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Introduction.

The actual article is concerned with the study of isometric immersions of
codimension two with trivial normal connexion of arbitrary dimensional C00-
manifolds into elliptic spaces.

Its main purpose is to generalize a number of results concerning pseudo-
umbilical immersions to immersions having an umbilical normal direction which
is not necessarily determined by the mean curvature point. In particular such
immersions for which the umbilical normal direction is parallel in the normal
bundle are investigated. The latter immersions can be considered as a gener-
alization of the pseudo-umbilical immersions of codimension two with constant
mean curvature.

The results we'll generalize now are mostly due to R. Rosca and ourselves
[16], [18], [19], [21], and are closely related to the work done by several other
authors who are cited in the text.

§ 1. Preliminaries.

Let P? + 2 be an (n+2)-dimensional real elliptic space of curvature 1, and
x: Mn^P%+2 an isometric immersion of an orientable n-dimensional C°°-manifold
Mn into P?+2. With the general point X0(uι), (z, j , k, Ze= {1, 2, ••• , n}), of Mn we
associate an orthonormal simplex SXo={XA}, (A, B, C<Ξ {0, 1, ••• , n+2}), such that

the dual tangent space TXo(Mn) of Mn at Xo is determined by the points Xt.
Then N0=[Xn+ι, Xn+2] is the principal quasi-normal of Mn at Xo [15]. In the
following we'll say that each point of No defines a normal direction of Mn at

Xo.

Mn is structured by the connexion

(1) dXA=ωlXB, (ω%+ωi=0),

where ωB

A are the connexion l-formsc**}. The structure equations are given by

(2)
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c*) Aspirant H. F. W. O. (**5 ωf will also be denoted as ωA.
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We have the relations

(3) ωB

A

where ωι(uj\duj) is the dual base and y\\ are the connexion coefficients. Since
x(Mn) is an integral manifold of

(4) ωr=0, (r, s e { n + l , n+2}),

we find by exterior differentiation using E. Cartan's lemma

(5) rh=rrji -

From the above formulae we obtain

dΛωί=ωΪΛωJ

k+Ωl, Ω{ = -γ-

(6) dΛωs

r=Ωs

r, Ωs

r = -γRr

s

klω

(7)

By definition the normal connexion of x is trivial if Rr

s

ki—0 [9]. The following
assertions concerning x are equivalent:

(i) the normal connexion is trivial
(ii) the scalar normal curvature KN=^(Rr

s

kl)
2 [2] is zero;

(iii) the Gaussian torsion τg [1] vanishes;
(iv) the second fundamental forms φr = — (dX0, dXr} = ω\ ωι can be dia-

gonalized simultaneously.
Observe that if a point on No defines an umbilical normal direction of Mn at Xo

(i. e. if the corresponding second fundamental tensor is proportional to the
identity transformation [3]), then φn+1 and φn+2 can be diagonalized simulta-
neously. In the following all simplices SXo under consideration will be chosen,
if possible, to be such that both φr's are diagonal, i. e. to be principal.

For an immersion x with trivial normal connexion it is always possible to

determine rectangular points Xr on No such that the unique normal connexion

form {or torsion form) w^+l of x with respect to the orthonormal simplex SXo=

{Xo, Xιt Xr) vanishes. Such a simplex will be said to be of type SΌtf. It follows

at once that in this case also the sommets Xr of SΌtf generate manifolds of
codimension two in Pe+2 with vanishing torsion form with respect to the same
simplex, and for which moreover we have

(8) TXo(Mn)=Tχr((Xr)),

so that actually (Xo), (-Xii+i) and (Xn+2) have the same tangential connexion
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forms (or rotation forms) ω{.
Finally we mention that all manifolds which will be discussed in this paper

are supposed to be not totally umbilical.

PART I. Determination of orthonormal simplices of type Svtf

associated with x.

§2. A characterization for Rr

s

kl=0.

Consider the manifolds (P) with general point

(9) P=X0cosφ+Xn+1smφ, (φ(Ξg)(Mn)).

