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CONTINUITY OF THE LINEAR OPERATOR METHOD FOR
STRICT AND WEAK MEASURE TOPOLOGIES®

By PAauL A. NICKEL

The continuous dependence of the solution to the Dirichlet problem on the
boundary data is an interesting and useful notion [4], and motivated by this,
we have already posed an analagous question for the linear operator method
of L. Sario [1], [7], [10]. In this situation, since the harmonic singularity
functions of H(W’) defined oh the boundary neighborhood W’ are unbounded,
only topologies applicable in such function spaces are of interest. Two exam-
ples of such topologies are realized in the so-called © topologies of [2] and
[11] where, on the one hand, © consists of all compact sets, and on the other,
& consists of all finite sets. The continuity of the linear operator method was
investigated for such topologies in [6], wherein the question was phrased in
the framework of Rodin and Sario [7], That is, one considers the restriction
@ : HW)—H(W’) mapping each harmonic function A(p) on W to the singularity
h|w:/(p). The linear operator method, whose essence is the extension of singu-
larity functions modulo regular singularity functions, is then considered in terms
of the algebraic isomorphism @ : H(W)/K—H(W’)/LC(«), where K is the set of
constant functions, and LC(a) is the set of regular singularities. When H(W’)
and H(W) carry the topology of compact convergence, it was shown in [7]
that the mapping @ is in fact a topological isomorphism when its range and
domain are equipped with the usual quotient topologies. In this sense, it is said
there that the linear operator method is continuous.

1. Purpose of this investigation. Our purpose here is the further con-
sideration of linear topologies defined on H(W’) and H(W) for which the ques-
tion of continuity of the operator method is meaningful. First, the weak mea-
sure and strict topologies denoted @ and B by Buck [3], would seem to be
interesting candidates. Second, the Mackey and strong topologies seem to be
interesting candidates as well. Furthermore, the results of Rubel and Shields
[8] suggest that one would obtain spaces topologically different from those
encountered in [6].
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However, our interest is in spaces of unbounded harmonic functions, and
in order to construct facsimilies of such topologies, it is necessary to restrict
our attention to a certain subspace Hy.(W’) of the space H(W’) of all singu-
larity functions as well as to the subspace Hx(W)=H(W)NHg(W’). Two
natural constraints seem relevant: (i) the subspace Hg(W’) should be suffi-
ciently comprehensive to include the typical applications that are made of the
linear operator method [1], and (ii) the restriction @ : Hg(W)—Hg(W’) must,
when quotientized, be an algebraic isomorphism. For this last condition, it is
sufficient that LC(a)CHg (W’). One suggestion for the definition for such a
subspace Hg (W’) is made in the work of B. A. Taylor for the space of entire
functions [13], and this is the content of Definition 4.

The topologies = and 7/ on Hx(W) and Hg(W’) will always be taken as
the same kind. For example, in [6], when = was taken as an ©-topology on
H(W), then 7/ was taken as the topology determined by the reduction &’ of
& to sets of . However, such a direct relation between topologies of interest
isn’t always so apparent. Hence an attempt to distinguish those pairs of to-
pologies of interest in the domain and range of @ is now made.

DEFINITION 1. The pair of locally convex topologies (7, z/) on Hx and Hyg
is called compatible if @: (Hg, t)—(Hg,t’) is continuous. When the topologies
7 and 7’ are compatible, the continuity of the linear operator method is defined
in terms of quotient spaces E=(Hg/K, q(z)) and F=(Hg /LC(a), q(z")).

_ DEFINITION 2. The linear operator method is said to be continuous when
@ . E—F is a topological isomorphism.

For compatible topologies, it suffices to consider the continuity of T=0
and the following proposition exibits a certain uniqueness for such topologies.
Indeed, when ¢’ is fixed, then ¢(z) is the finest locally convex topology for
which & is continuous; and when 7 is fixed, then ¢(z’) is the coarsest (least
fine) topology for which ¥ is continuous.

PrOPOSITION. (i) If q(z’) 1s fixed on Hg /LD(a), then q(z) is at least as fine
as each locally convex topology Q for which T is continuous. (i) If q(z) is fixed
on Hg/K then, q(z’) is at least as coarse as each locally convex topology Q' for
which T is continuous.

Proof. To establish (i), we consider V a Q-neighborhood of 6 for which
there is Ueq(z) satisfying F(U)cV. But, with the compatibility of = and 7,
it follows that ¥ is open, and this means that WC&(U)CV for some ¢(z)-nei-
ghborhood of #. Hence it follows that Q@=<q(z).

