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CONTINUITY OF THE LINEAR OPERATOR METHOD FOR

STRICT AND WEAK MEASURE TOPOLOGIES^

BY PAUL A. NICKEL

The continuous dependence of the solution to the Dirichlet problem on the
boundary data is an interesting and useful notion [4], and motivated by this,
we have already posed an analagous question for the linear operator method
of L. Sario [1], [7], [10]. In this situation, since the harmonic singularity
functions of H(W) defined oh the boundary neighborhood W are unbounded,
only topologies applicable in such function spaces are of interest. Two exam-
ples of such topologies are realized in the so-called <δ topologies of [2] and
[11] where, on the one hand, © consists of all compact sets, and on the other,
<δ consists of all finite sets. The continuity of the linear operator method was
investigated for such topologies in [6], wherein the question was phrased in
the framework of Rodin and Sario [7], That is, one considers the restriction
Φ: H(W)-^H(W') mapping each harmonic function h(p) on W to the singularity
h\w>(P) The linear operator method, whose essence is the extension of singu-
larity functions modulo regular singularity functions, is then considered in terms
of the algebraic isomorphism Φ: H(W)/K->H(W')/LC(a), where K is the set of
constant functions, and LC(a) is the set of regular singularities. When H(W)
and H(W) carry the topology of compact convergence, it was shown in [7]
that the mapping Φ is in fact a topological isomorphism when its range and
domain are equipped with the usual quotient topologies. In this sense, it is said
there that the linear operator method is continuous.

1. Purpose of this investigation. Our purpose here is the further con-
sideration of linear topologies defined on H(Wf) and H(W) for which the ques-
tion of continuity of the operator method is meaningful. First, the weak mea-
sure and strict topologies denoted a and β by Buck [3], would seem to be
interesting candidates. Second, the Mackey and strong topologies seem to be
interesting candidates as well. Furthermore, the results of Rubel and Shields
[8] suggest that one would obtain spaces topologically different from those
encountered in [6].
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However, our interest is in spaces of unbounded harmonic functions, and
in order to construct facsimilies of such topologies, it is necessary to restrict
our attention to a certain subspace Hκ,(Wf) of the space H(W) of all singu-
larity functions as well as to the subspace Hκ(W)=H(W)r\Hκ.(W). Two
natural constraints seem relevant: (i) the subspace Hκ(Wf) should be suffi-
ciently comprehensive to include the typical applications that are made of the
linear operator method [1], and (ii) the restriction Φ: HK(W)-+HK(JW') must,
when quotientized, be an algebraic isomorphism. For this last condition, it is
sufficient that LCio^aHz^W'). One suggestion for the definition for such a
subspace Hκ,(Wf) is made in the work of B. A. Taylor for the space of entire
functions [13], and this is the content of Definition 4.

The topologies τ and τ' on HK(W) and HK,(W) will always be taken as
the same kind. For example, in [6], when τ was taken as an θ-topology on
H(W), then τj_ was taken as the topology determined by the reduction <δ7 of
© to sets of W. However, such a direct relation between topologies of interest
isn't always so apparent. Hence an attempt to distinguish those pairs of to-
pologies of interest in the domain and range of Φ is now made.

DEFINITION 1. The pair of locally convex topologies (r, τf) on Hκ and Hκ.
is called compatible if Φ: (Hκ, r)-»(i/ iΓlτ

/) is continuous. When the topologies
τ and τ' are compatible, the continuity of the linear operator method is defined
in terms of quotient spaces E=(HK/K, q{τ)) and F=(Hκ./LC(a), q{τf)).

DEFINITION 2. The linear operator method is said to be continuous when
Φ: E^F is a topological isomorphism.

For compatible topologies, it suffices to consider the continuity of Ψ=Φ~λ

and the following proposition exibits a certain uniqueness for such topologies.
Indeed, jwhen τ' is fixed, then q(τ) is the finest locally convex topology for
which Ψ is continuous _and when τ is fixed, then q{τ') is the coarsest (least
fine) topology for which Ψ is continuous.

PROPOSITION, (i) If q(τ') is fixed on Hκ,/LD(a), then q(τ) is at least as fine
as each locally convex topology Q for which Ψ is continuous, (ii) // q{τ) is fixed
on Hκ/K then, q(τf) is at least as coarse as each locally convex topology Q/ for
which Ψ is continuous.

Proof. To establish (i), we consider V a Q-neighborhood of θ for which
there is U^q{τ)_ satisfying Ψ(JJ)cV. But, with the_compatibility of τ and τ',
it follows that Ψ is open, and this means that W(ZΨ(U)dV for some ^(^-nei-
ghborhood of θ. Hence it follows that Q^q(τ).

