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ON ANGULAR DERIVATIVES OF UNIVALENT FUNCTIONS

Dedicated to Professor Yύsaku Komatu on his 60th birthday

BY KOTARO OIKAWA

1. Statement of Results.

1.1. Let W—F{Z) be a regular univalent function on the right-half plane
ReZ>0. If

(1.1) lim F(Z)=oo
Z-+oo

Stolz

(1.2) lim

then τ is called the angular derivative of F. Here the symbol "Stolz" means
that the limiting values are taken under the restriction that Z moves within
the Stolz domains {Z\r< \Z\, |argZ| <ττ/2—ε}, ε>0 being arbitrary and r>0
indefinite.

We are interested in the problem of finding necessary conditions and suf-
ficient conditions for F with (1.1) to have a finite non-zero angular derivative
τ. The conditions are to be expressed in terms of geometric properties of the
image domain. This problem has been studied by a large number of mathe-
maticians for these fifty years. For a brief history of studies, we refer to the
introductions of Warschawski's papers [13] and [14]. Among the latest con-
tributions are Eke [6, 7], and Warschawski [15].

In the present paper, we shall apply the method of module (i. e. the method
of extremal length) to the study of the above problem.

Our Theorem 1 is an improvement of Ahlfors' result [1]. It is obtained by
replacing a part of Ahlfors' proof by a pair of inequalities involving module
gotten by Jenkins-Oikawa [8].

Theorem 2 is an improvement of Warschawski's result [12]. Its sufficiency
part is contained implicitly in Dufresnoy [2] and Warschawski [11] (see more
detailed explanation in 1.5°).

The author wishes to express his heartiest gratitude to Professor S. E.
Warschawski, who read the manuscript with great care and gave him numerous
valuable advices.

1.2. Let Ω be the image of the right-half plane under the conformal map-
ping W— F(Z). If F satisfies (1.1), then Ω possesses an accessible boundary
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point p over W=co, which corresponds to Z=oo in the well-known manner.
Conversely, if so, F satisfies (1.1).

Suppose such an F has a finite non-zero angular derivative τ. Then Ω
contains any Stolz domain about the ray a.τgW= —argτ, and the accessible
boundary point p is identical with the one over W=oo determined by the ray
W-—argr. These facts are apparent from the following:

LEMMA 1. Let W=H(Z) be a regular univalent function on the domain
Σ={Z\ro<\Z\, |argZ|<τr/2-ε0}, 0<r0, O^εo<τr/2. Suppose

oo, lim ττ/y\

as ίaZ-^oo, Then, for any ε1(>e0), there exists R^yO), r2(>r0), and ε2(>ε0)
suchthat{W\R1<\W\AΆrgW+2iτgτ\<π/2-εx}(zH{{Z\r2<\Z\ί\^gZ\π/2-ε2}).

The fact that lim((argZ)-(arg#(Z)+argτ))==O uniformly as
furnishes the proof immediately. The detail may be omitted.

According to this observation, in the present paper, we shall consider only
those Ω having the above mentioned properties. Furthermore, on performing
rotation and parallel displacement of the TF-plane, if necessary, we may assume
in advance that F and Ω satisfy the following conditions:

(1.3) Ω is a simply connected domain with more than one boundary point
having the properties that 0^42, ooφβ, and that, for any εx (0<ε1<τr/2),
there exists R,>0 with {W\R1<\W\f |arg W\<π/2-ε1}dΩf

(1.4) The accessible boundary point of Ω over W=oo determined by the
positive real-axis corresponds to Z=oo under F.

By the condition (1.3) there exists a real number R such that the open
interval (R, oo) on the real-axis is contained in Ω. Let Ro be the smallest of
such R; clearly RQ^0.

For R with R0^R<<χ>, denote by Ω(R) the connected component of Ωr\
{W\R<\W\} containing the interval (R, oo). Then the condition (1.4) is easily
seen to be equivalent with the following:

(1.5) For any R with R0^R<°°, there exists an r0 such that the image
of the interval (r0, oo) under F is contained in Ω(R).

1.3. For R with R0<R<<yo, let Λ(R) be the connected component of Ωr\
{W\R=\W\} intersecting with the real-axis. It is across-cut of the domain Ω
and, therefore, Ω—Λ(R) consists of two connected components, which are simply
connected domains. The intervals (RQ, R) and (R, oo) belong to different com-
ponents respectively. We denote by Ω*(R) the one containing (R, oo).

