MEAN CURVATURES FOR ANTIHOLOMORPHIC p-PLANES IN SOME ALMOST HERMITIAN MANIFOLDS

By Vanhecke Lieven

1. Let (M, g) be an n-dimensional Riemannian manifold with (positive definite) metric tensor g. We denote by $K(x, y)$ the sectional curvature for a 2 plane spanned by x and y. Let m be a point of M and π a q-plane at m. An orthonormal basis $\left\{e_{\imath} ; i=1,2, \cdots, n\right\}$ such that $e_{1}, e_{2}, \cdots, e_{q}$ span π is called an adapted basis for π. Then

$$
\begin{equation*}
\rho(\pi)=\frac{1}{q(n-q)} \sum_{a=q+1}^{n} \sum_{\alpha=1}^{q} K\left(e_{\alpha}, e_{a}\right) \tag{1}
\end{equation*}
$$

is independent of the choice of an adapted basis for π and is called by S. Tachibana [5] the mean curvature $\rho(\pi)$ for π.

Before formulating the main theorem of this paper, we give some propositions for the mean curvature.

Proposition A (S. Tachibana [5]). In an $n(>2)$-dimensional Riemannian manifold (M.g), if the mean curvature for a q-plane is undependent of the choice of q-planes at each point, then
(i) for $q=1$ or $n-1,(M, g)$ is an Einstein space;
(ii) for $1<q<n-1$ and $2 q \neq n,(M, g) ~ \imath s$ of constant curvature;
(iii) for $2 q=n,(M, g)$ is conformally flat.

The converse is true.
Taking holomorphic $2 p$-planes instead of q-planes, an analogous result in Kähler manifolds is obtained :

Proposition B (S. Tachibana [6] and S. Tanno [7]). In a Kähler mamfold $(M, g, J), n=2 k \geqq 4$, if the mean curvature for a holomorphic $2 p$-plane is independent of the choice of holomorphic $2 p$-planes at a point m, then
(i) for $1 \leqq p \leqq k-1$ and $2 p \neq k(M, g, J)$ is of constant holomorphic sectıonal curvature at m;
(ii) for $2 p=k$, the Bochner curvature tensor vanushes at m.

The converse is true.
Remark that the case $n=2$ is trivial and that Proposition B can be formulated globally. In this case, the converse of (ii) is true if and only if the scalar cur-

Received June 12, 1975.
vature is constant.
This proposition has been generalized by the author [9]. To state the obtained result we need some definitions.

Let M be a C^{∞} differentiable manifold which is almost Hermitzan, that is, the tangent bundle has an almost complex structure J and a Riemannian metric g such that $g(J X, J Y)=g(X, Y)$ for all $X, Y \in \chi(M)$ where $\chi(M)$ is the Lie algebra of C^{∞} vector fields on M. We suppose that $\operatorname{dim} M=n=2 k$ and we denote by ∇ the Riemannian connexion on M.

Let now $X, Y \in \chi(M)$ such that $g(X, Y)=g(J X, Y)=0$. They defined a field of 2-planes called antiholomorphic planes. The sectional curvature of M restricted to such fields is the antiholomorphic sectıonal curvature. More generally, every subspace N_{m} of the tangent space $T_{m}(M)$ at $m \in M$ is called an antiholomorphic space if $J N_{m} \subset N_{m}^{\perp}$.

We say that an almost Hermitian manifold is of constant type at $m \in M$ provided that for $x \in T_{m}(M)$ we have

$$
\begin{equation*}
\lambda(x, y)=\lambda(x, z) \tag{2}
\end{equation*}
$$

with

$$
\lambda(x, y)=R(x, y, x, y)-R(x, y, J x, J y)
$$

(R is the Riemann curvature tensor) whenever the planes defined by x, y and x, z are antiholomorphic and $g(y, y)=g(z, z)$. If this holds for all $m \in M$, we say that M has (pointwise) constant type. Finally, if M has pointwise constant type and for $X, Y \in \chi(M)$ with $g(Y, X)=g(J X, Y)=0, \lambda(X, Y)$ is constant whenever $g(X, X)=g(Y, Y)=1$, then M is said to have global constant type. Remark that these definitions coincide with those of A. Gray for nearly Kähler manifolds [2].