The second second statement is proved in the same way, for suppose that
ir<Ξq(τ'). Since Ψ(U')(=Ξq(τ), it_follows from the continuity of that Ψ{V')CL
Ψ(Uf) for some V'^Q'. But Ψ is an algebraic isomorphism, and this means
that V'cί/'; that is q(
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An example of the part (i) of this proposition occurs in [5], where the
topology of interest_on jjach space is the compact open topology.

The mapping Ψ=φ-χ is given in [7] as ?ΐs]=[Zy]U[Z,/}/+s] and this
is realized from the linear mapping Ψ: HK,^HK defined as:

ί Df on Ω
(1) V(s)=\

1 LDf+s-Ls on W.

Here, in terms of a regular region Ω with dΩaWf, f satisfies (I—LD)f=s—Ls
in a subspace X of C(dΩ) in which ||LZ)||<1.

Of interest here are the a and β topologies defined on the space HK(W),
where they are dehoted aκ and βκ and called the weak if-Borel measure to-
pology and the ϋf-strict topology respectively. The Mackey topology τκ and
the strong topology γκ are then readily defined in terms of the dual (Hκ, aκ)'.
In these terms, it is shown that the linear operator method is a continuous
operator in the sense of the definition already cited. However, the question
about pairwise distinctness of these topologies is only partially answered.

2. Notation and definitions. In order to describe a class of harmonic
singularities satisfying the constraints of (i) and (ii) of § 1, we start with an
arbitrary Riemann surface Wo, from which W is formed by removing a finite
point set {pl9 •••,£#}. A neighborhood of the ideal boundary W'dW is then

k

realized by U(^(Pi)\{pi})^Wo, where WΌ is a boundary neighborhood in Wo.

The compact boundary of W is denoted a, and the resulting union of bordered
surfaces is written W, as is customary. Since the harmonic functions are to
have singular behavior near pit we single out the following class of continuous
functions which are 0 there. This is done in terms of C0(W), the class of con-
tinuous functions vanishing at oo.

DEFINITION 3. The set of positive functions k^C0(W) satisfying (*)
lim k(p) exp \c/z\=0 for each complex c, is denoted K(W). The set of positive

functions k'^C0(W') satisfying (*) is denoted K(W). Here the condition (*) is
understood in teams of points p in a parameter disc at pu and is in fact, in-
dependent of the local variable z representing p, since the condition is to hold
for all c. It is now easy to single out those harmonic functions of H(W) upon
which a defieition of a strict topology can be made.

DEFINITION 4. The subspace HK(W) of H(W) for which hk^C0(W) for all
k^K(W) is called the space of /Γ-harmonic functions. The subspace HK,(W)
of K-harmonic singularities is defined analogously in terms of C0(W), and the
notations HK(W) and Hκ,(Wf) are abbreviated to Hκ and Hκ, respectively.

In order to consider the Definition 2, it is important to establish that the
mapping Φ : HK(W)-*HK.(W) induces an isomorphism between HK(W)/K and
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Hκ.(W')ILC(a) in the manner of [7]. First, when h^Hκ, then h\w,<=Hκ,y and
furthermore the inclusions KdHκ and LC{a)aHκ> hold. Hence the quotient
map Φ:Hκ/K-^Hκ,/LC(ά) is defined. Now, if [s]^Hκ./LC{a)9 then of course,
\j\<=H(W')/LC{a) as well, and it follows from [7] that [ΦΛ] = [s] for some
h^H(W). Since this means that h—s<=LC(a), it follows that h<ΞHκ, and Φ
remains an isomorphism between the quotients of inharmonic functions and
/Γ-harmonic singularities.

3. The K-strict topology. By virtue of the Definition 4, it follows that
sup \h(p)k(p)\=\\h\\k is finite for each pair h^Hκ and k^K(W). In terms of
w

the notation V(k r) for {h \\h\\k^r}, the relation V(kly r1)r\V(k2,r2)ZDV(k1Vk2f

rλ/\r2) implies that the collection B={V(k; r) k^K(W) and r>0} is a base for
a filter. In fact, the base B={V(k r) k(p)^l and r>0} will suffice since
V(k,r)=V(k/ko,r/ko) when feo= sup &(/>). Furthermore, the sets F(&, r) are

balanced (circled), convex and absorbing (radial) and obviously satisfy V(k, r/2)
+ V(k, r/2)aV(k, r). That is, B in a neighborhood base at θ for a locally convex
topology βκ defined on HK(W). In an analogous manner, a if-strict topology
βκ. is defined on HK.(W).