Let Θ(R) be the angular measure of the arc A(R) thus RΘ(R) is the length
of A(R). The function Θ is known to be measurable on the interval (Ro, oo)
(cf. Ahlfors [1], pp. 5-7).
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For Rx and R2 with R0<R1<R2, let Ω*(Rlf R2) be the connected component
of Ω—A(R1)

XJA(R2) containing the interval (Rlf R2). It is a simply connected
domain. We consider the family of the locally rectifiable curves in Ω*(Rlf R2)
separating A(Rλ) from A(R2), and denote its module (i. e., the reciprocal of
extremal length) by M(Rlf R2). The relation

is well known.

In the following, we are interested in the function

(1.6) M(R*,R)—i-logi?

of R defined on the interval (R*, oo), where R*>R0.

LEMMA 2. Whether or not the function (1.6) is bounded (above and/or below)
is independent of the choice of R*.

It is apparent from the following easily verified relation: If R*<R* and
2R'*<R, then

1.4. In order to state our first result, we denote by Ω the connected com-
ponent of Ωr\{W\ReW>0} containing (Ro, oo). For this domain, we introduce
the quantity M(R1} R2) which is, by definition, the counterpart of M(R1} R2). It
is possible to do it because the domain Ω satisfies (1.3).

THEOREM 1. Let W=F(Z) be a conformal mapping of the right-half plane
onto a domain Ω with (1.3). Suppose (1.1) (or equivalently (1.4), or else (1.5)) is
satisfied.

(a) // a finite non-zero angular derivative (1.2) exists, then, for all R*(>R0),
the function

of R on (R*, oo) is bounded (above and below).
(b) // there exist R* (>R0) and R* (>R0) for which

is bounded below and

is bounded above, then a finite non-zero angular derivative (1.2) exists.

This is an improvement of Ahlfors' result [1 pp. 35-36, Satze I, II]. His
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proof is based on his principal inequalities and Wolff-Valiron-Landau-Caratheo-
dory's theorem. The essence of our proof (2.Γ-2.70) is the replacement of the
former by Lemmas 4, 5 (2.2°), which Jenkins-Oikawa [8] have obtained. That
our result contains Ahlfors' will be apparent from the inequalities (2.8) and (3.11).
How much improved will be illustrated by examples (1.6° and 1.7°).

1.5. Next we consider a more restrictive case where Ω is such that

(1.7) Ω(R1)={Rei^\Rι<R, -Φ1(R)<Φ<Φ2(R)}

for an i?1(>7?0) Here Φk(R) is a function on (R1} oo) subject to the following
conditions (&=1, 2):

(1.8) 0<Φk(R)S2π)

(1.9) there exists a finite number Vk which dominates the total
variation of Φk(R) over any closed subinterval of (Rlf oo).

THEOREM 2. Let W=F(Z) be a conformal mapping of the right-half plane
onto a domain Ω with (1.3), (1.7), (1.8) and (1.9). Suppose (1.1) (or equivalently
(1.4), or else (1.5)) is satisfied. A finite non-zero angular derivative (1.2) exists
if and only if the finite limit

π-θ(R) dR
R^JR.^ΘCR) 2Γ

exists for some (or equivalently all) R* (>R0). In this case

holds for the unrestricted approach Z^oo, ReZ>0 (i.e., Z is not restricted to
Stolz domains).

Proof is given in 3.Γ-3.90. This theorem is an improvement of Warschaw-
ski's result [12: p. 530, Theorem XIII], where the smoothness and other pro-
perties of the functions Φλ and Φ2 are assumed. Under the assumption of the
present theorem, Dufresnoy [2] (cf. also Dufresnoy et Ferrand [3; Theoreme
2]) showed that the condition is sufficient for the existence of the angular deri-
vative τφO, oo. On the other hand, since the "Unbewalltheit" condition of
Warschawski [11 Satz 7] is satisfied, the angular derivative is the unrestricted
derivative. In this sense, the sufficiency part of the present theorem is regarded
as being known.

1.6. We present two illustrative examples for Theorem 1.

Example 1. Given 0<εw<π/2 with lim εn=0 and 0<Rn with Rn+1/Rn^l+c
for some c>0, let

Ω={W\ReW>0}-(jCn,
n=l
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where Cn={W\ \W\=Rn, π/2-εnS |arg W\ ^π/2}. Then the W=F(Z) has τΦQ,
co if any only if

Σ ε n

2 < α o .
7 1 = 1

Remark. The if-part of this conclusion has been obtained by Wolff [16]
without assuming Rn+i/Rn^l+c>l Ahlfors [1 pp. 39-40] proved the sufficiency
of Σε n <oo for the existence of τφO, oo, and announced the necessity of Σ,εn

2<oo.
We present this example, which is derived from Theorem 1 by routines in the
theory of module, in order to show how much our theorem improves that of
Ahlfors.

Proof. M(R*, R)—(l/π) log R is always bounded below. Besides Ω—Ω. Thus,
TΦO, OO exists if and only if

M(R*, R) logR is bounded above.

