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IMMERSIONS OF CODIMENSION TWO WITH TRIVIAL
NORMAL CONNEXION INTO ELLIPTIC SPACES

By L. VANHECKE AND L. VERSTRAELEN®

Introduction.

The actual article is concerned with the study of isometric immersions of
codimension two with trivial normal connexion of arbitrary dimensional C*-
manifolds into elliptic spaces.

Its main purpose is to generalize a number of results concerning pseudo-
umbilical immersions to immersions having an umbilical normal direction which
is not necessarily determined by the mean curvature point. In particular such
immersions for which the umbilical normal direction is parallel wn the normal
bundle are investigated. The latter immersions can be considered as a gener-
alization of the pseudo-umbilical immersions of codimension two with constant
mean curvature.

The results we’ll generalize now are mostly due to R. Rosca and ourselves
[16], [18], [19], [21], and are closely related to the work done by several other
authors who are cited in the text.

§1. Preliminaries.

Let P2** be an (n+2)-dimensional real elliptic space of curvature 1, and
x: M™P?*? an isometric immersion of an orientable n-dimensional C*-manifold
M™ into P2*2. With the general point X,(u*), (4, J, k, l€{1, 2, .-+, n}), of M™ we
associate an orthonormal simplex Sy,={X,}, (4, B, Ce{0, 1, ---, n+2}), such that
the dual tangent space Tx(M™ of M™ at X, is determined by the points X,.
Then Ny=[X,,:, X,s+o] is the principal quasi-normal of M™ at X, [15]. In the
following we’ll say that each point of N, defines a normal direction of M" at
X,

M?™ is structured by the connexion

1) dX=0iXs, (0it+wi=0),
where % are the connexion 1-forms™¥®. The structure equations are given by

2) AdNwE=wiNwE.
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232 L. VANHECKE AND L. VERSTRAELEN

We have the relations
3) wi=rio",

where @'(u’|du’) is the dual base and 7%; are the connexion coefficients. Since
x(M™) is an integral manifold of

4) o'=0, (r,se{n+l,n+2}),
we find by exterior differentiation using E. Cartan’s lemma
) =17

From the above formulae we obtain
ANl =wiNw} + 27, Q{:%Rﬂklw"/\w‘;
(6) dAwi=05, Qi:%R,"k,wk/\w’;
Riuw+R7=0, RSu+R,5:=0;

R?4=040;,—0;30;+ ; (Farme—7riri);

)
R.Sy= ; Grrh—rirs) -

By definition the normal connexion of x is trivial if R.*,,=0 [9]. The following
assertions concerning x are equivalent:

(i) the normal connexion is trivial;

(ii) the scalar normal curvature Ky=3}R,’y)* [2] is zero;

(iii) the Gaussian torsion t, [1] vanishes;

(iv) the second fundamental forms ¢,=—<{dX,, dX,)=wje®' can be dia-

gonalized simultaneously.

Observe that if a point on N, defines an umbilical normal direction of M™ at X,
(i.e. if the corresponding second fundamental tensor is proportional to the
identity transformation [3]), then ¢,.; and ¢,., can be diagonalized simulta-
neously. In the following all simplices Sx, under consideration will be chosen,
if possible, to be such that both ¢,’s are diagonal, i.e. to be principal.

For an immersion x with trivial normal connexion it is always possible to
determine rectangular points X, on N, such that the unique normal connexion
Jform (or torsion form) @ii} of x with respect to the orthonormal simplex Sx,=

{X,, X, X,} vanishes. Such a simplex will be said to be of fype S,;;. It follows

at once that in this case also the sommets X, of Syer generate manifolds of
codimension two in P2?*? with vanishing torsion form with respect to the same
simplex, and for which moreover we have

(8) Txo(Mn)ETfr((Xr)) ’

so that actually (X,), (X,:;) and (X,.,) have the same tangential connexion
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forms (or rotation forms) .
Finally we mention that all manifolds which will be discussed in this paper
are supposed to be not totally umbilical.

PART 1. Determination of orthonormal simplices of type S,
associated with x.
§2. A characterization for R,°,,=0.