THEOREM 1. The mapping Ψ: HK -^HK is continuous when each space is
equipped with the K-stnct topology.

Proof. If Vθ is an arbitrary βκ neighborhood of θ in HK(W), then V(k r)
(ZVΘ for some V(k r) with k(p)^l, and since Ψ is linear and rV(k 1)= 7(fe r),
it suffices to take r = l . In terms of α= min {&'(*) ^Gα} and b— min { '̂(^ 2r
<Ξ3i2}, we form the /3^ neighborhood V'ψ (l/4)(αΛδ)(l-||LD||), where kf=k\w,,
and claim that ^(yOciV. To see this, we let se V, and observe with (1) that

(2) 11̂ 0011*= sup |y(s)*| = sup |Z)/.fe|Vsup

Since / and s are related on dΩ by (I—LD)f=s—Ls, it follows that

(3) s u j > | / | ^ ( l - | | L 0 | | ) ^

But harmonic /^-singularities SZΞV' satisfy |s(ί)|^(l/4)(l—||LD||) on dΩVJot and
the estimate sup |/ |g l/2 follows directly from (3).

The first term on the right side of (2) is now easily bounded by 1/2, since
sup|Z)/ fe|^sup|ZV|=sup|/|. The second term on the right side of (2) is

Ώ Ω dΩ

estimated in much the same manner. To start, we observe that suo|kLDf\S

sup|LD/|=sup|Z)/|^sup|/ |^l/2, and that supls fe'l^l/4 for each s^Vf. Fi-
W a dΩ W'

nally, the inequality 1 —||LD||<1 implies that suplfe'Lsl^suplLs^suplsKl/4.
W W aThe proof is complete because [^(s)^ is no larger than 1.
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Since (βκ, βκ>) is easily seen to be a compatible pair, it follows from The-
orem 1 and the proposition that the quotient topologies are unique topologies
of interest in the sense of Definition 1.

COROLLARY, (i) When Hκ,/LC(a) is given the q{βκ>) topology, then q(βκ) is
the finest locally convex topology on Hκ/K for which Ψ is continuous, (ii) When
Hκ/K is given the q(βκ) topology, then q(βκ ) is the coarsest locally convex to-
pology on Hκ>/LC(a) for which Ψ is continuous.

4. The Weak K-Borel Measure Topology. To start, we let MK(W) be the
set of all measures of the form kdμ, where k^K(W) and μ is a finite signed
Borel measure. Now, with writing

it follows that MK(W) is a vector space since k1\/k2 belongs to K(W) when kλ

and k2 belong. Certainly for each v^Mκ(W), </ι, v)=\hdv is finite, and this

bilinear form places HK(W) and MK(W) in duality provided that vx is taken
equivalent to v2 when (vx,K) = <v2,K> for all h^Hκ. Without changing the
notation, we assume that such is understood for Mκ.

DEFINITION 5. The weak /f-Borel measure topology on HK{W), denoted aκ,
is the weakest (locally convex) topology for which each of the functionals
φv: h—><A, v) is continuous. When W is replaced by W', the resulting weak
topology on Hκ, is denoted by aκ,.

It is a standard matter that each linear functional φ on HKi which is con-
tinuous for aκ, is of the form φυ for some v e M ^ l l ; p. 124]. Hence the con-
tinuity of Ψ for the weak if-Borel measure topology will follow directly from
standard theorems about weakened topologies provided that (Hκ, βκ)'=Mκ>, and
this is now established in the manner of Rubel and Shields [8], with appropriate
accomodations for the unbounded functions of Hκ.

THEOREM 2. In terms of the usual embeddings of Mκ into the algebraic
dual Hκ* of Hκ, (Hκ, βκ)'=Mκ=(Hκ, aκ)'.

Proof. It is easily checked that aκ1^βκ, because each basic weak neigh-
borhood Vθ is a finite intersection of sets {h; |</ι, 1^)1^1}. Now for each z,
dvi—kidμx, and it follows that

{A; l|ft

wheae k0 is kλ\J~-\/kn and c=(max{| |^1 | |, •••, llμJI})"1.
Hence, to finish the proof, we need only establish that each linear functional

φ, continuous for the if-strict topology, is representable by means of a measure
v in Mκ, and the argument required is that of [8]. In particular, since φ is
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^-continuous, it induces a bounded linear functional φ(kh)=φ(h) on the vector
space kHκ(W) of C0(W). Now because φ has an extension to C0(W), it is re-
presentable as φ{kh)—{kh, μ) for some finite signed Borel measure μ. That is,
φ{h)=(h,v), where dv—kdμ.

