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0. Summary.

In this paper we discuss the structure of trivariate Poisson distribution.
In the first section usual univariate Poisson distribution and bivariate general
Poisson distribution [2] are stated. It is stated in section 2 the main result of
this paper; that is, the structure of trivariate Poisson distribution. The discus-
sion is constructed by the three parts

2.1. definition of the trivariate Bernoulli distribution

2.2. definition of the trivariate binomial distribution

2.3. definition of the trivariate Poisson distribution and the relation of the

trivariate Poisson distribution and the trivariate binomial distribution.

In the part (3) some characters of the trivariate Poisson distribution and
the notion of the generalization to the multivariate Poisson distribution are
stated.

1. Poisson distribution and bivariate Poisson distribution.

UNIVARIATE CASE. Poisson distribution is given by
k
P{X=k)=—fe

where % is nonnegative integer and 2 is nonnegative parameter.

BIVARIATE CASE. Poisson distribution is given by

min (k,0) 21ok_52011-5lua

P{X=k, Y=I}= 5§0 r3y1(1—8) 151 e-410-201-211

where k and [ are nonnegative integers and Aj, A,; and 4;; are nonnegative
parameters, see Kawamura [2].

NOTE For general treatment considering multivariate (more than three
dimensional) case of the distribution we may prefer the following formulation
to the above formulation.
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Anronoignyy L
P{XZk, Y:l}: 2 10' 01' 11 ' e 210=201-1211
nygtnyy=k Mo 171 Mgy !
ngptny=t

where n,, 7, and n;, are nonnegative integers.

Marginal distribution of X is a usual univariate Poisson distribution of
parameter A,,+4,; and marginal distribution of Y is a usual Poisson distribution
of parameter A,,+4,;. Therefore we have

E(X)=Var (X)=2,+2y ’
E(Y)=Var (Y)=2p+2;;.
We have seen the generating function of the bivariate Poisson distribution
h(sl’ 32)2e-(11o+101+111>+11os1+101$2+1118182 .
The covariance of the random vector (X, Y) is given by
E(XY )=+ 1) Ao1F 1)+ A1,
Cov(X, Y)=E(XY)—EX)E(Y)=2,
then the coefficient of correlation of (X, V) equals to
R(X: Y):]u/ \/(210+211)(201+2u) .

All results of bivariate Poisson distribution mentioned above are the facts
proved in [2].

2. Main results.
Notations
i, 7 and k take the values 0 or 1 respectively. X, X, %}, >, Zk), ZI;‘, and
3 J 1) J T
Z’Z means the sum of 7, j and %k which are indicated under the sigma and
1

if we need some condition C in the sum of 7, 7 and & we shall indecate
C under the sigma additionally as followings

17k 0’ 1jk(2,2,k)#(0,0,0)
2.1. Trivariate Bernoulli distribution.
Consider a pair of random variable (X, Y, Z) which has a joint discrete
distribution.
P(X=i, Y=, Z:k):pijk
where 1, j and k& take the values zero or one and the sum of p;;, for all ¢, j
and % equals to unity
Zpijk:]-
1jk
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where Zk) means the sum 7, j and 2 varying zero or one.
(¥

We shall call this distribution as trivariate Bernoulli distribution. The
marginal distribution is usual univariate Bernoulli or bivariate Bernoulli. The
distribution of X is given by

P(X=1)= %Pijk:pioo+Pilo+P101+Piu ,  =0,1).
Therefore we have
E(X)= %}pljlz:ploo+p110+p101+pu1:P(X:1) .
Marginal distribution of (X, Y), (Y, Z) and (X, Z) is bivariate Bernoulli.
The joint distribution of (X, Y) is given by
P(X=1, Y=))=2Dijs=Dijo+Pisi,
where 1, j and % take the value zero or one and similarly we can varify the

marginal distribution of (Y, Z) and (X, Z).
Covariance of (X, Y) of bivariate Bernoulli distribution law.

Cov (X, Y)=E(XY)—E(X)E(Y)
=P(X=1, Y=1)—P(X=1)P(Y=1)
=P(X=1, Y=1)—[P(X=1, Y=0)+P(X=1, Y=1)]
[P(X=0, Y=1)+P(X=1, Y=1)]
=P(X=0, Y=0)P(X=1, Y=1)—P(X=1, Y=0)P(X=0, Y=1).

If we assume the value of the covariance of the bivariate Bernoulli distri-
bution law to be zero; Cov (X, Y)=0 then we have the fact that X and Y are
independent random variables as follows

P(X=0, Y=0)P(X=1, Y=1)=P(X=1, Y=0P(X=0, Y=1)

this equality implies
P(X=i, Y=j)=P(X=0)P(Y=j)

for all i and ;. Then X and Y are mutually independent random variables as
to be proved.

