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ON THE LOWER ORDER OF AN ENTIRE FUNCTION

BY TADASHI KOBAYASHI

1. Introduction. Let f(z) be an entire function and let T(r, f) be its
characteristic function in the sense of Nevanlinna. Then the lower order p(f)
and the order λ(f) of f{z) are defined by the relations

If f{z) is of finite order, the concept of genus q(f) can be defined. For con-
venience we say that q(f) is infinite if f(z) is of infinite order.

It is well known that the growth of f{z) is closely related to the distribu-
tion of its zeros.

Indeed Edrei and Fuchs proved the following

THEOREM. Let f(z) be an entire function of finite order having only nega-
tive zeros. If the order is greater than one, then

In this paper we shall be concerned with the relation between the growth
of an entire function and the distribution of its zeros.

THEOREM 1. Let f(z) be an entire function whose zeros lie in the sector

for some β. Then q(f)^l implies

From Theorem 1, we have

THEOREM 2. Let f{z) be an entire function of finite genus <?(/)^l. // its
zeros {an} lie in the sector
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for some γ, then

THEOREM 3. Let f(z) be an entire function of infinite order having only real
zeros. Then

In Theorem 2, the value π/2q is best in the following sense.

THEOREM 4. For each integer q^l, there exists an entire function g(z) of
genus q whose zeros lie in the sector

and

The above results can be generalized to meromorphic functions with some
modifications. For instance, a rather more detailed discussion leads to the fol-
lowing theorem which we state without proof.

THEOREM 5. Let f(z) be a meromorphic function of infinite order having
only negative zeros and positive poles. Then f(z) is of regular growth.

Finally, it should be remarked that the results of this note remain true
even if infinitely many zeros and poles have unknown arguments, but are suf-
ficiently rare.

2. Proof of Theorem 1. In order to prove Theorem 1 we need some pre-
liminary facts.

LEMMA 1 [4; p. 235]. Let f(z) be an entire function of finite genus q. Then

LEMMA 2 [2 p. 50]. // g(z), h(z) are transcendental entire functions and
f{z)=g{h(z)\ then

for arbitrarily fixed positive integer N and sufficiently large r.

We may suppose, as we may do without loss in generality, that f(0)Φ0.
If its zeros {an} satisfy

then
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where g(z) is a non-constant entire function. Hence by Lemma 1, we have

T(r9f(z))=1\rfe
gw)+o(r).

Therefore Lemma 2 gives

which means that the lower order of f{z) is at least one.
Next we consider the case that

By a well known formula [2 p. 22],

r Re ( ^ L ) = 4-J,2*10* \Λreu) I cos ί Λ

+ Σ Re(-^--f-)

for each positive r. Since

we have

Σ
\an\<

with C=Re (-jmy)- Further from

y (

f Λ \an

=2iV(r, 0, /)+J o Mί, 0,

we obtain

4T(r, /)^Cr+cos j8j V(ί, 0,

Hence

4Γ(r,/)

Therefore we conclude that

, 0,
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This completes the proof of Theorem 1.

3. Proof of Theorem 2. Firstly, we suppose that

Σ [ α j g

Then

where P(z) is a polynomial of degree just q and E(z, {an}) is the canonical pro-
duct formed with the {an} as zeros. Since the genus of E(z, {an}) is at most
q—1, Lemma 1 yields

T(r,f(z))=T(r,e™)+o(r«).

Hence we have

which gives
In the case that

?w = + 0 ° '
we consider the auxiliary entire function F{z) defined by

F(z)=Πf(ωkVz),

where

Evidently the zeros of F(z) are {an

q} and

T{r\F)^qT{rJ)

for each positive r. Hence the genus of F(z) must befat least one and

qp(

Therefore by Theorem 1, we obtain

On the other hand the inequalities

are well known. Thus we have the desired fact.



488 TADASHI KOBAYASHI

4. Proof of Theorem 3. In the first place we assume that the zeros {an}
satisfy

for some finite positive value of s. Then

where E(z, {an}) is the canonical product formed with the {an} as zeros and
h(z) is a transcendental entire function. Thus by Lemma 1, we have

Applying Lemma 2 to eHz\

mr,f

for arbitrarily fixed positive integer N and sufficiently large r. Hence we deduce

for all N>s. Therefore the lower order ρ(f) must be infinite.
It remains to prove the case that

for every finite positive value of s. In this case, for each positive integer N,
let us consider the auxiliary entire function FN(z) defined by

U
k=l

where

Since the zeros of FN(z) are {a%N}, the genus of FN(z) is not less than one.
Hence from

T(r>N,FN(z))^2NT(r,f(z)),

we have

Thus we deduce

for every positive integer N. Therefore p{f) must be infinite. This completes
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the proof of Theorem 3.

5. Lemmas. Before proceeding with the proof of Theorem 4, we need the
following lemmas.

LEMMA 3. Let q be a positive integer and let bu b2, •••, bN be

Then

Σlog

q=ί,

for each positive r. Here E(z, q) is the Weierstrass primary factor of genus q
and

Proof. It is sufficient to prove the result for #^2. Let us denote the
counting function of the finite sequence {bn}ξ=x by n(f). Then by a simple cal-
culation we have

excepting real positive z. Hence

Since

we have

i—r\ — i—war\ ^~r sin n _

Σlog
7 1 = 1

which gives the desired result.