An almost Hermitian manifold M such that

$$
\begin{equation*}
\left(\nabla_{X} J\right) Y+\left(\nabla_{J X} J\right) J Y=0 \quad \text { for all } \quad X, Y \in \chi(M) \tag{3}
\end{equation*}
$$

is called a quası-Kähler manfold [1] and if for all $X \in \chi(M)$ we have

$$
\begin{equation*}
\left(\nabla_{x} J\right) X=0, \tag{4}
\end{equation*}
$$

the manifold is said to be nearly Kähler [2]. Such a manifold is necessarily quasi-Kähler. In [4] G. B. Rizza defined a para-Kähler manifold as an almost Hermitian manifold such that

$$
\begin{equation*}
R(x, y, z, w)=R(x, y, J z, J w) \tag{5}
\end{equation*}
$$

for all x, y, z, w. All these manifolds satisfy

$$
\begin{equation*}
R(x, y, z, w)=R(J x, J y, J z, J w) \tag{6}
\end{equation*}
$$

(see [2], [3], [4]) (except some quasi-Kähler manifolds which we exclude in the following) and are evidently generalirations of Kähler manifolds. Remark that it follows at once from (6) that

$$
\begin{align*}
& K(x, y)=K(J x, J y), \quad K(x, J y)=K(J x, y), \tag{7}\\
& k(x, y)=k(J x, J y), \quad k(x, J y)+k(J x, y)=0 . \tag{8}
\end{align*}
$$

k is the Ricci tensor defined by

$$
\begin{equation*}
k(x, y)=\sum_{\imath=1}^{n} R\left(x, e_{\imath}, y, e_{\imath}\right) \tag{9}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is an orthonormal local frame field.
Now we have
Proposition C (L. Vanhecke [9]). Let M be an $n(=2 k)$-dimensional almost Hermitian manıfold which is quasi-Kähler with pointwise constant type or paraKähler. If the mean curvature for holomorphic $2 p$-planes is independent of the choice of holomorphic $2 p$-planes at each point m and $1 \leqq p \leqq k-1,2 p \neq k$, then M is an Einstern manifold. The converse is true.

Remark that in this case the mean curvature $\rho(\pi)$ of a holomorphic $2 p$. plane equals the antiholomorphic sectional curvature.

The main purpose of this paper is to prove an analogous result considering now the mean curvature of an antiholomorphic p-plane.

Main Theorem. Let M be an $n(=2 k)$-dimensional almost Hermitran manifold which is quasi-Kähler with porntwise constant type or para-Kähler. If the mean curvature for antiholomorphic p-planes is independent of the chovce of antiholomorphic p-planes at each point m and $1 \leqq p \leqq k-1$, then M is an Einstern manifold. The converse is true.

We prove first the case $p=1$. To prove the other cases we shall prove the following theorem:

Theorem. Let M be an $n(=2 k)$-dimensional almost Hermitzan manifold which is quasi-Kähler with constant type at a point $m \in M$ or para-Kähler. If the mean curvature for antiholomorphic p-planes is independent of the chovce of antiholomorphic p-planes at m and $1<p \leqq k-1$, then M has constant holomorphic sectional curvature at m. The converse is true.

The main theorem follows then immediately from the two following propositions.

Proposition D (L. Vanhecke [8]). Let M be a quast-Kähler manfold with pointwise constant holomorphic sectıonal curvature μ and pointwise constant type ג. Then M is an Einstern manrfold with

$$
\begin{equation*}
2 k(x, x)=(k+1) \mu+3(k-1) \lambda \tag{10}
\end{equation*}
$$

for $g(x, x)=1$, where $\operatorname{dim} M=n=2 k$ and

$$
\begin{equation*}
4 \nu=\mu+3 \lambda, \tag{11}
\end{equation*}
$$

ν denoting the constant antiholomorphic sectional curvature.
This proposition is a generalization of an analogous one for nearly Kähler manifolds [2].

Proposition E (G. B. Rizza [4]). Let M be a para-Kähler manifold with porntwise constant holomorphic sectional curvature μ. Then M is an Einstern manifold with $4 \nu=\mu, \nu$ denoting the constant antiholomorphic sectional curvature and

$$
\begin{equation*}
2 k(x, x)=(k+1) \mu \tag{12}
\end{equation*}
$$

where $\operatorname{dim} M=2 k$.
Remark that the same theorem can be proved for the almost Hermitian manifolds such that they satisfy (6) and which are of constant type at a point $m \in M$.
2. Case $p=1$.