LEMMA. The moment generating function of the trwariate Bernoulli distri-
bution is given by

Z(81, S5, S9)=LPoootP1r00S1F Po10S2Doo1Ss =+ P110S1S2+ Dor1S2Ss~+ D101S1Ss+ D111515255]
= Zpijkslls2js3k .
ik

2.2. Trivariate binomial distribution.
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We shall derive the distribution of the sum of # mutually independent ran-
dom vectors (X,, Y,, Z;,) 1:=1, 2, ---, n) which have identical trivariate Bernoulli
distribution law. We shall denote E[7g, -, #1,.] the event that in the first n
observed random vectors the 2° events (X=i, Y=j, Z=k) occur n,;, times where
i, j and k varies zero or one respectively and the sum of the numbers 7,
equals to n. Then the probability of the event E[74, --+, #;,] equals to

1k

n! Nk
P{E[n, =, mul}= _1—_}2[ n”'_k ] I1pi ™
7]

We shall denote F[F, k,, k;] the event iz'lx,:kl, jzly,:kz, gl Z,=k, for all

integers k;, k, and k, satisfying 0=k, k,, k;<n. The event F[k;, ky, ks] is
expressed as the union of disjoint events as followings

Flky, ky ky]= V) Elngg, -+, M111] .

(D ny =k Dy p=ky, T 0y =ks]
S MLRT L MLk R B M1 7R

In the following lines we shall denote the condition of the union as [C]. There-
fore we have

P{F[ky, ky, Ry} = [;] P{E[ng0, =+, Ny11]} .

LEMMA. The distribution of the convolution of n independent identical tri-
variate Bernoulli distribution 1s given by

P{¥X,=K, Y =K, 2Z;=K,}= {ZO]p{E[noom Mooy *** s Magal} «

We shall call this trivariate Bernoulli distribution.

LEMMA. The moment generating function of the trivariate Bernoulli distri-
bution is gwen by

g(sy, S3, S3)=[ ”Ekpmsﬁsz’sa"]".

2.3. Trivariate Poisson distribution.

2.3.1. Definition of the trivariate Poisson distribution.

In the preceding section we have defined the trivariate binomial distribution
by the method of convolution of the n independent identical trivariate Bernoulli
distribution. Then the expected numbers of events (0, 0, 0), ---, (1,1, 1) in the
n independent observations of (X, Y, Z) equal to nPge, -, nP1; respectively.
As given in the method of famous Poisson’s theorem in one dimensional case
we assume the conditions [D]

(D] nPioo=2100, *** » MP11:=2111

where 2;q0, -+, 411, are fixed nonnegative parameters and we assume n—co, then
we have
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nl
P{E[ngp, -, nlll]}:W Do +++ Pyyy "1
. 111 -
7000
n, n [1_2 jb k:l

n! ]100"1002010 010 ... 2111 111 7% (g, (0,0,0) i

Moo ! N0 1Mot !+ Mgy ! 710057010 ... p 7111
100 - o1 111

n
_ n! 100 1002057010 - ,zluﬂlu

n n n
71005010 ... g lllnooo! N100 !71010 1o N1 !

7000

n— n
Ak e i m20,0,00 "%

_[1 wk (2,7,k)#(000)
n

n n n
A100™109 41,010 «on 2, 1L

Moo ! Moo ! ++* Myny !

¢~4100~2010 =+~ 2111

see Kendall and Stuart [3] in the bivariate case.
Under the condition [D] we have the probability of the event F[k, k,, k]
equals

Ai0q™1002 7010 ... 2 111 B IS
P{F[ky, ky, by} —> 23— 018 111 e~A100- 010~ =111 |
%]

Moo ! Moo ! #* My !
We shall call this limitting distribution as trivariate Poisson distribution.

THEOREM 3.1. The sum vector of n independent 1dentical trivariate Bernoulli
random vectors has a limitting trwvariate distribution

Ajoo100 010 ..o 2o P11l L o
P{XIZKI, X2=K2, X3=K3}= 2 100 010 111 e A100-4010- 4111
[{49]

Moo ! Moo ! 411!
where we assumed the condition [D].

In this theorem if we denote

Cae A
P(k; D)= %re

for all nonnegative integer %, then we can verify the limitting distribution as

P(”zjk H zzjk)

[C] wjk (4,,k)#(0,0,0)

If X,;: (3,7, )#(0, 0, 0) has one dimensional Poisson distribution law P(k; 2,;,)
and Xig, Xo1o, -**, X111 are independently distributed then we have the next
theorem.

THEOREM 3.2. If the trivariate random vector (X,, X,, X;) has the triwariate
Poisson distribution law then we have uniquely

X1:X100+X110+X101+X111
X22X010+X110+X011+X111
Xs:X00x+X101+X011+X111
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, X111 are independent 2°—1 Poisson random variwables of para-

where Xio0, Xo1o, =
meters A, Ao, *** 5 A1pn Tespectively.