Consider the manifolds (P) with general point

9) P=X,cos p+ X,y sinp, (psD(M™).
Putting N=X,,,cos t+X,.,sint, (€ D(M™)), we find using (1) that
(10) (dP, Ny=0

if and only if
11 orfi=—cotg tdinsin ¢.

(P) will be called general if P+X, and N will be called a general point invari-
antly situated on N, if t=constant and N#X,,,. From (10) and (11) then
follows

THEOREM 1. There exist general manifolds (P) for which the principal quasi-
normal contains a general point invariantly situated on the principal quasi-normal
of M™ if and only if the normal connexion of x 1s trwial.

Moreover it is clear that in particular we have

THEOREM 2. If the principal quasi-normal of a general manifold (P) con-
tains Xyyo then Sx, is of type Syy. If conversely Sy, is of type Sy then the
principal quasi-normal of each manifold (P) contains X,,.

§3. Parallellism in the normal bundle. Manifolds M™.
The mean curvature point of x is defined as [4], [18]
(12) H=fr"X,, (y"=tr [y7,]; f=factor of normalization).

If x is not minimal (H+0), then it is always possible to choose Sy, such that
H=X,,, (**=0). In this case we'll denote X,,, as H*. Then, the scalar
mean curvature o of M™ [4] is defined by

(13) r"=na,
and according to [11] x is pseudo-umbilical if and only if

(14) rut=ad;,.
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Since ¢,4+, can always be diagonalized we can formulate
THEOREM 3. A pseudo-umbilical immersion x has a trivial normal connexion.

Next we remind the following known result [18]:
(*) If x is pseudo-umbilical then the following assertions are equivalent:
(i) ‘SXOE {X()y Xu Hy Hl} is Of type Svlf;
(ii) the scalar mean curvature of M™ is constant;
(iii) the mean curvature field of x is parallel in the normal bundle.
As is well known NeN, is said to determine a normal field on M™ which is
parallel in the normal bundle [25] if

(15) dN=0 (mod X,, X,).

Hence it follows at once from (1) that (*) can be partially generalized in the
following way :

THEOREM 4. An orthonormal sumplex Sy, associated with x 15 of type Syy
of and only 1f X,.., or equwalently X,.,, determines a field on M™ which 1s
parallel in the normal bundle.

Aiming for a generalization of the other part of (*) we make the following
considerations. First suppose that Sy, is such that wrii=0 and that X,., deter-
mines an umbilical normal direction on M". Then exterior differentiation of

(16) oft'=Aw*,

where 1 is the (unique) principal curvature of M™ at X, corresponding to X,.;,
yields

a7 dAN®'=0.

This shows that 2 is constant. Conversely suppose now that X,., determines
an umbilical direction of M™ with constant corresponding principal curvature.
Then exterior differentiation of (16) yields

(18) AP Nor =0,

where A7 are the principal curvatures of M™ at X, corresponding to X,.,.
Consequently, if zero is not a principal curvature with multiplicity n—1 of M"
corresponding to X,.,, or equivalently if Acost? is not a principal curvature
with multiplicity n—1 of M™ corresponding to NeN,, (18) implies that w?{3=0.
A manifold M™ having an umbilical normal direction with constant corresponding
principal curvature and for which zero 1s not a principal curvature with multi-
plicity n—1 corresponding to the mormal direction which is rectangular to the
umbilical one will further on be denoted as M™

THEOREM 5. (i) The principal curvature of M™ corresponding to an um-
bilical normal field which 1s parallel in the normal bundle 1s constant;
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(i) the orthonormal sumplices Sy, X, M™, for which X,., determines the
umbilical normal direction of M™ are of type Sy;.

§4. Concurrent normal fields.

NeN, determines a concurrent normal field on M™ in the sense of K. Yano
[24] if

(19) Ifec d(M™)=2dX,+d(fN)=0.
After diagonalizing ¢,.; we have for N=X,,, and using (1):
(20) O (1= X, +far i X +(d)) Xps =0,

where A?*! are the principal curvatures of M" at X, corresponding to X,.,.

