, and (ii) holds.
(i) = (i): The implication (iii) = (i) of Proposition 1.3 implies (ii) = (i).

The explicit construction of vy,...,v, in the next section gives another proof

when n=1,3,7. When n # 1,3,7, Proposition 1.6 also gives another proof by

Hopf’s theorem (ibid.). ]
2. Explicit construction of vector fields v,...,v, in Condition (P)

Let g : (R""!,0) — (R,0) be a polynomial (resp. analytic) function. ~Assume
that one of the conditions in Proposition 1.3 (iii) (or in Proposition 1.2 (ii) when g
defines isolated singularity at 0) holds. Then are there polynomial (resp. an-
alytic) vector fields vy, ...,v, which span the tangent space of the level of g at a
regular point of g? The answer is affirmative if one of the following conditions
holds.

(@) n=1,3,7.
(b) gy, is not negative.
We are going to prove this assertion to construct vector field vy, ..., v, explicitly.
i+1
Let L =R""! and we denote by Oy, the unit vector ¢;=(0,..., 1,...,0) for
i=0,1,...,n

2.1. Case (a). If n=1,3,7, our explicit construction of the vector fields
v1,...,U, 1s based on the multiplicative structure of complex, quotanion, Cayley
numbers, respectively.

CastE n = 1:  We consider the complex numbers C = R + Ri where i* = —1, and
identify it with R?. Under this identification Vg = g., + g.,i. Then iVg=
—gx, + gx,i span the tangent space of the level set of g at a regular point of g.
In other words, the vector field v; in Condition (P) is given by the following:

v = lVg = —0gx, axo + gxuaxl-
Case n=3: We consider the quotanion numbers QO = R + Ri + Rj + Rk with
P=j=kK=-1, ij=—ji=k jk=-ki=i ki=—ik=]j.

We set X=ay9—aii —ayj—azk when x=ay+ aji +axj+ ask. Since xX =
Z?:o a?, x has the inverse %/(x%) if x # 0. We identify Q with R*. We remark
that (x, y> := Re(xjy) (x,y € Q) is the Euclidean inner product of R*. Under
this identification we have that Vg = gy, + gy i + gx,J + gx,k. Since (1,4, j, k)
forms an orthonormal frame of the tangent space of R* (Vg,iVy,jVg,kVg)
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forms also an orthogonal frame of the tangent space of R*, when Vg # 0. This
implies that iVg, jVg, kVg span the tangent space of the level set of g at a regular
point of g. In other words, the vector fields v;, vy, v3 in Condition (P) are given
by the following:

Ul = ng = 7g)»’1 axo + gxoa)C] - gx3ax3 + gxzan;?

U2 = .ng = _gX26X(] + g)C3ax1 + g.\’()a)(z - gxl 6)(37
U3 = ng = —0x; axo - gxzaxl + gx, 0)52 + gx06X3-

Cast n="7. We consider Cayley numbers € = Q + Qe with
(q+re)(s+te)=(qs—tr)+ (tg +rS)e, q,r,s,te Q.

We set X = § — re when x = g +re. Since xX¥ = ¢q + r7, x has the inverse X/(xX)
if x# 0. We identify € with R® and remark that (x, y) := Re(x¥) (x,y € @) is
the Euclidean inner product of R®. Under this identification we have that Vg =
Ixo + il + G J + Gk + (Gny + Gusi + gueJ + gr,k)e. Then iVg, jVg, kVg, eVy,
ieVyg, jeVg, keVg span the tangent space of the level set of g at a regular point of
g. In other words, the vector fields vj,...,v; in Condition (P) are given by the
following:

U1 =iVg = —gx,0xy + gxyOx; — Jx30xs + Gy Ox; — GxsOxy T Gy Oxs + G, 0xg — G Oy
V2 = jVg = —gx,0x + 9x;0x; + JxyOxs — G, Oxy — G Oxy — iz Oxs + Gy Og + G5 Oy
v3 = kVg = —gx;0xy — gy Oxy + g, Oxy Gy Oy — Gix;Oxs T G Oxs — GxsOxg + Gy Oy
U4 = €Vg = —g,0xy + g5 Ox; + g Oxs + Jx7Oxs + Iy Oxy — Gix; Oxs — Gy Oxg — Gix3 Oy
Us =1eVg = —gx50xy — gy Oxy + G, 0%y — GxgOxy + G Oy + Gy Oxs + G Oxg — Gy Oy
U6 = jeVg = —gx,Oxy — 9x;0x; — GxyOxy + G5 Oxy + Gy Oxy — Gy Oxs + Gy Oxg + G Oy
v7 = keVg = —gx,0x) + gxOx; — Jxs0x, — Gy Oxy + Gy Oxy F iy Oxs — Gix; Oxg + Gy Oy

Remark 2.1. In the above construction, the map F (Definition 1.1) coin-
cides with

p(Vg, V) : R" — R™ x> p(Vg(x), V/ (x))

except the first component, where p : R"*! x R"*! — R"*! is the product of the
complex, quotanion, Cayley numbers, respectively. In fact, the e¢; component,
i= 1) <N of F is <enga Vf> = Re(p(_eiv_g7 Vf)) = Re(p(_eivp(v_ga Vf))z which
is the ¢; component of p((Vg,Vf)). Here we use the fact Re((ab)c) = Re(a(bc))
for any complex, quotanion, Cayley numbers a, b, ¢, respectively.

2.2. Case (b). Assume that g,, is not negative. This means that the map-
ping degree of dy is zero. We define vector fields v;,, i=1,...,n, by
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n n
0= gl + O _(9xgy, —0i;T)0x, where T =gy, + Y g7
j=1

J=1 J

Then vy,...,v, span the tangent space of each level of g at each regular point
of g.

It is clear that these v,...,v, are polynomial (resp. analytic) vector fields
when ¢ is a polynomial (resp. analytic).

Proof. 1t is easy to see that {Vg,v;> =0 for i=1,...,n. So it is enough
to show that Vg, vj,...,v, are linearly independent on R"” —X(y). The co-

efficient matrix of vector fields Vg, vy,...,v, is
M= (QXO 9xi >
gX,’ gxfgx/ - 5IjT ij=1,...n
and its determinant is 7"~' 3" | g2. This implies that Vg, v1,...,v, are linearly
dependent only on {7 =0}UZ(g). By assumption {7 =0} UX(g) = Z(g), and
we are done. O

Remark that Mey = Vg, MVg = HVgHzeo, and Mv = —Tv when {v,ey) =
(v, Vg) = 0.

Remark 2.2. The matrix appeared in the proof of Proposition 1.5 suggests
another explicit construction of the vector field v;,...,v, in some special case.
Let us find an x with ¢(x) = Vg/||Vg|| where Vg denotes the gradient of g.

2

. 2x, Jx
Looking the first component, we have =0 — ] = 22
S IVyll

9xo > 2 (2 2 Ixo
1 - x5 = (x +~~+xn)(1+ )
< Ivgll)™ ! Vgl

2

We then obtain

X0 o x]2 +---+x,f
gxo - 2 2
1+ ( g, ) ( s, )
v T
Vol 7 vl IVl
B x4 42 _(i)z
2X1 X0 2+ N 2,350} \2x0/
S S

We thus conclude

S

e Xp) =k + h h=—— .
(0,31, %) = k(Vg £ [Valleo)  where k=5 oo,
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Choosing the sign +, and setting k = 1, we have

1 Ix:Yx; .
v = (e G Oxy + ( T +6;||Vg )6x/ , i=1,...,n
vl = ann< e 23 Vol +g + IVl

They are the desired vector fields which make sense whenever Vg + ||Vg|ley # 0.
Remark that the last condition implies the mapping degree of dg is zero. But,
in this construction, it is not clear that vy,...,v, are polynomial (resp. analytic)
vector fields when ¢ is a polynomial (resp. analytic).