LEMMA 4. Under the same notations as in Lemma 3, set



490 TADASHI KOBAYASHI

Ft(r, x)=log \E(wqreix, q)E(wqreιx, q)\

1 ° 2

=-?Γ\og Lq(r, x)+ Σ —rn cos nx cos n
Δ n = l 7£

^g(r, x)=l—4r cos —£— cos x—2r2+4r2 cos2x

+4r2 cos2 -~—4r 3 cos -ξ- cos x+r 4 .
Δq Δq

exists Rq>\ such that

Fq{r, x)^F5(r, 0)

for each r^Rq and O^x^π.

Proof. From [3 Lemma 1], we have

Lg(r, x) d F , v
2rq+1 dx qK ' J
2rq+1 dx

-(cos(^-l)-^-sin(g-l)x)r2+(sin -^-sinqx)r

+cos (^+l)-^-sin (q+ΐ)x.

Hence

Ac

=—sin -^-{f2 sin (^—l)x—2r cos

If 0=1, it is clear that

for each x and each positive r. If #=2,

2r3

= — ^ - s i n x(r 2-2 V2r cos x+3-4 sin2*).

Since

r 2 - 2 V2 r cos x+3-4 sin2x=(2 cos x ^ψ)*+ - y — 1 ,

(d/dx)F2(rf x) is non-positive for r ^ V2" and O^ΛT^TΓ. Therefore F2(r, x)^F2(r, 0)
there.

Next we consider the case that q^3. Evidently there exist 0<γ<π/2(q—1)
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and Λ>0 such that

for

x τ-π (k=l,2,-,q-2).

Hence

Fq(T, O)-Fβ(r, *)=-*-log L5(r, 0)—jplog Lβ(r, x)

+2 Σ (1—cos nx) cos n

^

^ c o s - ^ ί ^ - π

for

Then we can fix 7?1

q-l

such that

for r^R^q) and |x—(£/$—l)τr|^?- (k = ί, 2, —, q—2). On the other hand
sin (9—ί)x never take zeros on the following intervals

= i . 2,

Therefore we can write (d/dx)Fq(r, x) on these intervals such that

r, x) d p , N . π . , -v j j -x %

α+i ~J~r q\r, x) — — sin—ΓΓ—sm (q—ι)x nqv, x),

where

Since

r,x)-r -ir cos ^ s i
sinqx
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are both bounded on the intervals Ik (&—0, 1, •••, q—2), there exists R2(q)>l
such that, for each r^R2(q),

Hq(r, x)>0

on these intervals. Hence (d/dx)Fq(r, x) has the same sign as —sin (q—l)x there.
Thus for each r^

max(F ς(r,0), Fβ(r, π))^Fq(r, x)

on these intervals, so that for every x. Further from

Fq(r, 0)^F g (r, π)

for sufficiently large r, we can fix Rq>l such that

Fq(r, 0)^F 5 (r, x)

for r^Rq and O^x^π. Thus the proof of Lemma 4 is complete.

6. Proof of Theorem 4. Let p and λ be

0-K/0<0<*<0+
Set

s=p—q+l>0
and set an integer N satisfying

2λ
N>2+-

Next, with this N, define the sequence {Zn} by the relations

Z,=2f Z n = Z J _ 1 + l (n=2,3, ) .

Further from this sequence {Zn}y we construct the sequence {an} such that

A 1 (*=1, 2, •••).

Then the counting function n(t) of the sequence {an} is

n(0=Z A

for
Z i ^ ^ K Z U ( * = l , 2 , . 0 ,

and hence the order of {αn} must be /ί.
Now we consider the entire function g(z) defined by

g(z)= Π E(-^—9 q)E(-=?—, q)
τι=i ^ WqCLn / \ WqUn /
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where E(z, q) is the Weierstrass primary factor of genus q and

Wa =

Since the order of {an} is λ, this function g(z) will be well defined and the
order and the genus of g(z) are λ and q, respectively. Put

y —

Then

lim-

since ί/s—l/λ is positive. Therefore for sufficiently large k, we have

where Rq is a positive constant of Lemma 4. Hence from

Lemma 4 gives

Σ log

= Σ Fo\~^~y u)

£ Σ Fq(-ψ~> °)

- Σ log

for sufficiently large k and every u. Further using Lemma 3, we obtain

Σ log
Xke

tu \\
wtan 'V\

for 9=1, and if q>2,

Σ log
n^Zk ^ wqy-n ' N w qυ,n

where Λa is an absolute constant. On the other hand from

\og\E(z,q)\^Bq\z\«+1,

we have
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with a positive constant Bq. Evidently by the definitions,

/ Y \Q+1

Σ (~^M ^XV1 Σ Zi+?+M

Since
log Zk+j^N> log Z^i(ΛΓ-l) log Zk,

we obtain

z\-^1)/λS{zιy 0=1,2,-),
where

Then

for sufficiently large k. Further from

we deduce

Therefore for every u and sufficiently large k, we obtain

log\g(Xke") I ^Xl log

in the case that q=l, and if ql^2,

Thus the lower order /o(̂  ) satisfies

which yields the desired result.
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