Putting N=Xn+1 cos t+Xn+i sin t, (t^£D(Mn))f we find using (1) that

(10) <dP, JV>=0

if and only if

(11) ωlX\=—cotg t din sin φ .

(P) will be called general if PΦXO and N will be called a general point invari-
antly situated on Na if inconstant and NΦXn+1. From (10) and (11) then
follows

THEOREM 1. There exist general manifolds (P) for which the principal quasi-
normal contains a general point inυariantly situated on the principal quasi-normal
of Mn if and only if the normal connexion of x is trivial.

Moreover it is clear that in particular we have

THEOREM 2. // the principal quasi-normal of a general manifold (P) con-
tains Xn+2 then SXo is of type SΌtf. If conversely SXo is of type Sυtf then the
principal quasi-normal of each manifold (P) contains Xn+2-

§3. Parallellism in the normal bundle. Manifolds Mn.

The mean curvature point of x is defined as [4], [18]

(12) H=fγrXr, ( f r = t r Iγζj /^factor of normalization).

If x is not minimal (HφQ), then it is always possible to choose SXo such that
H=Xn+1 (r

n+2=0). In this case we'll denote Xn+2 as Hx. Then, the scalar
mean curvature a of Mn [4] is defined by

(13) γn+1=na,

and according to [11] x is pseudo-umbilical if and only if

(14) rV^δij
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Since φn+2 can always be diagonalized we can formulate

THEOREM 3. A pseudo-umbilical immersion x has a trivial normal connexion.

Next we remind the following known result [18] :
(*) // x is pseudo-umbilical then the following assertions are equivalent:

(i) SXo= {Xo, X%, H, H1} is of type Svtf

(ii) the scalar mean curvature of Mn is constant
(iii) the mean curvature field of x is parallel in the normal bundle.

As is well known N<BN0 is said to determine a normal field on Mn which is
parallel in the normal bundle [25] if

(15) dN=0 (modXo, -X»).

Hence it follows at once from (1) that (*) can be partially generalized in the
following way:

THEOREM 4. An orthonormal simplex SXo associated with x is of type Svtf

if and only if Xn+ι, or equwalently Xn+2y determines a field on Mn which is
parallel in the normal bundle.

Aiming for a generalization of the other part of (*) we make the following
considerations. First suppose that SXo is such that <*>£+?=0 and that Xn+1 deter-
mines an umbilical normal direction on Mn. Then exterior differentiation of

(16) ωrι=λω%,

where λ is the (unique) principal curvature of Mn at Xo corresponding to Xn+1,
yields

(17) dλAωx=0.

This shows that λ is constant. Conversely suppose now that Xn+1 determines
an umbilical direction of Mn with constant corresponding principal curvature.
Then exterior differentiation of (16) yields

(18) ]«+*ωlΛω*#=0,

where λf+2 are the principal curvatures of Mn at Xo corresponding to Xn+2.
Consequently, if zero is not a principal curvature with multiplicity n—1 of Mn

corresponding to Xn+2, or equivalently if λ cos t is not a principal curvature
with multiplicity n—1 of Mn corresponding to N^N0, (18) implies that ω^Xf—0.
A manifold Mn having an umbilical normal direction with constant corresponding
principal curvature and for which zero is not a principal curvature with multi-
plicity n —1 corresponding to the normal direction which is rectangular to the
umbilical one will further on be denoted as Mn.

THEOREM 5. (i) The principal curvature of Mn corresponding to an um-
bilical normal field which is parallel in the normal bundle is constant



IMMERSIONS OF CODIMENSION TWO 235

(ii) the orthonormal simplices SXQ, X0<^Mn, for which Xn+1 determines the
umbilical normal direction of Mn are of type Svtf.

§4. Concurrent normal fields.

N^N0 determines a concurrent normal field on Mn in the sense of K. Yano
[24] if

(19) 3fςΞ$(Mn)Ξ}dX0+d(fN)=0.

After diagonalizing <pn+1 we have for N=Xn+1 and using (1):

(20) ωXl-fλrι)Xx+fωl%lXn+2+{df)Xn+1=O,

where λf+ί are the principal curvatures of Mn at Xo corresponding to Xn+1.