3. Restricting f/ to the level of g

THEOREM 3.1. Let L be a C*-manifold of dimension n+ 1 and f,g: L — R
C®-functions. We assume that 0 is a regular value of g: L — R and set N =
g~ '(0). We assume that g satisfies Condition (P) and the map

o _, qn X = (f(x),Ulf(X),...,Unf(X))
FiN— S, 1), 01/ (), oaf D

is well-defined and finite.
(i) If Ly ={xeL: f(x) =0} is compact, then

deg F = y(N(f 2 0),N(f =0))
where N(f = 0) denotes the set {xe N : f(x) >0}, and so on.
(i) If L. ={xe L: f(x) <0} is compact, then we obtain
deg F = (=1)"""4(N(f < 0),N(f = 0)).

Proof. Take the point (1,0,...,0) and consider its preimage by F. They
are the critical points of f: N — R in the region {f > 0}. If f|y is Morse (we
can assume this after small perturbation of f if necessary), we obtain

oF
Hess(f1y)(x) = F (x),
where y denotes an oriented coordinate system of N. This implies the first
equality.
Next take the point (—1,0,...,0) and apply the similar discussion for —f on
the region {f <0}. We then obtain the second equality. O

When F induces a finite map germ Fy: (L, F~'(0)) — (R"1,0), deg F =
deg Fy.

Remark 3.2. Assume that L is compact. If n is odd, we have that
deg F =1x(N(f=0)) and x(N(f =0))=x(N(f <0)). We consider the fol-
lowing Gauss map
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(01/(x),- -, vnf(x))
(01 (%), onf (X))l
Using the fact stated in [8, §6], we obtain that the degree of this Gauss map is

equal to the sum of indices of Vf in N(f > 0), which is equal to deg F. So we
conclude that deg G =1x(N(f =0)).

GiN(f=0) = 5" g

4. Restricting g to the level of f

TueOREM 4.1. Let f,g:B'"' — R be analytic functions with f(0) =
g(0) =0. We assume that the singular set of (f,g), which is defined by

fol) fol) o ful)
0o () %@>~'gmm><%’

is of dimension 1. We choose ¢ >0 small enough so that
« the number of connected components of (X — {0}) N B does not change if
0<é <e and
* the functions f and g do not change the sign on each connected component
of X —{0}.
We choose o, a regular value of f, which is close enough to 0, and set V=
{xeB"': f(x)=0}. We assume that g satisfies Condition (P). If VsNZ(g)
=0, gly, is a Morse function, and the map-germ

X = {xeB:+1 :rank<

4.1) F:(R"™0) = R"™0), x— (f(x),01.£(x),...,0.f(x)),
is finite, then we have the following:

(4.2) deg(F) = sign(~0)"" (x(Va(g < 0)) — 7(Vs(g = 0))
(4.3) = sign(—0)"" (t(Vsian)-) — 2(Vsign(s)+))

Here we denote by Vs(g <0) the set {xe Vs:g(x) <0}, and so on. We also

denote by Vg the set {x e S} :sign(d)f(x) =0,+g(x) =0} for 0 <e<« 1.

Remark 4.2. Consider the jet space J =J!'(R""! R?) with coordinates

(XOaxl--~axn>y7ZaP07pl7-~-7Pna(107‘I1a---7‘1n)a
so that the jet section of a map (f,g): R"*! — R? is defined by
y=r1f(x), pi=fux), z=9gx), qg=gyx), i=01,...,n
Let %;, i=0,1,2, be the submanifolds of the jet space J defined by
rank(p0 s p”):i.
qo ql e qn

If the map (f,g): (R"' 0)— (R%0) is transverse to Xy, X; and X, on
(R —0,0), then the singular set X of (f,g) is of dimension 1, and the num-
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ber of connected components of (X — {0}) N B does not change if 0 < &’ « 1.
This means that the condition on X is a generic condition, if ¢ > 0 is small
enough.