COROLLARY 1. The function Ψ :HK,->HK defined in (1) by Ψ(s)=DfULDf
~{-s—Ls is continuous when the domain and range are equipped with the weak
K-Borel measure topology.

Proof. According to the Theorem 1, Ψ is continuous for the if-strict to-
pology and continuity for the weakened topologies σ(Hκ,, H'κ.) and σ(Hκ, H'κ)
follows from standard theorems of functional analysis when each dual is taken
with respect to the K-stήct topology. But Theorem 2 implies that H'κ is in
fact MK(W) and the weak topology o{HKy H'κ) is the topology aκ.

COROLLARY 2. When the topology q(aK>) {Q{OLK)) is fixed on Hκ./LC(a) (Hκ/K),
then q(aκ) (q(ocκ )) is the finest {coarsest) locally convex topology for which Ψ is
continuous.

5. Comparison of the aκ and βκ topologies. If the topologies aκ and βκ

are equal, then of course the Corollary 1 of Theorem 2 is of no interest. So
the purpose of this section is to establish that βκ is properly finer than aκ by
exibiting a topological property which these fail to share. Some properties
that these topologies do share are examined as well.

THEOREM 3. The space Hκ is βκ-complete and fails to be aκ-complete.

Proof. The idea of each of these assertions is again given by Rubel and
Shields [8], and only a verification that their proof is valid for the unbounded
functions of Hκ need be given.

To demonstrate the first assertion, we let F be a /5^-Cauchy filter on Hκ.
With [8], we observe that for an arbitrary ko(=K(W), k0F is a base for a Cauchy
filter in the norm topology on C0(W), and in this topology, k0F-^f0^C0(W).
Hence it follows that F converges to ho=fo/ko uniformly on compact sets, and
h0 is then harmonic.

The demonstration is complete with establishing (i) ho^Hκ(W) and (ii) F
converges to h0 in the βκ topology. Obviously hoko<=Co(W), and the same is
true for hok for each k<=K(W); because, kF donverges to, say f^C0(W), and
with the uniqueness of limits, we conclude that f/k=h0. Hence it follows that
hok^Co(W) and ho^Hκ(W). As for (ii), since k0F converges to f0 in the norm
topology, for ε>0, there is F<EF for which

and | | / | |^

But ho£ΞHκ(W) and F<zHκ(W) as well, so it follows that Faho+{heΞHκ(W)
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\\hko\\^ε}. Hence (ii) is established.
To show that (Hκ, aκ) fails to be complete, one need only construct a

Cauchy filter F on Hκ which converges to an element / of CK(W) and fails to
be harmonic. Here, CK{W) is the set of continuous functions / o n W for which
kf<ΞC0(W) for each k^K(W).

The filter is constructed in the manner of the net of [8]. That is, for each
finite set {vlf •••, vn} of linearly independent measures of MK(W), we define

FvlrΊVn={h(ΞHκ; <A, *,> = </, *,>, i = l , - , n] .

The collection B of all such sets is obviously a base for a filter on Hκ provided
that each fails to be empty. On the space V=sp(vlf •••, vn), equipped with the
topology induced by σ(Mκ, Hκ), there is a continuous linear functional φ for
which φ(vi) = (f,Vi}. Now, since (Mκ, σ(Mκ, Hκ)) is locally convex, φ has a
continuous (σ(Mκ, Hκ)) linear extension φ0 to M#([l l], p. 45). But Mκ and Hκ

are a dual pair, and this means that φo{v) = (htv) for h(=Hκ, that is, (f,vt} =
</ι, Ϊ^>. Of course h^FvlrΊVn, which fails to be empty.

The proof is complete with the observation that the filter F on Hκ, when
considered as a filter on CK(W) converges to / for aκ.

The next theorem and corollary show some topological properties that these
topologies share.

THEOREM 4. The space Hκ fails to be barreled when equipped with either
the aκ or the βκ topology.

Proof. Since aκ<βκ, there is a βκ neighborhood V of θ which fails to be
an ocκ neighborhood. Certainly V may be taken as convex, balanced and βκ-
closed, and of course it is absorbing. But according to Theorem 2, (Hκ, aκ)
and (Hκ, βκ) nave the same dual, and therefore have the same closed convex
sets. Hence V is barrel of (Hκ, aκ) which fails to be a neighborhood.