THEOREM 6. // SXo is an orthonormal simplex associated with x then the
following assertions are equivalent:

(i) SXo is of type Svtf and Xn+1 determines an umbilical direction of Mn

with constant corresponding principal curvature;
(ii) Xn+1 determines a normal field on Mn which is concurrent in the sense

of K. Yano.

Based on Theorem 6 and (*) we obtain the following generalization of a
result of [21] :

THEOREM 7. A manifold Mn is pseudo-umbilically immersed into P£+ 2 with
constant scalar mean curvature if and only if its mean curvature field is con-
current in the sense of K. Yano.

§ 5. On the focal manifolds of the rectilinear system -Γ0,n+i

Consider the rectilinear system (depending on n parameters) with general
element R=ίX0, X n + i]. Putting Q=X0 cos ζ + X n + 1 sin ζ, (ζe£)(Mn)), the develop-
pables and corresponding focal manifolds -Γ0,π+i are determined by the condition

(21) dQ=0

Using (1) we find (21) to be equivalent with

(22) ωKcos ζ-λ?+ί sin ζ)=0 , ω«%\ sin ζ=0 .

Hence -C0,n+i admits focal manifolds if and only if ω*ί?=0.
In this case the focal manifold corresponding to

(23) ω 1 ^ ... =ώ%= ••• =ωn=0 ,

(where Λ denotes omission), is generated by Q(ζ) where
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(24) tgζ=-^τ.

THEOREM 8. SXo is of type Sυtf if and only if the rectilinear system «Γ0,n+i
admits focal manifolds. In this case the n focal manifolds of -COin+1 coincide if
and only if Xn+1 determines an umbilical direction of Mn.

§ 6. The product manifolds <3ίOfn+1.

A last determination of simplices Svtf is given in the following terms. By
definition [23] the indecomposable cartesian product JMOfΐl+1 of Mn and its normal
\_XQj Xn+i] is the hypersurface of P£+2 with general point

(25) W=X0 cos un+1+Xn+1 sin un+1,

where un+1 is a new local coordinate. Using (1) it follows that

(26) dW=(ωι cos w n + 1 + < + 1 sin un+1)Xt

+(-s in un+1X0+ cos un+1Xn+1)dun+1+ω»il sin un+1Xn+2.
Hence

If ω£ί?=0 then the second fundamental form of <3ίOf7l+1 is found to be

(28) φ(3tOin+1)= — <4W, dXn+2y=(co§ un+1—λf+ί sin un+1)λ?+2(ω1)2.

Denoting the type number of <3i0>n+1 [17] by tn(^0>n+i), (27) and (28) prove

THEOREM 9. cSZo is of type Svtf if and only if Xn+2 determines the normal
direction of the hypersurface JM0f7l+1. In this case

PART II. On manifolds Mn with an umbilical normal direction.

§ 7. Quadratic mean form, third fundamental form and Ricci form of Mn.

Following M. Obata [10] the quadratic mean form \\H, the third fundamental
form III and the Ricci form ψ associated with x are respectively given by the
formulae

(29) Hπ=Έ
r

(30) III=
ι

(31) ^ = ( n - l )

Supposing Xn+1 determines an umbilical direction of Mn with corresponding
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principal curvature λ, we find

(32) IlH=(nλ2+r

n+2λr2)(ωτy,

(33)

(34)

where λ?+2 are the principal curvatures of Mn at Xo corresponding to Xn+2.

% 8. Einstein manifolds Mn.

From (34) we derive that Mn is Einsteiman (ψ~ds2) if and only if

(35)

Then

(36) ^ + 2

hence Mn has two different principal curvatures corresponding to Xn+2, say βx

and β2. Suppose now that βλ and β2 have the same multiplicity m, (n=2m).
In this case (35) implies

(37) (iS?—iSIXl—m)=0 .

Thus if n > 2 we have /31+/32=0, and so γn+2=0.