LemMa 4.3. Let y: (R,0) — (X,0) be a C*P-map with foy(t) #0 when
0 < |t| <« 1. We then obtain Vf(y(t)) is not identically zero. Since y(t) € X, there
are real numbers A(t) so that Vg(y(t)) = A(t)Vf(y(t)), when 0 < |f] « 1.
(i) If goy(t) is identically zero, then A(t) is also identically zero.
(i) If g o y(t) is not identically zero, then sign A = sign(g/f) along (1), 0 <
f] < 1.

Proof. Assume that Vf(y(¢)) is identically zero. We then have
“ of d
i=0 0xi

(2(1) = (xi o p(1)) =0,

d
Etf oy(r) = i

which implies f o p(¢) is constant. This shows the first assertion. If goy(¢) is
identically zero, then

0=3 (1030 g090) =090 27030+ 1030 Sg05(0)

) d .
= A0 f 030 S o)
and we conclude A(7) is identically zero. This completes the proof of (i). The
assertion (ii) is a consequence of Cauchy’s mean value theorem. O

Take a point x € X — {0}.

+ If 6= f(x) is a regular value of f, then x is a critical point of g|;,_g.

- If 6’ = g(x) is a regular value of g, then x is a critical point of flig=sy-
The following lemma clarifies when g|;, is a Morse function.

LEMMA 4.4. Let 6 be a regular value of f. For x € X NV there exists a real
number . so that Vg(x) = AVf(x). Then g|y, is Morse at x, if and only if

0 >
S #0 at x.

Proof. It is enough to prove the lemma assuming fy,(x) # 0. Then there is
a function ¢(x,...,x,) with

(4.4) Slo(x1y. oy Xn)y X1ye ey Xn)

Differentiating (4.4) by x;, i=1,...,n, we obtain

(45) f‘(o(pxi + f‘Ci = 07

0.
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and ¢, = —fx;'fx,,. Differentiating (4.5) by x;, j=1,...,n, we obtain that

(46) fxoxo (pr(ﬂx/ + fxoxjgﬂxf + fxoxi(”x,» + fxixf + fxo (ﬂxfx,» =0.

We consider the Hessian of the function G(xy,...,x,) :=g(@(X1, ..., Xn), X1, .., Xy)
at its critical point x. Similar computation shows that Gy, = g0y, + gx,, i =
l,...,n, and 1 =g, f,' at xe X. We also obtain that

Gx,»x,» = gxoxo(px,-(ﬂxj + Gxox; Py, + gxox,¢x/ + Ixix; + 9x, (ﬂ,xi,,x/
= (Gxoxo — jfxoxo)?x[(Px,- + (gxox/- - )J(:voxj)(ﬂx,- + (g — /Ahﬁcoxi)(oxj + (gx,-xj - lfx,-x/-)

at x by (4.6). Therefore we conclude that

-1 0 0 0
0 0 -1 0
det(GX,'x;')i,j:l,A..,n = 0 —1 0 0
0 0 0 XiXj |j j=1,..,n
-1 0 0 (gxoxo - ;“fxnxo)(pxj
10 0 -1 Px,
“lo -1 0 Gror, — Moo,
Oy, Px; Yxoxi — )“f:‘foxi 9xixg — /lfxixj i j=1,..n
-1 0 Ixoxo — ;“](X()Xo 0
oo -1 o,
| 0 Gro — Mo
0 Ox; Yxoxi — /lj;foxi Gxixg — ;L‘j;v'ix/ ij=1,....n
-1 0 Ixoxo — ;Lfr()x(] 0
oo ~1 o,
0 -1 Ixoxo — /lfxoxo gxox]- - /’L,f;mxj'
0 9 Gxon — My Yxg — Mo ij=1,..,n
| 0 Sy
= 7f:‘c02 f _lef ,
X Yxix Xy 1 7=0,1,..,m
at x, which completes the proof. O

If x is a regular point of f and ¢, then we have
Lemma 4.5, sign Hess(f|j,_5y) = sign((—4)" Hess(gl;;_s)) at x € X near 0.