THEOREM 6. If Sy, is an orthonormal sumplex associated with x then the

following assertions are equivalent:
(1) Sxo s of type Sy and X,., determunes an umbilical direction of M™

with constant corresponding principal curvature;
(ii) X4 determines a normal field on M™ which 1s concurrent in the sense

of K. Yano.

Based on Theorem 6 and (*) we obtain the following generalization of a
result of [217:

THEOREM 7. A manifold M™ 1s pseudo-umbilically immersed into P2*? with
constant scalar mean curvature i1f and only if its mean curvature field 1s con-
current in the sense of K. Yano.

§5. On the focal manifolds of the rectilinear system Lopse

Consider the rectilinear system (depending on 7 parameters) with general
element R=[X,, X,,;]. Putting Q=X, cos{+X,.,sin, ((£D(M™")), the develop-
pables and corresponding focal manifolds L, ., are determined by the condition

(21) dQ=0 (mod Xy, X41).
Using (1) we find (21) to be equivalent with
(22) w)(cos {—Art sin £)=0, w?1?sin {=0.

Hence L.+, admits focal manifolds if and only if wiii=0.

In this case the focal manifold corresponding to
(23) W= =@ = =@"=0,

(where ~ denotes omission), is generated by Q({) where
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(24) tg {=—rr .

THEOREM 8. Sy, is of type Sy 1f and only if the rectilinear system L, 4y
admits focal manifolds. In this case the n focal manifolds of L., coincide 1f
and only if X,,, determines an umbilical direction of M™.

§6. The product manifolds ¥, ,.,.

A last determination of simplices S, is given in the following terms. By
definition [23] the indecomposable cartesian product My, of M™ and its normal
[X,, X,+1] is the hypersurface of P2*? with general point

(25) W=X,cos u"*'+X,,, sinu™*,

where u™*?

is a new local coordinate. Using (1) it follows that
(26) dW=(* cos U™+, sin u™*)X,

+(—sin 4" X, cos u™* X, )du" "+ it} sin u" ' X, .
Hence

27 AW, Xp0 =0 0ii=0.

If 0;1}=0 then the second fundamental form of M, is found to be
(28) O(Mo,n11)=—LdW, d Xy, p=(cos u™'— 2 sin u )T (w*)?.
Denoting the type number of Moy [17] by tn (Ho,n+s), (27) and (28) prove

THEOREM 9. Sy, 15 of type Sy if and only if X,,, determines the normal
direction of the hypersurface Moy In this case

tn (‘-mo,nﬂ)én .

PART II. On manifolds A" with an umbilical normal direction.
§7. Quadratic mean form, third fundamental form and Ricci form of M™.

Following M. Obata [10] the quadratic mean form llg, the third fundamental
form III and the Ricci form ¢ associated with x are respectively given by the
formulae

(29) He=X27"rn0'e’,
(30) = 3 (w7)?,
(31) ¢=(n—1)ds*—1l1+1lg .

Supposing X,., determines an wumbilical direction of M™ with corresponding
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principal curvature 4, we find

(32) a=(n2+ 72 )0
(33) M=)
(3) =Ln— DA+ = (AP 472 @)

where A7*? are the principal curvatures of M™ at X, corresponding to X,.,.

§8. Einstein manifolds A ™.

From (34) we derive that M" is Einsteinian (¢~ds?®) if and only if

(35) W= ai=p, (o= AM™).
Then
(36) A= (e LG 40D, (et

hence M™ has two different principal curvatures corresponding to X,.,, say f,
and B,. Suppose now that B, and B, have the same multiplicity m, (n=2m).
In this case (35) implies

7 (Bi—B)(1—m)=0.
Thus if n>2 we have B8,+f,=0, and so y"**=0.

THEOREM 10. If M™ is an Einstewn manifold having an umbilical normal
direction then it has exactly two different principal curvatures corresponding to
any normal direction different from the umbilical one. If these curvatures are of
equal multiplicity and n>2, then M"™ is pseudo-umbilical.

§9. Manifolds A/ with vanishing Ricci form.