THEOREM 10. // Mn is an Einstein manifold having an umbilical normal
direction then it has exactly two different principal curvatures corresponding to
any normal direction different from the umbilical one. If these curvatures are of
equal multiplicity and n>2, then Mn is pseudo-umbilical.

§ 9. Manifolds M with vanishing Ricci form.

Next let's consider manifolds Mn having a vanishing Rica form, i. e. sup-
pose that

(38) (n

Summation over i yields

(39) n(n
3

We recall that the norm σ of the second fundamental form, which in general
is defined as [9]

(40)

actually is found to be
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(41) σ = n Λ 2 + Σ ( ^ + 2 ) 2 .

Combining (39) and (41) it follows that

(42) n(n-l)+n2λ2-σ+(r

n+2)2=0.

THEOREM 11. A manifold Mn with vanishing Ricci from is pseudo-umbilical
if and only if there exists an umbilical normal direction with corresponding prin-
cipal curvature λ such that

σ=n(n-l)+n2λ2,

where σ denotes the norm of the second fundamental form.

In the previous Theorem clearly λ=h, the scalar mean curvature of Mn.
In general h is defined as [19]

(43) A=-^-C(r n + 1 ) 2 +(r + 2 ) 2 ] 1 / 2 .

Hence if Xn+1 determines an umbilical direction then

(44) n2h2=n2λ2+(γn+2)2.

Consequently supposing moreover that ψ=0, we have

(45) n2h2=σ-n(n-l).

In particular (45) implies the following

THEOREM 12. Let Mn be a manifold with vanishing Ricci form and having
an umbilical normal direction. Then the scalar mean curvature is constant if
and only if the norm of the second fundamental form is constant.

§ 10. Manifolds Mn with conformal Gauss map.

As follows from (33), Mn has a conf ormal Gauss map (Iliads2) if and only if

(46) λ2+2=eίβ, (βtΞ®{Mn) β { = ± l ) .

Hence if moreover Mn is pseudo-umbilical then the two (opposite) principal
curvatures corresponding to Xn+2 do have the same multiplicity (and conversely),
and so in this case Mn is essentially even-dimensional.

On the other hand if Mn is pseudo-umbilical and has two principal curva-
tures corresponding to Xn+2 (and Xn+1 determines an umbilical direction), then
clearly (46) is satisfied.

THEOREM 13. A manifold Mn having an umbilical normal direction has the
following properties:

(i) its Gauss map is conform if and only if Mn has but two principal cur-
vatures corresponding to any normal direction different from the umbilical one
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and these curvatures are opposite for the normal direction which is rectangular
to the umbilical one;

(ii) if Mn has a conformal Gauss map and is pseudo-umbilical then Mn is
essentially even-dimensional

(iii) if Mn has two principal curvatures of equal multiplicity corresponding
to any normal direction different from the umbilical onef then its Gauss map is
conform if and only if Mn is pseudo-umbilical.

PART III. On manifolds Mn having an umbilical normal direction
which is parallel in the normal bundle.

§ 11. A condition for a normal direction which is parallel
in the normal bundle to be umbilical.

Let SXo be a simplex of type Sυtf associated with x. Then the metrical
fundamental form of the manifold with general point Xn+1 is found to be

(47) <dxn+1, dsr n + 1 >=(# + 1 ) a (ω') a .

Consequently the manifolds Mn and (Xn+1) are conform to each other if and
only if

(48) %+ί=6l'λ, ( l G i ) ( M n ) ; e ί ' = ± l ) ,

i. e. if either Xn+1 determines an umbilical direction or Mn has two principal
curvatures corresponding to Xn+1 and these are opposite.

Reminding that the r-th mean curvature Kr(N) of Mn at Xo and correspond-
ing to N^N0 is defined by the formula [5]

(49) Q)κr(N)=^k1(N)'" kr(N), (l^r^n),

where kt(N) are the principal curvatures of Mn at Xo corresponding to N, we
have the

THEOREM 14. Let SXo be of type Sυtf. Then for each positively valued func-
tion on Mn there exists a class of manifolds Mn which are conform to the mani-
folds (Xn+1) with the given function as factor of conformality in each such class
the two manifolds for which the first mean curvature corresponding to Xn+1

attains an extreme value are exactly those for which Xn+1 determines an umbilical
direction.