To show that (Hκ, βκ) fails to be barreled, we need only recall that a locally
convex space E is barreled exactly when each weakly bounded set of E' is
equicontinuous [11, p. 141]. Because (Hκ, aκ) fails to be barreled, this means
that in (Hκ, aκ)' there is such a weakly bounded set failing to be equicontinuous.
But the equality of (Hκ, aκ)' and (Hκ, βκ)

f was established in Theooem 2, and
the existence then of such a set establishes that (Hκ, βκ) fails to be barreled.

COROLLARY. Neither of the spaces (Hκ, aκ) or (Hκ, βκ) is metnzable.

Proof. If Hκ were metrizable in the topology βκ, then (Hκ, βκ) would be
a Frechet space, and sinch Frechet spaces are barreled, the assumption of
metrizability would contradict Theorem 4. Hence (Hκ, βκ) isn't metnzable.

The assumption of metrizability for (Hκ, aκ) would mean that the weak
topology σ(Hκ, Mκ) is metrizable. But according to the proposition of [6 p.
400], this would imply that MK(W) has a countable Hamel basis, and there are
already uncountably many lineary independent point masses in Mκ. Hence
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σ(Hκ, Mκ) cannot be metrizable.

6. The Mackey and Strong Topologies. Since each of the topologies
aκ and βκ is consistent with the duality Mκ, it would seem worth noting that
there is a Mackey topology τκ that is, τκ is the finest locally convex topology
on Hκ whose dual is Mκ. It is a standard theorem of, say [11], that, since Ψ
is continuous for aκ, and aκ, it is also continuous for τκ and τκ. As was the
case in [8], the question of whether or not τκ is properly finer than βκ seems
quite difficult.

Among locally convex topologies which may not be consistent with the
duality (Hκ, Mκ} is the so-called if-strong topology, denoted γκ. Starting with
the duality (Hκ, Mκ}, this is formed in the usual way. That is, a neighborhood
base at θ in Hκ consists of the set (B°) of polars of sets BdMκ which are
σ{Mκ, Hκ) bounded. Now, according to the Corollary 1 of Theorem 2, the linear
mapping Ψ: HK,-*HK is continuous when the range and domain are given the
weak topologies. Hence there is an adjoint ?F* of Ψ [11, p. 128]. Now it
follows cirectly that Ψ is strongly continuous because when B is a a{Mκ, Hκ)
bounded set of Mκ, and B° is its polar, then Ψ*B is a σ(Mκ., Hκ>) bounded set
of Mκ, and Ψ(Ψ*B)°CIB0. Hence it has been proved that

THEOREM 5. The mapping Ψ: HK,—>HK is continuous when each space is
equipped with the strong topology.

In fact, the image Ψ*v, a measure supported in W, is realizable in a rather
special way namely, it can be written as the sum of a measure v2 and a measure
λ supported on a\JdΩ, where vJJ£)=v(Er\W/). To _see this, we first write
v=vτ+v2 where v1{E)=v{Er\W\W/) and v2(E)=v(Er\W). Of course it follows
that

(Ψs, v) = <Ψs, y1> + <ffs> v2> = <Df, v^ + iLDf+s-Ls, v2>

Now the linear functional /-><£)/, vx> is bounded on C(dΩ) and can, with the
Riesz Representation Theorem, be written as /—></, Λ> for some finite signed
Borel measure supported on dΩ. But </, Λi> = <(/— LD)~1{s—Ls), λ^ where the
functional φ: g->((I—LD)~1gf λ^ is defined only on X, a closed subspace of
C(dΩ). However, with the Hahn-Banach Theorem, the functional φ has an
extension φ0 to which the Riesz Theorem again applies; that is ((I—LD)~1(s—
Ls), λ1} = (s—Ls, λ2y on dΩ. One more application of the representation theorem
to C(ά) yields (Ls, λ2}=(s, Λ3>, where λ3 is supported on a. Hence it follows
that φf, v1) = (s, λ2-λ3}.

Except for <s, v2y, (Ψs, v2y is handled in exactly the same way; and (Ψs, v)
= <s, Λ+y2> Hence the mapping F * is only v-*l+v2, with λ supported in aUdΩ.

As was the case with aκ and βκ topologies, we conclude that Φ: h->h | w,
induces a topological isomorphism in the quotients of the strong topologies.
Evidently the same can be said of the Mackey topology. But criteria for esta-
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blishing that βκ<^κ<Tκ remain to be found.
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