Let

$$
\left(e_{1}, e_{2}, \cdots, e_{p}, J e_{1}, J e_{2}, \cdots, J e_{p}, e_{p+1}, e_{p+2}, \cdots, e_{k}, J e_{p+1}, J e_{p+2}, \cdots, J e_{k}\right)
$$

be an adapted basis such that $e_{1}, e_{2}, \cdots, e_{p}$ span the antiholomorphic p-plane. Then, the antiholomorphic mean curvature $\rho(\pi)$ for π is

$$
\begin{equation*}
\rho(\pi)=\frac{1}{p(n-p)}\left\{\sum_{a=p+1}^{k} \sum_{\alpha=1}^{p}\left(K\left(e_{\alpha}, e_{a}\right)+K\left(e_{\alpha}, J e_{a}\right)\right)+\sum_{\beta=1}^{p} \sum_{\alpha=1}^{p} K\left(e_{\alpha}, J e_{\beta}\right)\right\} . \tag{13}
\end{equation*}
$$

This can be written as follows:

$$
\begin{equation*}
p(n-p) \rho(\pi)=2 p(k-p) \sigma\left(\pi^{\prime}\right)+\sum_{\beta=1}^{p} \sum_{\alpha=1}^{p} K\left(e_{\alpha}, J e_{\beta}\right) \tag{14}
\end{equation*}
$$

where $\sigma\left(\pi^{\prime}\right)$ is the holomorphic mean curvature of the $2 p$-plane π^{\prime} spanned by $e_{1}, e_{2}, \cdots, e_{p}, J e_{1}, J e_{2}, \cdots, J e_{p}$. Since

$$
\begin{equation*}
k\left(e_{\alpha}, e_{\alpha}\right)=\sum_{\imath=1}^{k}\left\{K\left(e_{\alpha}, e_{\imath}\right)+K\left(e_{\alpha}, J e_{\imath}\right)\right\} \tag{15}
\end{equation*}
$$

we have

$$
\begin{equation*}
2 p(k-p) \sigma\left(\pi^{\prime}\right)=\sum_{\alpha=1}^{p} k\left(e_{\alpha}, e_{\alpha}\right)-\sum_{\beta=1}^{p} \sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{\beta}\right)+K\left(e_{\alpha}, J e_{\beta}\right)\right\} \tag{16}
\end{equation*}
$$

and then it follows

$$
\begin{equation*}
p(n-p) \rho(\pi)=\sum_{\alpha=1}^{p} k\left(e_{\alpha}, e_{\alpha}\right)-\sum_{\beta=1}^{p} \sum_{\alpha=1}^{p} K\left(e_{\alpha}, e_{\beta}\right) . \tag{17}
\end{equation*}
$$

For $p=1$ we obtain

$$
\begin{equation*}
\rho(\pi)=\frac{1}{n-1} k\left(e_{1}, e_{1}\right) \tag{18}
\end{equation*}
$$

and with our hypotheses we have

$$
\begin{equation*}
k(x, x)=(n-1) \rho \tag{19}
\end{equation*}
$$

for all x such that $g(x, x)=1$. This proves the assertion for $p=1$.

3. Prove of the Theorem.

First we write (17) as follows:

$$
\begin{equation*}
p(n-p) \rho(\pi)=\sum_{\alpha=1}^{p-1} k\left(e_{\alpha}, e_{\alpha}\right)+k\left(e_{p}, e_{p}\right)-\sum_{\beta=1}^{p-1} \sum_{\alpha=1}^{p-1} K\left(e_{\alpha}, e_{\beta}\right)-2 \sum_{\alpha=1}^{p-1} K\left(e_{\alpha}, e_{p}\right) . \tag{20}
\end{equation*}
$$

