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MEAN CURVATURES FOR ANTIHOLOMORPHIC ^-PLANES

IN SOME ALMOST HERMITIAN MANIFOLDS

BY VANHECKE LIEVEN

1. Let (M, g) be an n-dimensional Riemannian manifold with (positive de-
finite) metric tensor g. We denote by K(x, y) the sectional curvature for a 2-
plane spanned by x and y. Let m be a point of M and π a #-plane at m. An
orthonormal basis {eτ\ i=l, 2, •••. n] such that e l f ez, ••• , £g span TT is called an
adapted basis for π. Then

/>(*)= ..fa ^ Σ ΈK(ea,ea ) (1)g(^n — g; α=β+ι α=ι

is independent of the choice of an adapted basis for π and is called by S. Tachi-
bana [5] the mean curvature p(π) for π.

Before formulating the main theorem of this paper, we give some proposi-
tions for the mean curvature.

PROPOSITION A (S. Tachibana [5]). In an n(>2)-dimensιonal Riemannian
manifold (M. g\ if the mean curvature for a q-plane is independent of the choice
of q-planes at each point, then

(i) for q=l or n—1, (M, g) is an Einstein space;
(ii) for l<q<n—l and 2qφn, (M, g) is of constant curvature;

(in) for 2q=n, (M, g) is conformally flat.
The converse is true.

Taking holomorphic 2^-planes instead of ^-planes, an analogous result in
Kahler manifolds is obtained :

PROPOSITION B (S. Tachibana [6] and S. Tanno [7]). In a Kahler manifold
(M, g, /), n— 2&Ξ^4, if the mean curvature for a holomorphic 2p-plane is indepen-
dent of the choice of holomorphic 2p-planes at a point m, then

(i) for l^p^k—l and 2pφk (M, g, /) is of constant holomorphic sectional
curvature at m;

(ii) for 2p=k, the Bochner curvature tensor vanishes at m.
The converse is true.

Remark that the case n=2 is trivial and that Proposition B can be formulated
globally. In this case, the converse of (ii) is true if and only if the scalar cur-
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vature is constant.
This proposition has been generalized by the author [9]. To state the ob-

tained result we need some definitions.
Let M be a C°° differentiable manifold which is almost Hermitian, that is,

the tangent bundle has an almost complex structure / and a Riemannian metric
g such that g(JX, JY)=g(X, F) for all X, Y^I(M) where %(M) is the Lie alge-
bra of C°° vector fields on M. We suppose that dim M=n=2k and we denote
by V the Riemannian connexion on M.

Let now X, Y^I(M) such that g(X, Y}=g(JX, 7)=0. They defined a field
of 2-planes called antiholomorphic planes. The sectional curvature of M restricted
to such fields is the antiholomorphic sectional curvature. More generally, every
subspace Nm of the tangent space Tm(M) at raeM is called an antiholomorphic
space if JNmC.N^.

We say that an almost Hermitian manifold is of constant type at meM
provided that for xeTm(M) we have

λ(x, y)=λ(x, z) (2)
with

λ(χ, y)=R(χ, y, x, y)-R(χ, y, Jx, Jy} (20

(R is the Riemann curvature tensor) whenever the planes defined by x, y and
x, 2 are antiholomorphic and g(y, y}=g(z, z). If this holds for all weM, we say
that M has (pomtwise) constant type. Finally, if M has pointwise constant type
and for X, Fe%(M) with g(Y, X)=g(JX, 7)=0, λ(X, Y) is constant whenever
g(X, X)=g(Yf F)=l, then M is said to have global constant type. Remark that
these definitions coincide with those of A. Gray for nearly Kahler manifolds
[2].

An almost Hermitian manifold M such that

for all X, 7eZ(M) (3)

is called a quasi-Kdhler manifold [1] and if for all X(=X(M) we have

Q, (4)

the manifold is said to be nearly Kahler [2]. Such a manifold is necessarily
quasi-Kahler. In [4] G. B. Rizza defined a para-Kahler manifold as an almost
Hermitian manifold such that

R(x, y, z, w}=R(x, y, Jz, » (5)

for all x, y, z, w. All these manifolds satisfy

R(x, y, z, w)=R(Jx, Jy, Jz, » (6)

(see [2], [3], [4]) (except some quasi-Kahler manifolds which we exclude in
the following) and are evidently generalirations of Kahler manifolds. Remark
that it follows at once from (6) that
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K(x, y}=K(Jx, Jy) , K(x, Jy}=K(Jx, y) , (7)

k(x,y)=k(Jx,Jy}, k(x,Jy)+k(Jx,y)=Q. (8)

k is the Ricci tensor defined by

k(x, y)= Σ R(x, elt y, βt) (9)
1=1

where {et} is an orthonormal local frame field.
Now we have

PROPOSITION C (L. Vanhecke [9]). Let M be an n(=2k}-dimensional almost
Hermitian manifold which is quasi-Kdhler with pomtwise constant type or para-
Kdhler. If the mean curvature for holomorphic 2p-planes is independent of the
choice of holomorphic 2p-planes at each point m and I^p^k—1, 2pφk, then M is
an Einstein manifold. The converse is true.

