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DISTRIBUTION OF VALUES OF ENTIRE FUNCTIONS
OF LOWER ORDER LESS THAN ONE

By TADASHI KOBAYASHI

1. Introduction. Quite recently, Tsuzuki [3] has proved the following
result :

Let f(z) be an entire function of order less than one and let {w,} be an
unbounded sequence. Assume that there exists 8 such that 0<f<z/2 and all
the roots of equations

f@=w, (n=12,-),
belong to the sector
{z| largz—n| =B} .

Then f(z) is a linear function.

The purpose of this paper is to generalize the above result by an elemen-
tary argument. The proof given here is quite different from that of Tsuzuki
and, I hope, somewhat simpler.

THEOREM. Let f(z) be an entire function and let T(r, f) be its characteristic
function. Assume that there exists an unbounded sequence {w,} such that all the
roots of equations

fD=w, (n=12,-),
lie 1n the half plane

{z\ |arg z—m| é—g—} .
Assume further that
*) liminf L7 =,

r—00

Then f(z) 1s a polynomial of degree not greater than two.

Considering Mittag-Leffler’s function, we can easily assure that this theorem
is no longer true when the opening of the sector is greater than =.

Further the assumption (*) cannot be improved, in general. This is easily
seen on an example such that

f(z)=exp (—2).
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2. Preliminaries. Before proceeding with the proof of Theorem, we need
some preliminary facts.

LEMMA 1. Let f(2) be a nonconstant entire function satisfying the assump-
tion (*). If all the zeros {a,} of f(z) are

1) Re a,=<0 (n=1,2, --+),
then

S(z)
2) Re [E) >0

in the right half plane
R={z|Re z>0} .

Proof. For each point ¢ in R, set
f(@)=f(z+0).
Then it follows from an elementary formula [2] that

Jq0) _ 1 5 log | f.(re")| cos t dt
T Jo

VRC7C(O)—
2 Re (4= — )

la,—ci<lr a,—c¢

for every positive ». Hence from (1), we have

fL0) o, f) o, T, fo)
Re m) =Re f(c) =—4 r .

Therefore, since the assumption (*) also gives

liminf 1 "2Je) g,

T—00

we conclude that
S@) o
Re“fia) =
for each point z in R.
Here, notice that Re(f/(z)/f(z)) is harmonic in R. Then we obtain (2)

excepting when
f(z)=exp (az+D).

This completes the proof of Lemma 1.
Let f(z) be a nonconstant entire function satisfying the hypotheses of

Theorem. Then by Lemma 1,

3 Re —f(g(f)wn >0 (n=1,2,-),

in the right half plane R. In particular, the first derivative f/(z) has no zeros
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there.
Now we consider the argument of f/(z) which is denoted by u(z). Let us set

ra=argw,  (n=1,2 ).
Then the inequalities (3) Will be
S > |7 s wer,
so that
@) |f(@)]> lwalcos (w(2)—7n)  (n=1,2, ),

for every point z in R. These inequalities (4) are essential to our proof.
Here we assume that there exist four points ¢, b, ¢ and d in the right half
plane R such that

5) u(a)=u(c)—=
and
(6) u(a)<u(b)<u(c)<u(d)<u(a)+2x.

Then it is possible to find a positive number ¢ such that
o u(a)+e<u(b)<u(c)—e,
u(c)+e<u(d)<ula)+2r—e.

According to the inequalities (4), for each n (n=1, 2, --+),
[ f(a)| > |w,]cos (w(@)—7s),
[ /()1 > |wn|cos (u(c)—7x) .

Therefore, since the sequence {w,} is unbounded, infinitely many terms of {w,}
must satisfy
r—e=2|y,—ula)| Sn+te.

But this clearly contradicts (4) and (7). Hence we cannot take four points in
R satisfying (5) and (6). By this fact, we easily have the following lemma.

LEMMA 2. Let f(z) be a nonconstant entire function satisfying the hypotheses
of Theorem. Then it is possible to find a real number y such that

larg f(z)—r| é

for every point z in the right half plane R.

3. Proof of Theorem. We may assume that f(z) is not linear. Then by
Lemma 2, there exists a real number y such that
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®) |arg f/(2)— 7| =5
for every point z in R. Set
B .2
Von-1=1"1 €XD (zr—l—z-g—n) )
9 )
V=11 €XP (zr—i~3~7r> (n=1, 2, ---).

Then it follows from (8) that all the roots of equations
@=v, (=12, ),

belong to the half plane
{z|Re z=Z0} .

Further by an elementary estimation, we also have

lim inf 1L .

Hence by the same argument which is developed in the section 2, the second
derivative f”(z) has no zeros in the right half plane R and

(10) Re —}}g} >Re—pis (=12,

there. Thus from the definition (9) of the sequence {v,} and the inequalities
(10), we obtain

(11) |arg f1(2)—7|=—¢

for each point z in R. Therefore by (11), using the same argument once more,
we easily conclude that
/"(z)=C,

which yields the desired result.

4. Remarks. Finally, it might be of interest to mention that our Lemma
1 is sufficient to yield the following facts which are analogues of Lucas’ theo-
rem [1].

(I) Let f(2) be a nonconstant entire function satisfying

lim inf -1 S) =0,

r—00

Then the smallest convex set which contains the zeros of f(z) also contains the
zeros of f/(z).

(I) Let f(z) be a nonconstant entire function which satisfies
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lim infi(r;—@—:o.

Then the smallest convex set which contains the zeros and ones of f(z) also
contains all the roots of equations

f@=t (0=t=1).
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