Considering now the antiholomorphic p-plane π_{1} spanned by $e_{1}, e_{2}, \cdots, e_{p-1}, J e_{p}$ and writing the analogous expression for π_{1} we obtain by substraction

$$
\begin{equation*}
\sum_{\alpha=1}^{p-1} K\left(e_{\alpha}, e_{p}\right)=\sum_{\alpha=1}^{p-1} K\left(e_{\alpha}, J e_{p}\right) \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\alpha=1}^{p} K\left(e_{\alpha}, e_{p}\right)=\sum_{\alpha=1}^{p} K\left(e_{\alpha}, J e_{p}\right)-H\left(e_{p}\right), \tag{22}
\end{equation*}
$$

where $H\left(e_{p}\right)$ denotes the holomorphic sectional curvature for the 2-plane spanned by e_{p} and $J e_{p}$. We obtain so in general for $1 \leqq \beta \leqq p$

$$
\begin{equation*}
\sum_{\alpha=1}^{p} K\left(e_{\alpha}, e_{\beta}\right)=\sum_{\alpha=1}^{\beta} K\left(e_{a}, J e_{\beta}\right)-H\left(e_{\beta}\right) . \tag{23}
\end{equation*}
$$

It follows then from (17):

$$
\begin{equation*}
p(n-p) \rho(\pi)=\sum_{\alpha=1}^{p} k\left(e_{\alpha}, e_{\alpha}\right)+\sum_{\alpha=1}^{p} H\left(e_{\alpha}\right)-\sum_{\beta=1}^{p} \sum_{\alpha=1}^{p} K\left(e_{\alpha}, J e_{\beta}\right) \tag{24}
\end{equation*}
$$

and with (14) and (16) we get

$$
\begin{equation*}
2 p(n-p) \rho(\pi)=2 \sum_{\alpha=1}^{p} k\left(e_{\alpha}, e_{a}\right)+\sum_{\alpha=1}^{p} H\left(e_{a}\right)-\sum_{\beta=1}^{p} \sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{\beta}\right)+K\left(e_{\alpha}, J e_{\beta}\right)\right\} \tag{25}
\end{equation*}
$$

Since $p \leqq k-1$, we can consider the analogous formula for the antiholomorphic p-plane π_{2} spanned by $e_{1}, e_{2}, \cdots e_{p-1}$ and e_{p+1}. We get by substraction and $\rho(\pi)=\rho\left(\pi_{2}\right)$:

$$
\begin{align*}
k\left(e_{p}, e_{q}\right) & -\sum_{\alpha=1}^{p-1}\left\{K\left(e_{\alpha}, e_{p}\right)+K\left(e_{\alpha}, J e_{p}\right)\right\} \\
& =k\left(e_{p+1}, e_{p+1}\right)-\sum_{\alpha=1}^{p-1}\left\{K\left(e_{\alpha}, e_{p+1}\right)+K\left(e_{\alpha}, J e_{p+1}\right)\right\} \tag{26}
\end{align*}
$$

or in general

$$
\begin{align*}
k\left(e_{\beta}, e_{\beta}\right) & +H\left(e_{\beta}\right)-\sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{\beta}\right)+K\left(e_{\alpha}, J e_{\beta}\right)\right\} \\
& =k\left(e_{a}, e_{a}\right)-\sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{a}\right)+K\left(e_{\alpha}, J e_{a}\right)\right\}+K\left(e_{\beta}, e_{a}\right)+K\left(e_{\beta}, J e_{a}\right) \tag{27}
\end{align*}
$$

where $1 \leqq \beta \leqq p$ and $p+1 \leqq a \leqq k$. Addition with respect to β gives

$$
\begin{equation*}
\sum_{\beta=1}^{p} k\left(e_{\beta}, e_{\beta}\right)+\sum_{\beta=1}^{p} H\left(e_{\beta}\right)-A=p k\left(e_{a}, e_{a}\right)-(p-1) \sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{a}\right)+K\left(e_{\alpha}, J e_{a}\right)\right\} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\sum_{\beta=1}^{p} \sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{\beta}\right)+K\left(e_{\alpha}, J e_{\beta}\right)\right\} \tag{29}
\end{equation*}
$$

Substituting A with (25) in (28) we obtain

$$
\begin{align*}
& -\sum_{\beta=1}^{p} k\left(e_{\beta}, e_{\beta}\right)+2 p(n-p) \rho(\pi) \\
& \quad=p k\left(e_{a}, e_{a}\right)-(p-1) \sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{a}\right)+K\left(e_{\alpha}, J e_{a}\right)\right\} \tag{30}
\end{align*}
$$