Proof. 1If X,;, is a Poisson random variable with parameter 4,;, then
Z 'kntjk 24
P(thk:”uk):Lr—e k=P (N1 ; Auja) -
n”k !
Therefore we have
A 0 1002 7010 ... 4 P11l 2 N 2
P(X, =k, X,=k, X,=k,)= 1100 010 111 o~*100-4010==2111
(X, LeheTm e s ) 1 Moo ! oo ! e Myyy !
P(nzjk; ltjk)

=211
(01 2vjk (3, 7,2)%#(0,0,0)

then the sum will be expressed
= [%]: P(X100="100y Xo10=T010, *** » X11=7111) -

Therefore we have
ZP(X100+X110+X101+X111=kn X010+X110+X011+X1u=k2,

Xoo1+X101+Xo11+X1u=ka) ’

this proves the theorem.

2.3.2. Characters of trivariate Poisson distribution.
Next lemma is a fundamental character of bivariate Poisson distribution.

LEMMA 3.1. If a random vector (X,, X,) has a bivariate Poisson law then

we have uniquely
X1:X10+X11 ’ XZ:X01+X11

where X,,, X,, and X,, are independent 22—1 Poisson random wvariables of para-

meter Ay, Aoy and Ay, respectively.
Proof. The joint distribution of bivariate Poisson distribution is given by
n n, n
P(X,=ky, Xy=k,)= 2 Ao, "1, "1 e 0-Z01-du1
nyotny =k Nyo ! Moy ! Ny !
mo1tn1=ks
If we assume X,, X,; and X,, are Poisson random variables with parameter

Z10, o1 and A;; then the right side of the equation becomes
> P(Xiy=ny9, Xo1=ng;, X;1=ny,)

Nigtny1=k
107211=F1
ngptn11=k2

:P(X10+X11:k1y X01+X11=k2)-
It is easily shown the fact by the preceding Theorem 3.2 which is given in

the next lemma.
LEMMA 3.2. Any marginal distribution of the trivariate Poisson distribution
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s usual Piosson or bivariate Poisson distribution.

In the trivariate case if (X,, X,, X;) has a Poisson law then by the Theorem
3.2 we have uniuely 2°—1 Poisson random variables X, ---, X;;; with parameter
A100, *** » 4113 Which are mutually independent. If we put S(X,) the set of Poisson
random variables construction the random variable X; then we can express

S(Xl): {XIOO; Xuo, Xzon X}
S(X2)= {Xow, Xno, Xom X}
S(Xg)= {Xoon Xio1, KXoy, X} .

and similarly

And we denote 0 which means empty set or random variable zero with pro-
bability one.

LEmMmA 3.3. If (X, X,, X;) has a trivariate Poisson distribution law then we
have the fact that generally S(X,)N\S(X,)=0 and S(X,)N\S(X;)=0 do not imply
S(X)NS(X5)=0.

Proof. If we assume S(X,)N\S(X,)=0 then by the Theorem 3.2 we have
X=X+ X0, and X,=X;;0+Xo;,. This means that (X, X,) has a independent
type bivariate Poisson distribution; that is, X, and X, has a independent Poisson
distribution law. Additionary we assume S(X,;)N\S(X;)=0 then X, and X; has
a independent Poisson distribution law. But we can not conclude S(X;)N\S(X;)
=0 generally under the two assumptions. Because under the two assumptions
we have

S(XINS(X)=X,0; .

Which means X,=X;00+ X101, Xs=Xo0:+X10; has a bivariate Poisson law if we
assume X,,;#0 with probability one.

LEMMA 3.3.1. If we assume (X,, X,, X;) has a trwariate Poisson distribution
law with parameter 2,;0=2on=2111:=0 and A,,,#0 then X,, X, are mutually inde-
pendent and X,, X, are also but X,, X, are not mutually independent.

LEMMA 3.4. The moment generating function of the trivariate Poisson distri-
bution 1s given by

h(sy, s s)=exp{— 2 Apt 2 Agps's’s' .
(i,J,k)i(o,o,o) (,3,8)#0,0,0)
Proof.
h(sy, S, S5)=1im g(sy, Sz, S3)"
=lim[ X pijle51152]53k]n
n—oo 1,7,k
. 1 1 ' "
= llm [1"“’71"‘ E[a 2”'], +T 2 leksl 32]S3k]

N—oo 1j 1jk
(3,7,k)#(0,0,0) (4,7,k)#(0,0,0)
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=exp{— X Apt 3 A,5551"55783"} .
(i, 7, £5%40,0,0) (i,3,85£€0,0,0)
See Feller [1] or Kawamura [2]. The moment generating function of the
bivariate case.

LEMMA 3.5. If A,0:=2:1;=0 then X,, X, are not independent and X,, X, also
but X,, X, are independent random variable.

LEMMA 3.5.1. We assume X,, X,, X, has a trivariate Poisson distribution law
where X,, X, and X,, X, has a bwariate Poisson distribution law of dependent
type and 1f we assume 2,,=2,;,=0 then X,, X, has a independent Poisson distri-

bution law.
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