Next let’s consider manifolds M™ having a vanishing Ricct form, i.e. sup-
pose that

(38) (n—1) 1+ 25— (A +2)2 - pr2ppt2=()
Summation over i yields

(39) n(n=D)(1+2) = DA+ ()=0.

We recall that the norm ¢ of the second fundamental form, which in general
is defined as [9]

(40) =2 G0,

actually is found to be
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(41) o=nl+ (4122,

Combining (39) and (41) it follows that
(42) n(n—1)+n22—a+("**)2=0.

THEOREM 11. A manifold M™ with vanishing Ricci from 1s pseudo-umbilical
if and only i1f there exists an umbilical normal divection with corresponding prin-

capal curvature A such that
o=n(n—1)+n?2%,

where o denotes the norm of the second fundamental form.

In the previous Theorem clearly A=h, the scalar mean curvature of M".
In general & is defined as [19]
(43) hz_%:_ [(rn+l)2+(rn+2)2]1/2.

Hence if X,,, determines an umbilical direction then
(44) nPhP=n®4(y"+%)2.
Consequently supposing moreover that ¢=0, we have
(45) n*h*=o—n(n—1).
In particular (45) implies the following
THEOREM 12. Let M™ be a manifold with vamishing Ricci form and having

an umbilical normal direction. Then the scalar mean curvature is constant if
and only 1f the norm of the second fundamental form is constant.

§10. Manifolds M™ with conformal Gauss map.

As follows from (33), M™ has a conformal Gauss map (Ill~ds?) if and only if
(46) nr=egf, (Bed(M™); d==1).

Hence if moreover M™ is pseudo-umbilical then the two (opposite) principal
curvatures corresponding to X,., do have the same multiplicity (and conversely),
and so in this case M™ is essentially even-dimensional.

On the other hand if M" is pseudo-umbilical and has two principal curva-
tures corresponding to X,., (and X,,, determines an umbilical direction), then
clearly (46) is satisfied.

THEOREM 13. A manifold M™ having an umbilical normal direction has the
following properties:

(i) 1its Gauss map is conform if and only if M™ has but two principal cur-

vatures corresponding to any normal direction different from the umbilical one
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and these curvatures are opposite for the normal direction which is rectangular
to the umbilical one;

(ii) tf M™ has a conformal Gauss map and 1s pseudo-umbilical then M™ 1s
essentially even-dimensional ;

(iii) if M™ has two principal curvatures of equal multiplicity corresponding
to any normal direction different from the umbilical one, then its Gauss map 1s
conform if and only if M™ 1s pseudo-umbilical.

PART III. On manifolds A" having an umbilical normal direction
which is parallel in the normal bundle.

§11. A condition for a normal direction which is parallel
in the normal bundle to be umbilical.

Let Sx, be a simplex of type S,;; associated with x. Then the metrical
fundamental form of the manifold with general point X, is found to be

(47) dXpi1 X =) 0" .

Consequently the manifolds M"™ and (X,,,;) are conform to each other if and
only if

(48) BH=el2, (AedMm™); ef==x1),

i.e. if either X,., determines an umbilical direction or M"™ has two principal
curvatures corresponding to X,., and these are opposite.

Reminding that the r-th mean curvature K, (N) of M™ at X, and correspond-
ing to NN, is defined by the formula [5]

(49) ()EAN)=SE(N) -+ k(N),  (1=r=n),

where k;(NN) are the principal curvatures of M" at X, corresponding to NV, we
have the

THEOREM 14. Let Sy, be of type Syyy. Then for each positively valued func-
tion on M™ there exists a class of manifolds M™ which are conform to the mani-
folds (X,.,) with the gwen function as factor of conformality; in each such class
the two manifolds for which the first mean curvature corresponding to X,.,
attains an extreme value are exactly those for which X,,, determines an umbilical
direction.

§12. Manifolds A", M'™ M"™.

In the following we will always (except if explicitely mentioned otherwise)
consider manifolds M”™ having an umbilical normal directio;z which is parallel in
the normal bundle. Such manifolds will be denoted as M". Furthermore Sg,
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will be choosen such that X,,, determines the normal direction with the above
properties, and then we’ll denote the manifolds (X,:;) and (X,:,) respectively
as M'™ and M”". As we known from Theorem 5 the principal curvature A of
M™ at X, corresponding to X,., is actually constant.