The second second statement is proved in the same way, for suppose that
U'eq(z’). Since F(U’)eq(r), it follows from the continuity of that Twnc
T(U’) for some V'eQ’. But ¥ is an algebraic isomorphism, and this means
that V/CU’; that is ¢(z/)ZQ".
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An example of the part (i) of this proposition occurs in [5], where the
topology of interest on each space is the compact open topology.

The mapping F=@ " is given in [7] as T[s]=[DfIJ[LDf+s] and this
is realized from the linear mapping ¥ : Hy.—Hy defined as:

Df on 2

1 U(s)=
@ © { LDf+s—Ls on W',

Here, in terms of a regular region 2 with 02CW’, f satisfies (/—LD)f=s—Ls
in a subspace X of C(02) in which |LD|<1.

Of interest here are the a and B topologies defined on the space Hg(W),
where they are dehoted @y and B and called the weak K-Borel measure to-
pology and the K-strict topology respectively. The Mackey topology 7x and
the strong topology rx are then readily defined in terms of the dual (Hg, ag)’.
In these terms, it is shown that the linear operator method is a continuous
operator in the sense of the definition already cited. However, the question
about pairwise distinctness of these topologies is only partially answered.

2. Notation and definitions. In order to describe a class of harmonic
singularities satisfying the constraints of (i) and (ii) of §1, we start with an
arbitrary Riemann surface W,, from which W is formed by removing a finite
point set {pi, -*,Ppx}. A neighborhood of the ideal boundary W/CW is then

k
realized by \lj(d(pi)\{ b)Y Wi, where Wi is a boundary neighborhood in W,.

The compact boundary of W’ is denoted «, and the resulting union of bordered
surfaces is written W, as is customary. Since the harmonic functions are to
have singular behavior near p;, we single out the following class of continuous
functions which are 0 there. This is done in terms of C,(W), the class of con-
tinuous functions vanishing at co.

DEFINITION 3. The set of positive functions k=Cy,(W) satisfying (*)
11m k(p) exp |¢/z| =0 for each complex ¢, is denoted K(W). The set of positive

functlons k' eCy(W") satisfying (*) is denoted K(W’). Here the conditlon (*) is
understood in teams of points p in a parameter disc at p;, and is in fact, in-
dependent of the local variable z representing p, since the condition is to hold
for all ¢. It is now easy to single out those harmonic functions of H(W) upon
which a defieition of a strict topology can be made.

DEFINITION 4. The subspace Hx(W) of H(W) for which hkeCy(W) for all
ke K(W) is called the space of K-harmonic functions. The subspace Hg (W’)
of K-harmonic singularities is defined analogously in terms of Co,(W’), and the
notations Hx(W) and Hx.(W’) are abbreviated to Hx and Hy respectively.

In order to consider the Definition 2, it is important to establish that the
mapping @ : Hy(W)—Hg(W’) induces an isomorphism between Hx(W)/K and
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Hy . (W")/LC(a) in the manner of [7]. First, when heHg, then h|p €Hg, and
furthermore the inclusions KCHy and LC(a)CHyg hold. Hence the quotient
map @: Hy/K—Hy /LC(a) is defined. Now, if [s]e Hx/LC(a), then of course,
[s1eH(W")/LC(a) as well, and it follows from [7] that [@h]=[s] for some
heH(W). Since this means that h—se LC(a), it follows that heHg, and @
remains an isomorphism between the quotients of K-harmonic functions and
K_harmonic singularities.

3. The K-strict topology. By virtue of the Definition 4, it follows that
sup |R(p)k(p)|=]|Ih|l; is finite for each pair heHy and k= K(W). In terms of

the notation V(k;7) for {h; |hlls=7}, the relation V(k,, r))N\V(k,, 7o) DV (k,\V ks,
7, /A\7,) implies that the collection B={V(k;r); ke K(W) and r>0} is a base for
a filter. In fact, the base B={V(k;7); k(p)<1 and r>0} will suffice since
V(k, V=V (k/ky, 7/ky) when k,= sup k(p). Furthermore, the sets V(k,7) are

balanced (circled), convex and absorbing (radial) and obviously satisfy V(k, r/2)
+V(k,r/2)CV(k, 7). That is, B in a neighborhood base at & for a locally convex
topology PBx defined on Hg(W). In an analogous manner, a K-strict topology
B is defined on H g (W').