% 12. Manifolds Mn, M/n, M"\

In the following we will always (except if explicitely mentioned otherwise)
consider manifolds Mn having an umbilical normal direction which is parallel in
the normal bundle. Such manifolds will be denoted as Mn. Furthermore SXo
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will be choosen such that Xn+1 determines the normal direction with the above
properties, and then we'll denote the manifolds (Xn+i) and (Xn+2) respectively
as M'n and Mrrn. As we known from Theorem 5 the principal curvature λ of
Mn at Xo corresponding to Xn+1 is actually constant.

λX Λ-X
First we remark that in this case clearly /;2 . ?

+1 is a fix point, and

consequently Mn belongs to a hypersphere Sn+ι(bgzos , ^ — ^ j of P?+ 2. It is

well known [5], [18] that Mn is a minimal hypersurface of Sn + 1(^gcos y>8 J

if and only if Mn is pseudo-umbilical.
Using (1) the principal curvatures of M/n at Xn+i corresponding to Xo and

Xn+2 are respectively found to be

(50) 4"'""^T"

From (50), (29), (30) and (31) then follow respectively the traces corresponding
to Xo and Xn+z, the quadratic mean form, the third fundamental form and the
Ricci form of M/n as

(52) IISr=

(53) ΠI' =

(54) φ'=-jjrl(n-

where a1 are the dual base forms of M/n. (51), (32), (33), (34), (52), (53) and
(54) imply

THEOREM 15. (i) Mn is pseudo-umbilical if and only if Mn is the mean
curvature manifold of M/n or equivalently if M'n is pseudo-umbilical;

(ii) Mn has a conformal Gauss map if and only if M'n has a conformal
Gauss map;

(iii) Mn is Einsteinian if and only if M'n is Einsteinian.

Using (1) again the principal curvatures M"n at Xn+2 corresponding to Xo

and Xn+1 are respectively found to be

(55) ru=^r, r^+1=—jά-, (rί?=rlT+ί=o for ίΦj).

Consequently

(56)
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and so Mfrn clearly is minimal if and only if Kn.1{Xn+2)=0. Moreover the qua-
dratic mean form of M"n being

(57)

where βι are the dual base forms of M//7\ it follows that M"n is essentially not
pseudo-umbilical.

Next consider the following two linear mappings:

(58)

(59)

m : nn+2(M»n)

φ : TXn+2(M»n)

R : f—> \{y"« cos ξ+f'n+1 sin ξ),

Sn : ξ —> cos f [rίj°]+sin ζ[r^
+1] ,

where ? = X 0 cos f+X n +i sin £, (^e^)(Mn)), T$n+2(M"n) is the totally normal space
of M//n at Xn+2 and Sn the space of all real symmetric nxn matrices. Then
M-indexXn+2 M"n=dim Im φ Ker m [12]. From (56) and (58) it follows that

(60)

(61)

Ker m={ξ||(cos ξ—λ sin <?)Σ ?n+2 ^ θ } *

0

1

Lo
Hence M-indexXn+2 M//n=l if and only if UΓn_1(Xn+2)=0, and in all other cases
M-indexχn+2 M / / n=0. Based on (56), (60), (61) and a Theorem of T. Otsuki [13]
we can formulate

THEOREM 16. The following assertions are equivalent:
(i) the manifold Mrtn associated with a manifold Mn is minimal;

(ii) M-indexXn+2 M»n=l;
(iii) the (n—l)-th mean curvature of Mn at Xo and corresponding to Xn+2 is

zero.
A minimal manifold M"n is a minimal hypersurface of an (n-\-l)-dimensional

linear subspace of P"+2.
M"n is essentially not pseudo-umbilical.

§ 13. Manifolds Mn with homothetic Gauss map.