Remark that in this case the mean curvature p(π) of a holomorphic 2p-
plane equals the antiholomorphic sectional curvature.

The main purpose of this paper is to prove an analogous result considering
now the mean curvature of an antiholomorphic

MAIN THEOREM. Let M be an n(=2k)-dimensional almost Hermitian mani-
fold which is quasi-Kdhler with pomtwise constant type or para-Kahler. If the
mean curvature for antiholomorphic p-planes is independent of the choice of anti-
holomorphic p-planes at each point m and l^p^k—l, then M is an Einstein mani-
fold. The converse is true.

We prove first the case p=l. To prove the other cases we shall prove the
following theorem :

THEOREM. Let M be an n(~2k)-dimensional almost Hermitian manifold which
is quasi-Kdhler with constant type at a point m^M or para-Kahler. If the mean
curvature for antiholomorphic p-planes is independent of the choice of antiholo-
morphic p-planes at m and Kp^k—1, then M has constant holomorphic sectional
curvature at m. The converse is true.

The main theorem follows then immediately from the two following pro-
positions.

PROPOSITION D (L. Vanhecke [8]). Let M be a quasi-Kdhler manifold with
pomtwise constant holomorphic sectional curvature μ and pomtwise constant type
λ. Then M is an Einstein manifold with

2k(x, ;t)=(fe+l)ju+3(fc-l)J (10)

for g(x, x)=l, where dim M— n=2k and

(11)
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v denoting the constant antiholomorphic sectional curvature.

This proposition is a generalization of an analogous one for nearly Kahler
manifolds [2].

PROPOSITION E (G. B. Rizza [4]). Let M be a para-Kdhler manifold with
pointwise constant holomorphic sectional curvature μ. Then M is an Einstein
manifold with 4v=μ, v denoting the constant antiholomorphic sectional curvature
and

2k(x, x)=(k+ΐ)μ (12)
where dim M— 2k.

Remark that the same theorem can be proved for the almost Hermitian
manifolds such that they satisfy (6) and which are of constant type at a point
meM

2. Case p=l.

Let

(elt e2, ••• , ep, Jelt Je2, ••• , Jep, ep+1, ep+2, — , ek, Jep+1, Jep+2, — , Jek)

be an adapted basis such that elt e2t •••, ep span the antiholomorphic ί-
Then, the antiholomorphic mean curvature p(π) for π is

p(π)= ., fi. { Σ Σ (K(ea, ea}+K(e«, JeΛ))+ Σ Σ K(ea, Jeβ)} . (13)
P(n—p) a=p + l a=l β=l α = l

This can be written as follows :

P(n-p)p(π)=2p(k-p)σ(π')+ Σ Σ K(ea, Jeβ) (14)
O — _ — 'θ=l a=l

where σ(π') is the holomorphic mean curvature of the 2^-plane πr spanned by

βi, 02, " , 0j», /0ι, /02, — , /0p Since

, Je^} , (15)

we have

2ί(fe-ίXπO= Σ Aj(eα > O- Σ Σ {̂ (̂ , ̂ )+ (̂̂ , /^)} (16)
α=l j8=l α=l

and then it follows

p(n-p)p(π}= Σ fe(*α, O- Σ Σ /f(0β> eβ) . (17)
α-l ^8=1 α=l

For ί=l we obtain

and with our hypotheses we have

k(x, x)=(n-l)p (19)
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for all x such that g(x, x)=l. This proves the assertion for p=l.

3. Prove of the Theorem.

First we write (17) as follows :

p(n-p)p(π)=PΣk(ea, ea)+k(ept ep)-P^ *Σ K(ea, eβ)-2 P^K(ea, ep] . (20)
α=l β=l α=l α=l

Considering now the antiholomorphic ί-plane πλ spanned by elf e2, ••• , ep.lt Jep

and writing the analogous expression for πl we obtain by substraction

Jep) (21)
α=l α=l

or

Σ K(em ep}= Σ K(ea, Jep)-H(ep) , (22)
a-l a=l

where H(ep) denotes the holomorphic sectional curvature for the 2-ρlane spanned
by ep and Jep. We obtain so in general for l^β^p

Σ K(em eβ)= Σ K(ea, Jeβ)-H(eβ} . (23)
α=l α=l

It follows then from (17) :

P(n-p)p(π)= Σ k(em O+ Σ H(eJ- Σ Σ K(ea, Jeβ) (24)
α=l α=l β=l α=l

and with (14) and (16) we get

2p(n-p)p(π)=2 Σ k(ea, ea)+ Σ H(ea)- Σ Σ {̂ (̂ α, ^)+/f(ββf Jeβ)} . (25)

