DISTRIBUTION OF VALUES OF ENTIRE FUNCTIONS OF LOWER ORDER LESS THAN ONE

By Tadashi Kobayashi

1. Introduction. Quite recently, Tsuzuki [3] has proved the following result:

Let $f(z)$ be an entire function of order less than one and let $\left\{w_{n}\right\}$ be an unbounded sequence. Assume that there exists β such that $0<\beta<\pi / 2$ and all the roots of equations

$$
f(z)=w_{n} \quad(n=1,2, \cdots),
$$

belong to the sector

$$
\{z||\arg z-\pi| \leqq \beta\} .
$$

Then $f(z)$ is a linear function.
The purpose of this paper is to generalize the above result by an elementary argument. The proof given here is quite different from that of Tsuzuki and, I hope, somewhat simpler.

Theorem. Let $f(z)$ be an entrre functıon and let $T(r, f)$ be ts characteristic function. Assume that there exists an unbounded sequence $\left\{w_{n}\right\}$ such that all the roots of equations

$$
f(z)=w_{n} \quad(n=1,2, \cdots),
$$

lie in the half plane

$$
\left\{z\left||\arg z-\pi| \leqq \frac{\pi}{2}\right\}\right.
$$

Assume further that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{T(r, f)}{r}=0 . \tag{}
\end{equation*}
$$

Then $f(z)$ is a polynomial of degree not greater than two.
Considering Mittag-Leffler's function, we can easily assure that this theorem is no longer true when the opening of the sector is greater than π.

Further the assumption (*) cannot be improved, in general. This is easily seen on an example such that

$$
f(z)=\exp (-z)
$$

Received June 3, 1975.
2. Preliminaries. Before proceeding with the proof of Theorem, we need some preliminary facts.

Lemma 1. Let $f(z)$ be a nonconstant enture function satisfynng the assumption (*). If all the zeros $\left\{a_{n}\right\}$ of $f(z)$ are

$$
\begin{equation*}
\operatorname{Re} a_{n} \leqq 0 \quad(n=1,2, \cdots), \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re} \frac{f^{\prime}(z)}{f(z)}>0 \tag{2}
\end{equation*}
$$

in the right half plane

$$
R=\{z \mid \operatorname{Re} z>0\} .
$$

Proof. For each point c in R, set

$$
f_{c}(z)=f(z+c) .
$$

Then it follows from an elementary formula [2] that

$$
\begin{aligned}
r \operatorname{Re} \frac{f_{c}^{\prime}(0)}{f_{c}(0)}= & \frac{1}{\pi} \int_{0}^{2 \pi} \log \left|f_{c}\left(r e^{i t}\right)\right| \cos t d t \\
& +\sum_{\left|a_{n}-c\right|<r} \operatorname{Re}\left(\frac{\bar{a}_{n}-\bar{c}}{r}-\frac{r}{a_{n}-c}\right)
\end{aligned}
$$

for every positive r. Hence from (1), we have

$$
\operatorname{Re} \frac{f_{c}^{\prime}(0)}{f_{c}(0)}=\operatorname{Re} \frac{f^{\prime}(c)}{f(c)} \geqq-4 \frac{T\left(r, f_{c}\right)}{r} .
$$

Therefore, since the assumption (*) also gives

$$
\liminf _{r \rightarrow \infty} \frac{T\left(r, f_{c}\right)}{r}=0,
$$

we conclude that

$$
\operatorname{Re} \frac{f^{\prime}(z)}{f(z)} \geqq 0
$$

for each point z in R.
Here, notice that $\operatorname{Re}\left(f^{\prime}(z) / f(z)\right)$ is harmonic in R. Then we obtain (2) excepting when

$$
f(z)=\exp (a z+b)
$$

This completes the proof of Lemma 1.
Let $f(z)$ be a nonconstant entire function satisfying the hypotheses of Theorem. Then by Lemma 1 ,

$$
\begin{equation*}
\operatorname{Re} \frac{f^{\prime}(z)}{f(z)-w_{n}}>0 \quad(n=1,2, \cdots), \tag{3}
\end{equation*}
$$

in the right half plane R. In particular, the first derivative $f^{\prime}(z)$ has no zeros
there.
Now we consider the argument of $f^{\prime}(z)$ which is denoted by $u(z)$. Let us set

$$
\gamma_{n}=\arg w_{n} \quad(n=1,2, \cdots) .
$$

Then the inequalities (3) will be

$$
\operatorname{Re} \frac{f(z)}{f^{\prime}(z)}>\left|\frac{w_{n}}{f^{\prime}(z)}\right| \cos \left(u(z)-\gamma_{n}\right)
$$

so that

$$
\begin{equation*}
|f(z)|>\left|w_{n}\right| \cos \left(u(z)-\gamma_{n}\right) \quad(n=1,2, \cdots), \tag{4}
\end{equation*}
$$

for every point z in R. These inequalities (4) are essential to our proof.
Here we assume that there exist four points a, b, c and d in the right half plane R such that

$$
\begin{equation*}
u(a)=u(c)-\pi \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
u(a)<u(b)<u(c)<u(d)<u(a)+2 \pi . \tag{6}
\end{equation*}
$$