As follows from § 10 a manifold Mn with homothetic Gauss map has two
principal curvatures corresponding to Xn+2, and these curvatures are opposite.
Suppose that

(62) λn+*=-χ*+*=:μ , ( μ = c o n s t a n t z e {1, 2, ••• , p} ,
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Ϊ'ΪΞ{P+1,P+2, - , n } , ( 0 < ί < n ) .

Then by exterior differentiation of

(63) ωf+2=μa)ϊ, ωf+2=—μωi>,

we obtain

(64) <=°

Hence the two distributions defined on M71 by the Pfaffian systems

(65) ω Γ = 0 ,

(66) ωι'=0,

are both completely integrable. Moreover by exterior differentiation of (24) we
find that

(67) μ2=l + λ2.

Then, using (1), it follows that the integral submanifolds of Mn defined by (65) and

(66) are respectively Vn-*~Sn-*(bgcos AJ^^) and V^S^bg cos

We remark J hat in view of §10 Mn is pseudo-umbilical if and only if 2p=n.
In this case, Mn being pseudo-umbilical and having a homothetic Gauss map,
Mn is Einsteinian. According to (34) Mn has a vanishing Ricci form if and
only if

(68) (n

It follows that the only such manifolds are 2-dimensional.

THEOREM 17. A manifold Mn with homothetic Gauss map has the following
properties:

(i) it is locally a Riemannian direct product

where 0<p<n and λ is the principal curvature corresponding to the umbilical
normal direction of Mn

(ii) it is pseudo-umbilical if and only if 2p=n, and the only such manifolds
with vanishing Ricci form are standard flat ton

!2a2+2.

where a is the constant scalar mean curvature.
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§ 14. Pseudo-umbilical manifolds with constant scalar mean curvature.

In this paragraph we will be concerned with manifolds M71 for which Xn+1

is the mean curvature point H. In this case we'll denote M/n, Xn+2 and Mffn

respectively as Hn, H1 and H±n.
We remark that the results formulated in § 12 are generalizations of ex-

plicitely or implicitely stated results of [18] concerning pseudo-umbilical mani-
folds with constant scalar mean curvature. Also from [18] we know the follow-
ing Theorem:

(**) // Mn is a pseudo-umbilical manifold with constant scalar mean curva-
ture then Mn is homothetic with its mean curvature manifold Hn.

With respect to (**) we observe that (53) implies that a pseudo-umbilical
manifold Mn with constant scalar mean curvature is Einsteinian if and only if
it is conform with its associated manifold H±n (note that this conformality be-
comes homothetic if and only if the Otsuki curvature of Mn at XQ corresponding
to H1 [14], [20] is constant). Hence the rectangular triad τ={Mn, Hn, H±n}
build upon a pseudo-umbilical Einstein manifold Mn with constant scalar mean
curvature consists of conformal components. We remark however that τ cannot
consist of isometric components [22].

§ 15. Minimal product manifolds <3ί0}n+1.

From (28) it follows that the second fundamental form of the indecomposa-
ble cartesian product of a manifold Mn and its normal [Xo, Xn+ϊ] is given by

(69) <p(c^ 0 > n + 1 )=(cos un+1—λ sin un+1)λ7l+\ωi)2',

while on the other hand the metrical fundamental form is, based on (26), found

to be

(70) ds\3l0 n + 1 )=(cos un+1-λ sin w n + 1 ) 2 Σ(<) 2 +(ί/w n + 1 ) 2 .

Consequently the principal curvatures of <3iOf7l+1 are
In+2

/r?-t \ „ i2k §r C\

THEOREM 18. A manifold Mn is pseudo-umbilical if and only if the asso-

ciated product manifold Jtto,n+i is minimal.

§ 16. Manifolds Mn with constant Riemannian curvature.

Inspired by [19] we now consider a manifold Mn (see §3) with constant
Riemannian curvature, i. e.
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(72) Ri'ki^-Ktfuδjt-δtkδJt), ^constant.