Furthermore, by addition with respect to a we get

$$
\begin{equation*}
2 p(n-p)(k-p) \rho(\pi)-(k-p) \sum_{\beta=1}^{p} k\left(e_{\beta}, e_{\beta}\right)=p \sum_{a=p+1}^{k} k\left(e_{a}, e_{a}\right)-(p-1) B \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\sum_{a=p+1}^{k} \sum_{\alpha=1}^{p}\left\{K\left(e_{\alpha}, e_{a}\right)+K\left(e_{\alpha}, J e_{a}\right)\right. \tag{32}
\end{equation*}
$$

It follows now easily with the formulas of above that

$$
\begin{equation*}
B=2 p(n-p) \rho(\pi)-\sum_{\beta=1}^{p} k\left(e_{\beta}, e_{\beta}\right)-\sum_{\beta=1}^{p} H\left(e_{\beta}\right) \tag{32'}
\end{equation*}
$$

and so we obtain from (31)

$$
\begin{align*}
& (k-p-1) \sum_{\beta=1}^{p} k\left(e_{\alpha}, e_{\alpha}\right)+(p-1) \sum_{\beta=1}^{p} H\left(e_{\beta}\right) \\
& \quad=2 p(n-p)(k-1) \rho(\pi)-p \sum_{i=1}^{k} k\left(e_{\imath}, e_{\imath}\right) \tag{33}
\end{align*}
$$

Considering again π and π_{2} it follows finally from (33) that

$$
\begin{equation*}
(k-p-1) k(x, x)+(p-1) H(x) \tag{34}
\end{equation*}
$$

is independent of the unit vector x. This proves the theorem for $p=k-1$ and $k \neq 2$.

Since k satisfies (8) we have a J-basis ($e_{2}, J e_{2}$) such that k is diagonal with respect to ($e_{i}, J e_{2}$). So it follows from (34) and $H\left(e_{2}\right)=H\left(J e_{2}\right)$ for

$$
\begin{equation*}
x=\sum_{\imath=1}^{k}\left(A_{i} e_{i}+B_{\imath} J e_{\imath}\right), \quad \sum_{\imath=1}^{k}\left(A_{\imath}{ }^{2}+B_{i}{ }^{2}\right)=1 \tag{35}
\end{equation*}
$$

that, for $p \neq 1$,

$$
\begin{equation*}
H(x)=\sum_{\alpha=1}^{k}\left(A_{\imath}{ }^{2}+B_{\imath}{ }^{2}\right) H\left(e_{\imath}\right) . \tag{36}
\end{equation*}
$$

We have for example

$$
\begin{equation*}
H\left(e_{\alpha}+J e_{a}\right)=\frac{1}{2} H(e)+\frac{1}{2} H\left(e_{a}\right) . \tag{37}
\end{equation*}
$$

We need now the following formula for quasi-Kähler manifolds of constant type (see [3]):

$$
\begin{align*}
& K(x, y)+K(x, J y) \\
& \quad=\frac{1}{4}\{H(x+J y)+H(x-J y)+H(x+y)+H(x-y)-H(x)-H(y)\}+\frac{3}{2} \lambda \tag{38}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda=\lambda(x, y)=\lambda(x, J y) \tag{39}
\end{equation*}
$$

is the constant type and $g(x, x)=g(y, y)=1, g(J x, y)=0$. The same formula is valid for para-Kähler manifolds putting $\lambda=0$.

With the help of (38) we have

$$
\begin{equation*}
K\left(e_{\alpha}, e_{a}\right)+K\left(e_{\alpha}, J e_{a}\right)=\frac{1}{4} H\left(e_{\alpha}\right)+\frac{1}{4} H\left(e_{a}\right)+\frac{3}{2} \lambda \tag{40}
\end{equation*}
$$

for $\alpha \neq a$ and then it follows from (32'):

$$
\begin{align*}
& 2 p(n-p) \rho(\pi) \\
& \quad=\sum_{\alpha=1}^{p} k\left(e_{\alpha}, e_{\alpha}\right)+\frac{k-2 p+4}{4} \sum_{\alpha=1}^{p} H\left(e_{\alpha}\right)+\frac{p}{4} \sum_{\imath=1}^{k} H\left(e_{\imath}\right)+\frac{3}{2} p(k-p) \lambda . \tag{41}
\end{align*}
$$