Proof. Since x is a regular point of g, there exists a coordinate system
(x0,x1,...,X,) centered at x so that xo = g(x). We consider f as a functions
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of (xo,x1,...,x,) and write f = f(xo,x1,...,X,). By implicit function theorem,
there exists a C®-function ¥(xi,...,x,) so that f(Y(x1,...,xn),X1,...,%,) =0.
Then we obtain that

Soy, + /5, =0, fori=1,...,n, and
fxo‘//x,-x, + fuy, =0 mody,, for i j=1,...,n

This means [y, (X) = —fx, Yy, (x), which implies the lemma. O

Proof of Theorem 4.1. We choose a non-zero number ¢ close enough to 0
so that the numbers of connected components of {x € X : 0 < sign(d) f(x) < ¢} do
not depend on ¢ with 0 <& < |d]. Let a(e), 0 < sign(d)e < |4|, denote the half-
branch of X which contains x. We assume that f(x(e)) =e. We extend the
function ¢ to a neighborhood of X near x and denote it by the same letter ¢. We
consider functions ¢i,...,g, so that X = {g; =--- =g, = 0} near x and so that
Vgi(x) = vi(x) for i=1,...,n. We see that (¢,¢1,...,9,) and (g,4g1,...,g,) are
systems of coordinates near x. Then we obtain that

1

oF 0(&, g1y, 9n) oF 1 * at
0 v f ’

a(g,glv"'vgn) a(gaglv”',gn) a(g,glv"'vgn)
since v;f(a(¢)) =0 and (&, Vf)>=1. By Lemma 4.5, we conclude that

oF

4.7 sign ———
( ) £ a(gvglw"agn)

= sign((—2)""! Hess(gl(,_s))) at x.
Applying Morse theory to g on {f =J,g > 0}, we obtain that
2(Vs(g=0),Vs(g=0))= > signHess(g|;,_s)(x).
xeXNVs:g(x)>0
Applying Morse theory to —g on {f =d,¢9 <0}, we also obtain that
x(Vslg <0),Vs(g = 0)) = (=1)" >~ sign Hess(g,_5))(x)-
xeXNVs:g(x)<0
Taking the difference, we thus conclude that
(48) x(Vilg=0) = x(Valg<0))= > sign(g(x)""" Hess(gl(;_s)(x)-
xe XNVs,g(x)#0

By Lemma 4.3 (i), the condition V5N X(g) = @ implies that 0 is a regular value of
gly,» and we have

(4.9) (4.8) = Z sign(g(x))"+1 Hess(g|{f:(;})(x).

xeXNV;
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By Lemma 4.3 (ii), sign(f4) =sign(g) along each connected component of
X — {0}, and we obtain that

(49)= Y sign(f(x)4)""" Hess(gl(_s)(x)

xeXNV;s

= sign(~9)"" > sign(~)""" Hess(gl_y))(v)

xeXNV;

= sign(—0)""! Z sign oF

@ by @)
xe XNV DHrYls---rYn

= sign(—0)"™! deg F,

which implies the formula (4.2). The equality (4.3) follows from the deformation
argument due to [9, §11]. O

COROLLARY 4.6. Let V be an analytic set of dimension n+ 1 defined near 0
n R™"™ 1 Let L be the nonsingular locus of VﬂB’"Jr”+1 for small ¢ >0 and
assume that L is oriented. Let g : (R™"1 0) — (R, 0) be an analytic function-
germ.  We assume that there are C*-vector fields vi(x),...,v,(x) on B! 0
that v1(x), ..., v,(x) span the tangent space of ¢|, at each x € L and the orientation
of the level of g|; there coincides with the orientation defined by vi(x),. .., v,(x).
Let f: (R™"1 0) = (R,0) be an analytic function-germ. We assume that