First we remark that in this case clearly 'QX";;—\/%“ is a fix point, and

—#) of P;’”. It is

well known [5], [18] that M™ is a minumal hypersurface of S"“(bgcos 4

if and only if M™ is pseudo-umbilical. N
Using (1) the principal curvatures of M’* at X,,, corresponding to X, and
X.,+. are respectively found to be

n+2
(50) S -

consequently Mr belongs to a hypersphere S "“(bg cos v

2+1

From (50), (29), (30) and (31) then follow respectively the traces corresponding
to X, and X,HZ,Nthe quadratic mean form, the third fundamental form and the
Ricci form of M'® as

(51) -+ —L

(52) y=— [n-+7" 20,

(53) I'= %2 [+ ("),

(54) ¢/ == [(n— 1)L+ )= () -+ 2] (a')

where a' are the dual base forms of M'™ (51), (32), (33), (34), (52), (53) and
(54) imply

THEOREM 15. (i) M s pseudo-umbilical 1f and only 1f M™ 1s the mean
curvature manifold of M'™ or equivalently 1f M'™ is pseudo-umbilical ;

(ii) M™ has a conformal Gauss map 1f and only 1f M™ has a conformal
Gauss map;

(iii) M™ is Einsteimwan 1f and only 1f M'™ 1s Einsteinan.

Using (1) again the principal curvatures M’™ at X,+: corresponding to X,
and X,,., are respectively found to be

(9 =, t=—he, GR=r=0 for i),

Consequently

(56) //0_2 1n1+2 , r/m+1:_212 —,EI-FZ’_’
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and so M’" clearly is minimal if and only if K, ,(X,.,)=0. Moreover the qua-
dratic mean form of M’" being

J/— 2 1 (481‘)2
(57) =1+ 2)(Ser) 2l

where ' are the dual base forms of M”", it follows that M"™ is essentially not
pseudo-umbilical.
Next consider the following two linear mappings:

(58) s Thy (M) —> R §—> (77 cos €477+ sin &),
(59) ¢, Txn+2(M”n) —>8,: & —>cos 5[7,//0]_{_5111 ED,/mH ,

where E=X,cos £+ X, ., sin &, (¢ .CD(M "N Tx, +2(M” ™) is the totally normal space
of M"™ at Xn+2 and S, the space of all real symmetric nXn matrices. Then
M-indexy,,, M'™=dim Im ¢ Kerm [12]. From (56) and (58) it follows that

(60) Ker m={£l(cos §— 1 sin &) £ e =0}
. 0
(61) $(&)=(cos £&— 2 sin &) _2%
0

Hence M- indeXxp., M'"=1 if and only if K, ,(X,+,)=0, and in all other cases
M-indexx,,, M’™=0. Based on (56), (60), (61) and a Theorem of T. Otsuki [13]
we can formulate

THEOREM 16. The followmg assertions are equivalent:

(i) the manifold M”" associated with a manifold M™ is mnimal;

(i) M-indexy,,, M""=1;

(iii) the (n—1)-th mean curvature of M™ at X, and corresponding to X,y 1S
zero.

A minimal manifold M’ is a minimal hypersurface of an (n-+1)-dimensional
linear subspace of P2+

M"™ 15 essentially not pseudo-umbilical,

§13. Manifolds M™ with homothetic Gauss map.

As follows from §10 a manifold M™ with homothetic Gauss map has two
principal curvatures corresponding to X,.,, and these curvatures are opposite.
Suppose that

(62) v=—Jett=y  (p=constant; ic{l,2, -, p},
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ve{p+1, p+2,-+,n}, (0<p<n).

Then by exterior differentiation of

(63) P =pe',  ot=—po®,

we obtain

(64) wi'=0.

Hence the two distributions defined on Mr by the Pfaffian systems
(65) =0,

(66) 0'=0,

are both completely integrable. Moreover by exterior differentiation of (24) we
find that

(67) pr=1420 .