Since p^k—1, we can consider the analogous formula for the antiholomor-
phic jb-plane π2 spanned by elf e2, ••• ep.l and ep+1. We get by substraction and

k(epj ej- Σ{K(ea, ep}+K(ea, Jep}}

/«,+,)} (26)
or in general

)- Σ {K(ea, eβ)+K(ea, Jeβ)}
a=l

= *(««, O- Σ {K(ea, ea)+K(ea, Jea}} +K(eβ, ea)+K(eβ, Jea) (27)
α=l

where l^β^p and p+l^a^k. Addition with respect to β gives

Σ k(eβ, eβ)+ Σ H(eβ}-A=pk(ea, ea}-(p-ΐ) Σ [K(eaj ea)+K(ea, Jea}} (28)
β=l /3=1 α=l
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where

A= Σ Σ {K(em eβ)+K(ea, Jeβ)} . (29)
β=l a=l

Substituting A with (25) in (28) we obtain

- Σ k(eβ, eβ)+2p(n-p)p(π)
β=l

=p k(ea, «.)-(/>-l)Jj (K(ea, ea)+K(ea, Jea)} . (30)

Furthermore, by addition with respect to a we get

2p(n-p)(k-p)p(π)-(k-p )Σk(ep, e^p^^e* ea)-(p-ΐ)B (31)

where

5=β_Σ ] βέ {K(em ea )+K(ea, Jea). (32)

It follows now easily with the formulas of above that

''"' β,eβ)-±H(ep) (32')

and so we obtain from (31)

(fe-ί-Djfj k(em O ^

=2Xn-/»Xfe-l)/o(ff)-/> Σ k(et, et) . (33)
1=1

Considering again π and π2 it follows finally from (33) that

(fe-/>-l)fe(*, ^+(^-i)//(z) (34)

is independent of the unit vector x. This proves the theorem for p=k—l and

Since k satisfies (8) we have a /-basis (elf Jeτ) such that k is diagonal with
respect to (elt Jeτ). So it follows from (34) and H(et}=H(Jet) for

x= Σ (Λβi+Bt/^) , Σ (Λ2+5,2)-l , (35)
1=1 1=1

that, for

. (36)
α=l

We have for example

H(ea+Jea)=^-H(e}+±-H(ea) . (37)

We need now the following formula for quasi-Kahler manifolds of constant
type (see [3]) :
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K(x,y)+K(x,Jy)

=±-{H(x+]y)+H(x-Jy )+H(x+y )+H(x-y )-H(x)-H(y)}+-^-λ (38)

where
λ=λ(x, y)=λ(x, Jy) (39)

is the constant type and g(x, x}=g(y, y)=l, g(]x, 30=0. The same formula is
valid for para-Kahler manifolds putting λ=0.

With the help of (38) we have

K(em ea )+K(ea, Jea)= H(ea)+-H(ea)+-λ (40)

for aφa and then it follows from (32'):

2p(n-p)p(π )

= Σ k(ea, ea)+ &-3H-4 Σ ff(βσ)+-J- Σ H(eι)+-*-p(k-p)λ . (41)
α=l 4 a = \ 4 1=1 Z

Further we have

fe(ββ, O=#(O+ Σ {/?(«„ βO+ ί̂e,,, A)} (42)
1=1
i^α

and it follows with (40) :
I k O

*->, x, Λ , ._,, , , "SΠ ZJV x, \ I *-* /-i I N T / ' Λ C Λ#(,£α, £α;=—v—/^βα;-j—j- 2j rz(et)H—?)-(κ — L)λ . (4o)

Finally, substituting this expression in (41) we get

4p(n-p)p(π)=(k-p+3)£H(ea)+p£ιH(eJ+ (44)

Considering again TT and πz and remarking that k+3φp we obtain finally

H(eJ=H(ej) (45)

and this proves the theorem.

4. Proof of the converse.

Let M be a para-Kahler manifold or a quasi-Kahler manifold with (point-
wise) constant type and suppose that the holomorphic sectional curvature is

constant at a point meM.
In [8] we proved the following formula for g(x. x)=g(yt 30=1 and g(x, y)=Q :

-τ-λ(x,y)+-~λ(x,Jy). (46)

The same formula, with λ== 0, is proved in [4] for para-Kahler manifolds with
(pointwise) constant holomorphic sectional curvature. It follows for
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K(em ea)+K(ea, Jea)=-(μ+3λ)=2v (47)

where v is the antiholomorphic sectional curvature at m. So we have for (13) :

2(n-p)p(π)=(k+ϊ)μ+(k-ΐ)3λ-2(p-ΐ)v . (48)

This proves the converse.
It is interesting to remark that it follows from (43) and (19) that

k(x, x)=(n-p)p+(p-l)v (49)
for g(x, *)=!.
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