THEOREM 1. The mapping ¥ : Hy—Hy is continuous when each space is
equipped with the K-strict topology.

Proof. 1f Vy is an arbitrary Bx neighborhood of 6 in Hg (W), then V(k;7)
CV, for some V(k; r) with k(p)<1, and since ¥ is linear and rV(k; 1)=V(k;7),
it suffices to take r=1. In terms of a= min {k’(2); z€a} and b= min {#'(2); 2z
€082}, we form the S neighborhood V/(k’; (1/4)(a Ab)(1—|LD|), where k'=F|#,
and claim that Z(V/)CV. To see this, we let s€V’, and observe with (1) that

©) 1)l x= sup ¥ (s)k|= sup | Df-k|V sup [(LDf+s—Ls)k|.
Since f and s are related on 092 by (J—LD)f=s—Ls, it follows that
3) Sgljg)lfl é(l—llLDH)"l(Sal‘l)Dlsl +S;~19plle)é(l'—“LD")_I(HSH)&Q“‘_"s”a)

But harmonic K-singularities s€ V' satisfy |s(p)|=<(1/4)(1—||LD]|) on 02U« and
the estimate saug)lf |<1/2 follows directly from (3).

The first term on the right side of (2) is now easily bounded by 1/2, since
sgplDf-klésgprfl =s;132pl fl. The second term on the right side of (2) is

estimated in much the same manner. To start, we observe that sgtl)lkLDf 1=
s#,plLDflzsuplDfIés;lgplflél/z, and that sup|s-k’|=1/4 for each s€V’. Fi-
nally, the inequality 1—||LD]<1 implies that sanVP[k’legsl},llp[Ls[:sup[sl<1/4.

The proof is complete because [|¥'(s)|; is no larger than 1.
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Since (Bk, Bx') is easily seen to be a compatible pair, it follows from The-
orem 1 and the proposition that the quotient topologies are unique topologies
of interest in the sense of Definition 1.

COROLLARY. (i) When Hg /LC(a) is gwen the q(Bg) topology, then q(Bk) is
the finest locally convex topology on Hy/K for which ¥ 1s continuous. (ii) When
Hy/K is gwen the q(Bg) topology, then q(Bg:) is the coarsest locally convex to-
pology on Hg /LC(a) for which ¥ 1s continuous.

4. The Weak K-Borel Measure Topology. To start, we let Mx(W) be the
set of all measures of the form kdy, where ke K(W) and p¢ is a finite signed
Borel measure. Now, with writing

k k
k1dﬂ1+k2d#2:k1\/k2< kl\/lkg dp+ kl\/zkg d#z):

it follows that My(W) is a vector space since k,\V k, belongs to K(W) when £k,
and k, belong. Certainly for each veMg(W), (A, u>:5.hdv is finite, and this

bilinear form places Hx(W) and Mg(W) in duality provided that v; is taken
equivalent to v, when <y, i)=<v,, h) for all he Hx. Without changing the
notation, we assume that such is understood for Mk.

DEFINITION 5. The weak K-Borel measure topology on Hx(W), denoted ay,
is the weakest (locally convex) topology for which each of the functionals
¢,: h—<h,v) is continuous. When W is replaced by W’, the resulting weak
topology on Hg. is denoted by ag..

It is a standard matter that each linear functional ¢ on Hg, which is con-
tinuous for ag, is of the form ¢, for some ve Mg[11; p. 124]. Hence the con-
tinuity of ¥ for the weak K-Borel measure topology will follow directly from
standard theorems about weakened topologies provided that (Hy, Bx)'=Mg/, and
this is now established in the manner of Rubel and Shields [8], with appropriate
accomodations for the unbounded functions of Hg.

THEOREM 2. In terms of the usual embeddings of My into the algebraic
dual Hg* of Hg, (Hg, Bx)' =Mg=(Hg, ag)’.

Proof. It is easily checked that ay=pg, because each basic weak neigh-
borhood Vs is a finite intersection of sets {A; |<h, v;>|=1}. Now for each i,
dv;=k,dp,, and it follows that

1
R N B R N B S (PR LOPM IR

wheae &, is &,V -k, and c=(max{llgall, -, ll}) %

Hence, to finish the proof, we need only establish that each linear functional
¢, continuous for the K-strict topology, is representable by means of a measure
v in Mg, and the argument required is that of [8]. In particular, since ¢ is
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Bx-continuous, it induces a bounded linear functional @(kh)=¢(h) on the vector
space kHx(W) of Cy(W). Now because ¢ has an extension to C,(W), it is re-
presentable as ¢(kh)=<{kh, p> for some finite signed Borel measure p. That is,
¢(h)=<h, vy, where dv=kdp.