Then, using (1), it follows that the integral submanifolds of M™ defined by (65) and
. Rep o Qne 2441 A2
(66) are respectively V*?=S p(bg COE \/2——2212 > and V”ES”(bg cos %mlzi% )
We remark that in view of § 10 M" is pseudo-umbilical if and only if 2p=n.
113 this case, M™ being pseudo-umbilicNal and having a homothetic Gauss map,
M™ is Einstetmian. According to (34) M™ has a vamishing Ricci form if and
only if

(68) (n—1)(142%)—p*=0.
It follows that the only such manifolds are 2-dimensional.

THEOREM 17. A manifold M™ with homothetic Gauss map has the following
properties:
(i) 1t is locally a Riemannian direct product

222 +1 - 2%+1
S"<bg cos m)xs ?’<bg cos m) ,
where 0<p<n and ZNis the principal curvature corresponding to the umbilical
normal direction of M";
(ii) 1t is pseudo-umbilical 1f and only 1f 2p=n, and the only such manifolds
with vamshing Ricct form are standard flat tor

2 2
Sl<bg cos %) X S’<bg cos %—) ,

where o 1is the constant scalar mean curvature.
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§14. Pseudo-umbilical manifolds with constant scalar mean curvature.

In this paragraph we will be concerned with manifolds M™ for which X
1S the mean curvature pownt H. In this case we'll denote A?[”‘, X,p+2 and M
respectively as H", H* and H'",

We remark that the results formulated in §12 are generalizations of ex-
plicitely or implicitely stated results of [18] concerning pseudo-umbilical mani-
folds with constant scalar mean curvature. Also from [18] we know the follow-
ing Theorem :

() If M™ 1s a pseudo-umbilical manifold with constant scalar mean curva-
ture then M™ 1s homothetic with its mean curvature manifold H".

With respect to (**) we observe that (53) implies that a pseudo-umbilical
manifold M™ with constant scalar mean curvature 1s Einsteinian 1f and only 1f
it 1s conform with its associated manifold H** (note that this conformality be-
comes homothetic if and only if the Otsuki curvature of M™ at X, corresponding
to H* [14], [20] is constant). Hence the rectangular triad r={M", H", H*n}
build upon a pseudo-umbilical Einstein manifold M™ with constant scalar mean
curvature consists of conformal components. We remark however that = cannot
consist of 1sometric components [22].

§15. Minimal product manifolds ¥, ...

From (28) it follows that the secoNnd fundamental form of the indecomposa-
ble cartesian product of a manifold M" and its normal [X,, X,+,] is given by

(69) O(HMo,ne1)=(cos u™*—2 sin u™ )2+ (w")?,

while on the other hand the metrical fundamental form is, based on (26), found
to be

(70) ds*(HMo,ne1)=(cos u™*— A sin u™*1)* 3 (*)* +(du™*)*.

Consequently the principal curvatures of M., are
X?+2
cos u"**—Asin u"** ’

Kn1=0.

(71) K=

THEOREM 18. A manifold M™ is pseudo-umbilical if and only i1f the asso-
cated product manifold Mo gy ts minimal,

§16. Manifolds M™ with constant Riemannian curvature.

Inspired by [19] we now consider a manifold M™ (see §3) with constant
Riemannian curvature, i.e.



244 L. VANHECKE AND L. VERSTRAELEN
(72) Rijkl=—K(5”5jk——5ik5ﬂ) ’ chonstant .

Here K is the Gauss curvature of M™ Let Sy, be chosen such that X, deter-
mines the umbilical normal direction (with corresponding principal curvature 2)
of M™. Then from (7) and (72) it follows that

(73) TR =Rttt = — (K14 2%)(040 14— 0340 1) -

Hence we have

(74) rER=—(K4+142%),  1#5;