Vs={xeVNB,: f(x) =7}

is nonsingular for a non-zero number 6 which is sufficiently close to 0. If V5N
X(g9) =0, the map-germ

F:(L,0)— (R”H,O)7 x = (f(x),01f(x),...,00f(x)).

is finite and g|Vo_ is Morse, then

(4.10) deg(F) = sign(—0)""" (x(Vs(g < 0)) — x(Vs(g = 0)))
= Sign(fé)’hLl (X( 751gn ) (V&gn ))
where Vgns)w = {x € VNS :sign(d) f(x) > 0, £g(x) > 0} for 0 <e< 1.

Remark 4.1. We sketch how to find the formula (Theorem 4.3) in [2]. Let
(X0, X1, Xminiq) denote a coordinate system of R 4*! at the origin. Let
n=1,3,7, and let m, ¢ be non-negative integers. Let f,g: (R4 - (R,0)
denote two analytic functions, and h = (hy,...,hy,) : (R™"0) — (R™,0) a
C*®-map. We assume that g and /4 do not depend on the last ¢ variables
Xmtntls -+ oy Xmgntq- St V = h='(0) and L is the set of regular points of V (i.e.,

L=V —%(h)). Since L is orientable, we fix an orientation of L. Define vector
fields v1,..., 0444 by
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(U()A’]) n = 1,
(vo,1 + 02,3, 00,2 — 1,3,00,3 + 1,2) n=3,
(o by) = (vo,1 + V2,3 + 4,5+ V67,002 — V1,3 — Va6 + V57, n=7,
s s¥n) —
00,3 + U1,2 + V4,7 + V5,6, V0,4 — V1,5 + V2,6 — V3,7,
Vo5 + V14 — V27 — V36,006 — V1,7 — V241035,
vo,7 + V1,6 + V2,5 + 3. 4)
ax,- 6Xj axn+l e axn+rn
gxi ng gxn+l U gxn+m
hy). h ). e (), ..
where v; ; = ( I)M ( l)x/ ( I)MH ( l)kwm , 0<i<j<n,
(hm)x[ (hm)x, (hm)x,” T (hm)x,,m
and vy1 = Ox,,,,015- -+ Untg = Ox,,,,,,- We remark that these vectors are the same

as the vectors defined in subsection 2.1 when (m,q) = (0,0). Consider the map
F:(L0)—R"™ xs (f,o1f, ., Onigf)-
By (4.10), we obtain that
deg F = +(x(Vs(9 < 0)) — x(V5(g = 0)).

By the discussion in [3, §3], we obtain that deg(F) = deg{(F’,h) : (R"+! 0) —
(R™1+4+1 0)} where F' is an extension of F to (R™™9*! ), and find Theorem
43 in 2]

Remark 4.8. Let g: (R",0) — (R,0) be a C*-function and let vy, ... v,
be vector fields on (R"™!,0) so that (Vg,u;> =0, i=1,...,n. We denote by
%, the set of points where vy, ...,v, are linearly dependent. Let f : (R’”’l70) —
(R,0) be a C*-function so that V;NZ(f)=0, VsNZ(9) =0 and V;NZ, =0,
where V5 = {x e (R" 0): f(x) =d}. If the map F defined by (4.1) is finite and
gly, is Morse, then the same proof works and we obtain the formulas (4.2),
(4.3). This observation is sometimes useful if we know X, explicitly.

Here is an example that X, can be expressed explicitly. Set p=1,3,8.
Define

{the same as in subsection 2.1 replacing n by p there i=1,...,p
v; =

9xVg — V9|0, i=p+1,....n
Then we obtain %, = {gy, = --- = gx, =0}.  Suppose that g(x) = > ) x?. Then
Y, ={xo=-=x,=0} If f:(R"™ 0) — (R,0) defines an isolated singularity

with f(Z,) =0, and the map F defined by (4.1) is finite, then we obtain that
deg F = (—1)"y{xeS": f(x) > 0}.