Here K is the Gauss curvature of Mn. Let SXo be chosen such that Xn+1 deter-
mines the umbilical normal direction (with corresponding principal curvature λ)
of Mn. Then from (7) and (72) it follows that

(73)

Hence we have

(74) γΫYjΓ^-iK+l+λ*), iΦj

(75) r s
+ 2 Σ r]r2=ri+2

Exterior differentiation of

(76) β>f«=- ̂ +2<y?, ( ^ + 2 = r s + a ; rf/ a=o i f

yields

(77) Σ r 5 / V Λ ω J = - ί / r « + 2 Λ

After multiplication by γu+2, (77) becomes

(78)

or equivalently

(79)

Next consider the rectilinear system -Clfn+2 (depending on n parameters)
with general element [_XXJ X n + 2 ]. Putting

(80) T=Xιco$v+Xn+2sinv,

-Cι,n+2 is a normal system if and only if

(81) (dT, Xn+2 cos v-X% sin v> = 0 ,

i. e. if and only if

(82) ω>!+2+dv=0.

In this case (79) reduces to

(83) (K+l+λ*)dΛω%=0.

As follows from (74) manifolds Mn are such that essentially

(84) K+l+λ2Φ0,

and so we have the

THEOREM 19. A manifold Mn with constant Riemannian curvature and for
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which all rectilinear systems -Clin+2 are normal is locally isometric with an n-
dimensional Euclidean space En.

If on the other hand the principal curvatures of Mn corresponding to Xn+2

are constant, then (78) reduces to

(85)

Then if

(86)

we have

(87) dΛω%=0, (Mi);

and if

(88)

we have either (87) or

(89)
Klλ*(^γ=0 , i ' e {1, 2, -. ,n}\7,

where I=Q or a real subset of {1, 2, « ,n} . In the latter situation it follows
from (75) that

(90) n(K+l+λ2)+r

n+2

r*ι±J = 0 ,

and so

(91) rng=et-(K+l+λ2)γ<2, e=±l.

Then however (74) implies that Mn is totally umbilical.

THEOREM 20. A manifold Mn with constant Riemannian curvature and for
which the principal curvatures corresponding to the normal direction rectangular
to the umbilical one are constant is locally isometric with En.

§ 17. Compact surfaces of genus 0 and having an isoperimetric normal
direction which is parallel in the normal bundle.

Finally we consider an isometric immersion x: M2^>P2

e

+N of a C2-manifold
into Pl+N. With X0^M2 we associate an orthonormal simplex SXQ={XA},
(A, B, CEΞ {0, 1, •••, 2+N}\ such that T X o (M 2 )=[XJ, (ί, j , k, /e {1, 2}). Then the
formulae given in § 1 keep being valid with r e {3, 4, «•• , 2+iV}.

Suppose that M2 has an isoperimetric normal direction [3] which is parallel
in the normal bundle. Choosing SXo such that Xs determines this normal direc-
tion and that φ3 is diagonal, we thus have
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(92) r 8=r&+7i=constant, ^=fΆ=0) f

(93) ωϊ=O.

Putting

(94) Lij^γlj-δijL, (Le^)(M2); δ^Kronecker delta),

we define a symmetric tensor Ltj^C1 on M2. Clearly

(95) g*>LiS=f-2L.

We choose L such that g1>3Lij=Q:

(96) L=-γf.

Then we have

(97) Lu=-i22=4-(rϊι-rSa)> L12=L21=0.

Since the covariant derivatives of L ί ; are given by

(98) ΓAr̂ io+

(3=Pfaίϊian derivative), we find

(99)

Exterior differentiation of

(100)

yields

(101)

Moreover (92) implies that

(102)

and consequently

(103)

ω\=γW,

oλγl2—γl

dtfn+C

2W11 T22) -

7^=0.

Supposing that M2 is compact and of genus 0, it then follows from a well
know result of H. Hopf [8] that

(104) Ltj=0.

Hence as a generalization both of Theorem 2.2 in [7] and Lemma 2 in [6], we
obtain
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THEOREM 21. Consider a compact C2-manifold of genus 0 which is isometn-

cally immersed into an elliptic space. Let η be a normal direction of this mani-

fold which is isoperimetric and parallel in the normal bundle. Then η is umbilical.
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