(75) T?f'z]% P =rE G = =— (= 1)(K+1+2%) .
Exterior differentiation of

(76) WfP=—0),  (GP=rEt; =0 if i#))

yields

77 ZJ}r;f,-*“’w,-’/\w’=——dr;’i+2/\wi°—7;;-+2‘]‘3a)i’/\w,".

After multiplication by 7% (77) becomes

(78) [K+H14+ 245 d Ao +15 2 dr Ao =0,
or equivalently
(79) (K+14+2)d Ao+ 13 d(r5 0,2 =0

Next consider the rectilinear system ,,,, (depending on n parameters)
with general element [X,, X,.,]. Putting

(80) T=X,cosv+X,.o8iny, (ved(Mm),
L n+2 is a normal system if and only if

(81) T, Xpio cosv—X, sinvd=0,

i.e. if and only if

(82) Wi dy=0,

In this case (79) reduces to

(83) (K+1+2)dA0*=0.

As follows from (74) manifolds M™ ar.e such that essentially
(84) K+1+22+0,

and so we have the

THEOREM 19. A manifold M™ with constant Riemannian curvature and for
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which all rectilinear systems L,n., are normal is locally isometric with an n-
dimensional Euclidean space E™.

If on the other hand the principal curvatures of Mm corresponding to X,
are constant, then (78) reduces to

(85) [K+1+24(5) Jd A w'=0.
Then if

(86) K>—(1+4%

we have

(87) dAw'=0,  (Vi);

and if

(88) K<—(1+2%)

we have either (87) or
dAw'=0, iel,

(89) ~
K+1+ 2+ )=0, e{l, 2, - ,ni\I,
where I=0 or a real subset of {1,2,---,n}. In the latter situation it follows
from (75) that
(90) WME+1+22)+ 2t =0,
and so
(o1) ryg=el—(K+1+2)1",  e==*1.

Then however (74) implies that M”" is totally umbilical.

THEOREM 20. A manifold M™ with constant Riemannian curvature and for
which the principal curvatures corresponding to the normal direction rectangular
to the umbilical one are constant is locally isometric with E™,

§17. Compact surfaces of genus 0 and having an isoperimetric normal
direction which is parallel in the normal bundle.

Finally we consider an isometric immersion x: M®*—PJ*¥ of a CZ%manifold
into P¥*V. With X,eM?® we associate an orthonormal simplex Sx,={X,},
(A, B,Ce{0, 1, -+, 24+ N}), such that Tx,(M*=[X.], (i, j, k, [e{1,2}). Then the
formulae given in §1 keep being valid with »r={3, 4, -+, 2+ N}.

Suppose that M? has an isoperimetric normal direction [3] which is parallel
in the normal bundle. Choosing Sx, such that X, determines this normal direc-
tion and that ¢, is diagonal, we thus have
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(92) r’=ri+rh=constant,  (y,=74=0),

(93) 0;=0.

Putting

(94) Li;=7%—04L, (Le 9(M?); 6,;=Kronecker delta),
we define a symmetric tensor L;;€C' on M?. Clearly

(95) g L;=r*—2L.

We choose L such that g*/L;;=0:

(96) L="7".

Then we have

(97) Lu=—Lu=4(i—7h), Lu=Lu=0.

Since the covariant derivatives of L;, are given by
(98) VkLij:akLi;‘|‘Tfn‘Lu+7’ijLu s
(0=Pfaffian derivative), we find
VoL =0, h— ) — (=7,
2
(99)
P\ L= — =0, — ) —Thrh—7h)
2
Exterior differentiation of
(100) wi=rio', W3=7r40’
yields
(100 07 =rh(rh—7d),
817’32:7’122(7%—7’%2) .
Moreover (92) implies that

(102) atrzlii_}—azr%:o ’
and consequently
(103) V,L,,=V,L,,=0.

Supposing that M? is compact and of genus 0, it then follows from a well
know result of H. Hopf [8] that

(104) Li,=0.

Hence as a generalization both of Theorem 2.2 in [7] and Lemma 2 in [6], we
obtain
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THEOREM 21. Consider a compact C*-manifold of genus 0 which 1s isometri-
cally immersed wnto an elliptic space. Let 5 be a normal direction of this mani-
fold which is isoperimetric and parallel in the normal bundle. Then 7 is umbilical.
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