To state a global consequence of our theorem, we introduce the following
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DEerINITION 4.9. Let M be a C*-manifold and let ¢: M — R be a C*-
function. We say that Morse theory is applicable to ¢ on the closed interval [a,b)
if the following two conditions hold.

(1) @ has at most finitely many critical points in ¢~ '[a,b], and all critical

points are Morse singularities, that is, the Hessian determinant Hess(¢)(x)
of ¢ is non zero at each critical point x.

(2) there is “no surgery at infinity”” on [a,b], which means that {xe M :
p(x) <c—e¢} and {xe M : ¢p(x) < c+¢} are diffeomorphic each other
for sufficiently small ¢ >0 when ¢ is not a critical value of ¢ with
c € [a,b].

THEOREM 4.10. Let L be a real analytic manifold of dimension n+ 1 and let
f,9:L— R be analytic functions. We assume that Vs ={xeL: f(x) =0} is
nonsingular for a non-zero number 6 with 0 < |0| < 1 and Morse theory is ap-
plicable for g|,. on [bo,br]. We assume that g satisfies Condition (P), and that the
map

F:L—R"™  x— (f(x),0f(x),...,0.f(x)),

is finite. We set F~'(0)={Py,...,P}y and ci=g(P,) for i=1,....k, and
assume that by < cy < ¢y < -+ < cx < by. Taking b; with ¢; < b; < ciy1 for i =
1,....k—1, we have

k
(4.11)  deg(F) = sign(=0)""" Y " (x(Vs(bi1 < g < 1)) — 2(Valei < g < b))
i=1

Moreover, if n is odd, we have

(4.12) deg(F) = x(Vs(bo < g < bi), V5(9 = bo)).

Proof. By Theorem 4.1, we obtain that
deg(F) at P, = sign(—=0)""' (x(Vs(bir < g < ) — x(Vs(ei < g < by)).
This implies (4.11). When n is odd, the proof of Theorem 4.1 implies
deg(F) = 3" Hess(gl,;)(x)
xeXN¥;
and the right hand side is equals to
x(Vs(bo = g = bi), Vs(g = bo)),
which completes the proof of (4.12). O

5. Mapping degree of p([dy], [df])

We denote by z:R""! — {0} — S" the projection defined by x — x/|x|.
Let f:(R"™!0)— (R,0) be a C*-function-germs. We define a map [df]:



160 T. FUKUI AND A. KHOVANSKII

S’ — 8" by x+— modf(x) where S’ denotes the n-sphere centered at 0 with
radius ¢ and S” denotes the unit sphere centered at 0. Suggested by Remark 2.1,
we are interesting in the following: Let f,g: (R"™, 0) — (R,0) be two C*-
function-germs. We consider a smooth map p: R™ x R R™! and set
Z = p~'(0). We investigate the mapping degree of the map

p(ldgl, [df]) : S; — S", x = mo p([dg](x), [df(x))
when Z :=ZN(S”" x S") is empty.

LemMa 5.1. Let M be an oriented manifold of dimension > n and let @ be
the volume form of the sphere S" so that (s, =1 We consider a C*-map
f:M — S" Then deg(f|y) = [y f*@ for any oriented n-cycle X of M so that
fly is proper and finite.

The proof is similar to the proof of Theorem 12 in [10, Chapter §].