COROLLARY 1. The function ¥ : Hy—Hyg defined in (1) by ¥ (s)=DfJLDf
+s—Ls 1s continuous when the domain and range are equipped with the weak
K-Borel measure topology.

Proof. According to the Theorem 1, ¥ is continuous for the K-strict to-
pology and continuity for the weakened topologies o(Hg, H%) and o(Hg, Hk)
follows from standard theorems of functional analysis when each dual is taken
with respect to the K-strict topology. But Theorem 2 implies that H% is in
fact Mx(W) and the weak topology o(Hg, Hx) is the topology ay.

COROLLARY 2. When the topology q(ag) (g(axk)) is fixed on Hg /LC(a) (Hg/K),
then q(ay) (q(ag)) 1s the finest (coarsest) locally convex topology for which ¥ 1s
continuous.

5. Comparison of the a, and Sx topologies. If the topologies ax and S
are equal, then of course the Corollary 1 of Theorem 2 is of no interest. So
the purpose of this section is to establish that Bx is properly finer than ax by
exibiting a topological property which these fail to share. Some properties
that these topologies do share are examined as well.

THEOREM 3. The space Hy 1s Bx-complete and fails to be ag-complete.

Proof. The idea of each of these assertions is again given by Rubel and
Shields [8], and only a verification that their proof is valid for the unbounded
functions of Hx need be given.

To demonstrate the first assertion, we let F be a SBx-Cauchy filter on Hy.
With [8], we observe that for an arbitrary k,& K(W), k,F is a base for a Cauchy
filter in the norm topology on C,(W), and in this topology, k,F—f,=Cy(W).
Hence it follows that F converges to h,=f,/k, uniformly on compact sets, and
h, is then harmonic.

The demonstration is complete with establishing (i) A, Hx(W) and (ii) F
converges to %, in the Bx topology. Obviously hk,eCy(W), and the same is
true for Aok for each k=K(W); because, kF donverges to, say f€Cy(W), and
with the uniqueness of limits, we conclude that f/k=h, Hence it follows that
hokeCy(W) and hoes Hg(W). As for (ii), since kF converges to f, in the norm
topology, for ¢>0, there is FeF for which

FChot{{=; feCW) and I71=¢}.

But h,e Hx(W) and FCHg(W) as well, so it follows that FCh,+{hcHg(W);
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lhko|<e}. Hence (ii) is established.

To show that (Hg, ax) fails to be complete, one need only construct a
Cauchy filter F on Hy which converges to an element f of Cx(W) and fails to
be harmonic. Here, Cx(W) is the set of continuous functions f on W for which
kfeCy(W) for each ke K(W).

The filter is constructed in the manner of the net of [8]. That is, for each
finite set {v,, -+, v,} of linearly independent measures of My(WW), we define

Fvly"‘wn:{h'EHK; <hy vi>:<fy yi>y 1:1, Tty n} .

The collection B of all such sets is obviously a base for a filter on Hy provided
that each fails to be empty. On the space V=sp(v,, -+, v,), equipped with the
topology induced by (Mg, Hg), there is a continuous linear functional ¢ for
which ¢(v)=<{f,v>. Now, since (Mg, o(Mg, Hg)) is locally convex, ¢ has a
continuous (6(Mg, Hg)) linear extension ¢, to Mx([11], p. 45). But My and Hy
are a dual pair, and this means that ¢,(v)=<h, v) for he Hg, that is, {f,v,>=
<h,v;y. Of course heF,,,. ,,, which fails to be empty.

The proof is complete with the observation that the filter F on Hyg, when
considered as a filter on Cx(W) converges to f for ag.

The next theorem and corollary show some topological properties that these
topologies share.

THEOREM 4. The space Hy fails to be barreled when equipped with either
the ay or the Bg topology.

Proof. Since ax<pPg, there is a Sx neighborhood V of § which fails to be
an ax neighborhood. Certainly V may be taken as convex, balanced and fg-
closed, and of course it is absorbing. But according to Theorem 2, (Hg, ax)
and (Hg, Bx) nave the same dual, and therefore have the same closed convex
sets. Hence V is barrel of (Hg, ax) which fails to be a neighborhood.