Then it is possible to find a positive number ε such that

$$
\begin{align*}
& u(a)+\varepsilon<u(b)<u(c)-\varepsilon, \\
& u(c)+\varepsilon<u(d)<u(a)+2 \pi-\varepsilon . \tag{7}
\end{align*}
$$

According to the inequalities (4), for each $n(n=1,2, \cdots)$,

$$
\begin{aligned}
& |f(a)|>\left|w_{n}\right| \cos \left(u(a)-\gamma_{n}\right), \\
& |f(c)|>\left|w_{n}\right| \cos \left(u(c)-\gamma_{n}\right) .
\end{aligned}
$$

Therefore, since the sequence $\left\{w_{n}\right\}$ is unbounded, infinitely many terms of $\left\{w_{n}\right\}$ must satisfy

$$
\pi-\varepsilon \leqq 2\left|\gamma_{n}-u(a)\right| \leqq \pi+\varepsilon
$$

But this clearly contradicts (4) and (7). Hence we cannot take four points in R satisfying (5) and (6). By this fact, we easily have the following lemma.

Lemma 2. Let $f(z)$ be a nonconstant entire functıon satisfying the hypotheses of Theorem. Then it is possible to find a real number γ such that

$$
\left|\arg f^{\prime}(z)-\gamma\right| \leqq \frac{\pi}{2}
$$

for every point z in the right half plane R.
3. Proof of Theorem. We may assume that $f(z)$ is not linear. Then by Lemma 2, there exists a real number γ such that

$$
\begin{equation*}
\left|\arg f^{\prime}(z)-\gamma\right| \leqq \frac{\pi}{2} \tag{8}
\end{equation*}
$$

for every point z in R. Set

$$
\begin{align*}
& v_{2 n-1}=n \exp \left(i \gamma+i-\frac{2}{3}-\pi\right) \\
& v_{2 n}=n \exp \left(\imath \gamma-i-\frac{2}{3}-\pi\right) \quad(n=1,2, \cdots) \tag{9}
\end{align*}
$$

Then it follows from (8) that all the roots of equations

$$
f^{\prime}(z)=v_{n} \quad(n=1,2, \cdots),
$$

belong to the half plane

$$
\{z \mid \operatorname{Re} z \leqq 0\}
$$

Further by an elementary estimation, we also have

$$
\liminf _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}(z)\right)}{r}=0
$$

Hence by the same argument which is developed in the section 2, the second derivative $f^{\prime \prime}(z)$ has no zeros in the right half plane R and

$$
\begin{equation*}
\operatorname{Re}-\frac{f^{\prime}(z)}{f^{\prime \prime}(z)}>\operatorname{Re} \frac{v_{n}}{f^{\prime \prime}(z)} \quad(n=1,2, \cdots) \tag{10}
\end{equation*}
$$

there. Thus from the definition (9) of the sequence $\left\{v_{n}\right\}$ and the inequalities (10), we obtain

$$
\begin{equation*}
\left|\arg f^{\prime \prime}(z)-\gamma\right| \leqq \frac{\pi}{6} \tag{11}
\end{equation*}
$$

for each point z in R. Therefore by (11), using the same argument once more, we easily conclude that

$$
f^{\prime \prime}(z)=C,
$$

which yields the desired result.
4. Remarks. Finally, it might be of interest to mention that our Lemma 1 is sufficient to yield the following facts which are analogues of Lucas' theorem [1].
(I) Let $f(z)$ be a nonconstant entire function satisfying

$$
\underset{r \rightarrow \infty}{\lim \inf } \frac{T(r, f)}{r}=0
$$

Then the smallest convex set which contains the zeros of $f(z)$ also contains the zeros of $f^{\prime}(z)$.
(II) Let $f(z)$ be a nonconstant entire function which satisfies

$$
\liminf _{r \rightarrow \infty} \frac{T(r, f)}{r}=0 .
$$

Then the smallest convex set which contains the zeros and ones of $f(z)$ also contains all the roots of equations

$$
f(z)=t \quad(0 \leqq t \leqq 1) .
$$

References

[1] Ahlfors, L.V., Complex analysis, McGraw-Hill, 1953.
[2] Hayman, W. K., Meromorphic functions, Oxford Univ. Press, 1964.
[3] Tsuzuki, M., On the value distribution of entire functions of order less than one, J. College of Liberal Arts, Saitama Univ. 9 (1974), 1-3.

Department of Mathematics,
Tokyo Institute of Technology.