Proof. Let y be a regular value of f|, and let U be an open neigh-
borhood of y. Let @’ be an n-form of S” which is cohomologous to w and
supp(w’) = U. Let {xj,...,x;} be the preimage of y. Choosing U small we
may assume that (f|X)71(U) = U, U---UU; where each U; is an open neigh-
borhood of x; in X and each U; is diffeomorphic to U. Then we have
Ju.(f1x) X, ‘o' =+ [, ®' = +1 where the sign is + (resp. —) when f];, is orientation
preserving (resp. reversing). Thus we have

k
deatrl) =3[ Uhoe' =[ e’ = [ tloe=[ s
i—1 JUi X X X
and this completes the proof. O
i+1
Let e;, i =0,1,...,n, denote the unit vector (O,...,ﬁ ,...,0) in R™. We
investigate when Z is empty. When Z = (), we can consider the following map:

p:S"xS"—=S"  (x,y)— 7o p(x,p).
We define the class of p, denoted by /(p), the image of the fundamental class of
S”" by the map .
H"(S",Z) % H"(S" x S Z) = 72,
where the last equality presents the natural identification between the cohomology

group H"(S" x S";Z) and the free Z-module generated by the cohomology
classes corresponding to S” x ey and ey x S”.

PrROPOSITION 5.2. There is a C*-map p:S"x S" — 8" so that h(p) =
(k1,k2) if and only if one of the following conditions holds.

*n=1,3,7.

s nis odd, n+#1,3,7, and kik, =0 (mod 2).

* n is even, and k\k, = 0.
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Proof. Assume first that n is even. Let w denote the volume form of S”.
Let p;: S"xS"— 8", i=1,2, denote the i-th projection. We remark that
p*w is cohomologous to ki(p1) @+ ka(pa)“w. The assertion comes from the
following:

0= (p*w) A (P w) = (ki(p1) ©+ ka(p2)"@) A (ki (p1) @ + ka(p2) @)
= 2k1k2(p])*60/\ (pz)*a)

We next consider the case that n is odd. Let f;:S” — S” be a C*-map
of degree k;. We remark that their homotopy classes is k;;, where 1, is the
identity map of S”. It is enough to determine all (kj,k;) so that the White-
head product [ky1,, ky1,] = k1ka[1,,1,) vanishes. By the theorem of J. Adams |[I,
Theorem 1.1.1], [1,,2,) =0 if and only if »=1,3,7. This implies the second
assertion.  Since [i, 1,] is of order 2 when n # 1,3,7, we obtain the last assertion.

O

When n=1,3,7, and a map p with (kj,k2) = (1,1), is induced by the
product of complex, quotanion, Cayley numbers respectively.

When n =1, we identify R*> with C by (x,y) z=x+ yi. The map
Pioky - R? x R? — R? defined by (z1,27) — z{“ zfz represents a map which class is
(k1,ky). Remarking z~! =z on S', we see all the classes (ky,k,) are represented
by polynomial maps.

When 7 is odd, a map S” x S" — S" with (ki,k;) = (1 — k, k) is represented
by the following way: Take x,y € S” and consider the great circle containing
x, y. The image of (x, y) is z in the great circle defined by 4 x0z = k4Ax0y de-
scribed in the following picture in the case k = —2.

4

An explicit formula for this map is described by the following: For x, y € §”, we
set z = pi(u,v)x + gr(u,v)(y — ux) where u = <{x, y>, v=|y —ux|. Here pr(u,v)
and g (u,v) denote real polynomials defined by (u+ vi)* = py(u,v) + qi(u, v)vi.

PrROPOSITION 5.3. Let p:S" x S" — S" be a C*-map with h(p) = (ki, k),
and let f;:S" — S", i=1,2, be two C*-maps. We define a map by
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f::ﬁ(fl,fz):S”—>S”, x»—>ﬁ(f1(x),f2(x))
Then we have deg(f) = ki deg(f1) + k» deg(f>).

Proof. Let w denote the volume form of S” with jsnw: 1. Let p;:
S"x S§" — S§" i=1,2, denote the i-th projection. We remark that p*w is
cohomologous to ki(pi) @ +ka(ps)"w. Then we have deg(f) = [, f*w=
Jon(ki(p1) @ + ka(p2) @) = ki deg(f1) + ka deg(f2). U
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