Further we have

$$
\begin{equation*}
k\left(e_{\alpha}, e_{\alpha}\right)=H\left(e_{\alpha}\right)+\sum_{\substack{z=1 \\ \imath \neq \alpha}}^{k}\left\{K\left(e_{\alpha}, e_{\imath}\right)+K\left(e_{\alpha}, J e_{\imath}\right)\right\} \tag{42}
\end{equation*}
$$

and it follows with (40):

$$
\begin{equation*}
k\left(e_{\alpha}, e_{\alpha}\right)=\frac{k+2}{4} H\left(e_{\alpha}\right)+\frac{1}{4} \sum_{\imath=1}^{k} H\left(e_{\imath}\right)+\frac{3}{2}(k-1) \lambda . \tag{43}
\end{equation*}
$$

Finally, substituting this expression in (41) we get

$$
\begin{equation*}
4 p(n-p) \rho(\pi)=(k-p+3) \sum_{\alpha=1}^{p} H\left(e_{\alpha}\right)+p \sum_{\imath=1}^{k} H\left(e_{\imath}\right)+\frac{3}{2} k(2 k-p-1) \lambda . \tag{44}
\end{equation*}
$$

Considering again π and π_{2} and remarking that $k+3 \neq p$ we obtain finally

$$
\begin{equation*}
H\left(e_{\imath}\right)=H\left(e_{\jmath}\right) \tag{45}
\end{equation*}
$$

and this proves the theorem.

4. Proof of the converse.

Let M be a para-Kähler manifold or a quasi-Kähler manifold with (pointwise) constant type and suppose that the holomorphic sectional curvature is constant at a point $m \in M$.

In [8] we proved the following formula for $g(x, x)=g(y, y)=1$ and $g(x, y)=0$:

$$
\begin{equation*}
K(x, y)=\frac{\mu}{4}\left\{1+3 g^{2}(J x, y)\right\}+\frac{5}{8} \lambda(x, y)+\frac{1}{8} \lambda(x, J y) . \tag{46}
\end{equation*}
$$

The same formula, with $\lambda=0$, is proved in [4] for para-Kähler manifolds with (pointwise) constant holomorphic sectional curvature. It follows for $\alpha \neq a$:

$$
\begin{equation*}
K\left(e_{\alpha}, e_{a}\right)+K\left(e_{\alpha}, J e_{a}\right)=\frac{1}{2}(\mu+3 \lambda)=2 \nu \tag{47}
\end{equation*}
$$

where ν is the antiholomorphic sectional curvature at m. So we have for (13):

$$
\begin{equation*}
2(n-p) \rho(\pi)=(k+1) \mu+(k-1) 3 \lambda-2(p-1) \nu . \tag{48}
\end{equation*}
$$

This proves the converse.
It is interesting to remark that it follows from (43) and (19) that

$$
\begin{equation*}
k(x, x)=(n-p) \rho+(p-1) \nu \tag{49}
\end{equation*}
$$

for $g(x, x)=1$.

Bibliography

[1] A. Gray, Minımal varietıes and almost Hermitian submanifolds, Michigan Math. J., 12 (1965), 273-287.
[2] A. Gray, Nearly Kähler manifolds, J. Diff. Geom., 4 (1970), 283-309.
[3] L. M. Hervella and A. M. Naveira, Quasi-Kähler manifolds, to appear.
[4] G. B. Rizza, Varietà parakähleriane, Ann. di Matem., 98 (1974), 47-61.
[5] S. Tachibana, The mean curvature for p-plane, J. Diff. Geom., 8 (1973), 47-52.
[6] S. Tachibana, On the mean curvature for holomorphic $2 p$-plane in Kählerian spaces, Tôhoku Math. J., 25 (1973), 157-165.
[7] S. Tanno, Mean curvatures for holomorphic 2p-planes in Kählerian manifolds, Tôhoku Math. J., 25 (1973), 417-423.
[8] L. Vanhecke, Some theorems for quasi- and nearly Kähler manifolds, Boll. Un. Matem. Ital., (4) 12 (1975), 174-188.
[9] L. Vanhecke, Mean curvatures for holomorphic $2 p$-planes in some almost Hermitian manifolds, Tensor, 30 (1976), 193-197.

Department of Mathematics
Katholieke Universiteit te Leuven
Celestijnenlaan 200B
B-3030 Heverlee (Belgium)