To show that (Hg, Bx) fails to be barreled, we need only recall that a locally
convex space E is barreled exactly when each weakly bounded set of E’ is
equicontinuous [11, p. 1417. Because (Hg, ay) fails to be barreled, this means
that in (Hg, ag)’ there is such a weakly bounded set failing to be equicontinuous.
But the equality of (Hg, ak)’ and (Hg, Bk)’ was established in Theooem 2, and
the existence then of such a set establishes that (Hg, Bx) fails to be barreled.

COROLLARY. Neither of the spaces (Hg, ag) or (Hyg, Bx) 1s metrizable.

Proof. 1f Hg were metrizable in the topology Bk, then (Hg, Bx) would be
a Fréchet space, and sinch Fréchet spaces are barreled, the assumption of
metrizability would contradict Theorem 4. Hence (Hg, Bk) isn’t metrizable.

The assumption of metrizability for (Hg, @x) would mean that the weak
topology o(Hg, My) is metrizable. But according to the proposition of [6; p.
4007, this would imply that Mx(W) has a countable Hamel basis, and there are
already uncountably many lineary independent point masses in Mg. Hence
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o(Hg, M) cannot be metrizable.

6. The Mackey and Strong Topologies. Since each of the topologies
ag and Bk is consistent with the duality My, it would seem worth noting that
there is a Mackey topology 7 ; that is, tx is the finest locally convex topology
on Hx whose dual is Mk. It is a standard theorem of, say [11], that, since ¥
is continuous for ax and ag, it is also continuous for 7z and zx. As was the
case in [8], the question of whether or not zy is properly finer than Bx seems
quite difficult.

Among locally convex topologies which may not be consistent with the
duality {Hg, Mg is the so-called K-strong topology, denoted yx. Starting with
the duality {Hg, Mg>, this is formed in the usual way. That is, a neighborhood
base at ¢ in Hyg consists of the set (B° of polars of sets BC My which are
0(Mg, Hg) bounded. Now, according to the Corollary 1 of Theorem 2, the linear
mapping ¥ : Hy—Hy is continuous when the range and domain are given the
weak topologies. Hence there is an adjoint ¥* of ¥ [11, p. 128]. Now it
follows cirectly that ¥ is strongly continuous; because when B is a o(My, H)
bounded set of My, and B° is its polar, then ¥*B is a 6(Mg., Hg) bounded set
of Mg, and ¥'(¥*B)’CB°’. Hence it has been proved that

THEOREM 5. The mapping ¥ : Hy—Hyg is continuous when each space is
equipped with the strong topology.

In fact, the image ¥*vy, a measure supported in W’, is realizable in a rather
special way ; namely, it can be written as the sum of a measure vy, and a measure
2 supported on @\UdQ, where v,(E)=v(ENW’). To see this, we first write
y=v,+v, where v,(E)=v(ENW\W’) and v,(E)=v(ENW’). Of course it follows
that

s, vy=LUs, vi)+{Es, vy =(Df, v,y +<{LDf+s—Ls, vy

Now the linear functional f—<{Df, v,> is bounded on C(0f2) and can, with the
Riesz Representation Theorem, be written as f—<{f, 4,> for some finite signed
Borel measure supported on 02. But {f, 2)={{I—LD)*(s—Ls), 2,> where the
functional ¢: g—<{(/—LD) g, 2,> is defined only on X, a closed subspace of
C(0f2). However, with the Hahn-Banach Theorem, the functional ¢ has an
extension ¢, to which the Riesz Theorem again applies; that is {(I—LD) *(s—
Ls), 2>=<{s—Ls, 2,y on d2. One more application of the representation theorem
to C(a) yields {(Ls, A,p=<s, 4;», where 4, is supported on a. Hence it follows
that <Df, vy=C(s, 1,—As).

Except for s, vy, {¥s, v, is handled in exactly the same way ; and <{¥s, v}
={s, 2+v,y. Hence the mapping ¥* is only v—A-+v,, with 2 supported in a\JdL.

As was the case with @x and Bx topologies, we conclude that @:h—h|y.
induces a topological isomorphism in the quotients of the strong topologies.
Evidently the same can be said of the Mackey topology. But criteria for esta-
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blishing 'that Bx<7x<yx remain to be found.
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