Map Ω by w=\ogW (principal value) conformally onto D (cf. 2.1°). Let Γ(a, b)
be the family of the curves joining {w\lmw>0}r\dD and {w\lmw<0}r\dD
within D(a, b)= {w\a<Rew<b} r\D. Let m(a, b) be the module of Γ(a,b).
Evidently, the above mentioned condition is equivalent to the following:

(1.10) m(a, b) is bounded above

as a function of b on (a, oo).
Suppose (1.10) is satisfied. Let un = \ogRn, Dn= {w<=D\un—εn/2<Rew<

wn+en/2}. Take n0 so that Dnr^Dn+1=0 for every n^n0. Put a=uno+εno/2.
For an arbitrary N, take b with uN

J

ΓεN/2^b<uN+1—εN+1/2. Let Γ*(a, b) be the
family of the curves joining {w\Rew—a}f~\D and {w\Rew=b}r\D within D(a, b),
and let Γ% be the family of the curves joining {w\Rew=un—εn/2}r^D and
{w\Rew=un

J

rεn/2} within Dn. Then

1 N

m(a, b)=m{Γ*(a, b))~1^—(b—a— Σ sn)+m( JΓ*)"1.
π n=n0

The density ρn(w) which is defined to be equal to 1 on {w\ \\mw\<π/2—εn/2}

Γ\Dn and 0 elsewhere satisfies J ρn\dw\^εn for every ^ G Γ * . Accordingly

and, therefore,

for arbitrary N. We conclude Σ
Conversely, suppose Σ 4 < ° ° Take nQ so that4εn<ττ for every n^n0. Put

a—uno—εno. For an arbitrary b (>α), take N with uN+εN^b<uN+1+εN+1 and
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N

consider the density ρ(w) defined as follows: ρ(w)=2 on U {w\un—εn<Rew
n=n0

<un+εn, \lmw\^π/2—2εn}, p(w)=l on other part of D(a, b), and p(w)=0 else-

where. Since | ρ\dw\^π for every γ<=Γ(a, b), we get

m(a,

thus (1.10).

1.7. Examrle 2. Given Rn, R'n with 0<Rn<Rf

n<Rn+1, let

Ω={W\0<\W\, \BigW\<π}-\JEnUEί,
l

where En={W |Re W=0, R'n^ |Im W\ ̂ Rn+1}, Ei={W\\W\=Rn+1,π/2£\argW\
W=F(Z) has τΦO, oo if

2

< O O .

Remark. This shows that the angular derivative τΦO, oo may exist even-
though the relevant boundary point is an interior point of the closure of Ω.
This condition can also be derived from an already known criterion, e.g.,
Lelong-Ferrand [10; p. 26].

Proof. It suffices to verify that M(R*, R)—(l/π) log R is bounded below. As
before, we shall show that

(1.11) m(a, b) is bounded below.

Consider Γ*(a, b) as before. Let un=\ogRn, u'n=\ogR'n, and put a=ulβ For
an arbitrary b (>α), take N with uN<b^uN+1. The density p(w) which is, by

N+l

definition, equal to 1 on {w\ \lmw\^π/2}^J \J {w\un^RewSun+2(uf

n—un), π/2S
71=1

|Im w\^π/2+(uf

n—un)}, and 0 elsewhere, satisfies J p\dw\ ^(b—a) for every

" ' " Thus 7

m(a, b)=rn(Γ*(a, b)

N+l

={b-a)\π{b-a)+A Σ iK-u
l

Therefore, the convergence of Σ K - w n ) 2 implies (1.11).
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2. Proof of Theorem 1.

2.1. By means of z=\ogZ, the principal value, the right-half plane ReZ>0
is mapped conformally onto the horizontal strip

The domain Ω with (1.3) in the T^-plane is mapped onto D by

(2.1) w=\ogW,

where log is the branch being real-valued on the interval (Ro, oo). The func-
tion W=F(Z) is transformed to

w=f(z);
namely /(;?)—log F(ez).

In accordance with the condition (1.1),

(2.2) lim/0O=oo as Sδ^z-^+oo

for any δ (0<δ<π/2), where

Sδ={z\\lmz\<^—δ}.

The relation (1.2) is

(2.3) lim(z-f(z))=logτ as Sδ=>z->+oo

for every δ.
Corresponding to (1.3), D satisfies the following condition:

(2.4) For every ε (0<ε<7r/2), there exists a such that
{w\a<Rew, |Im w\<π/2-ε}dD.

Let a0 be the smallest value of the a with (α, oo)cΛ Clearly a0=\ogR0. For
every a with a o^^<°°, we denote by D(a) the image of Ω(R), a=\ogR, under
the mapping (2.1). According to (1.5) we have the following:

(2.5) For every a (ao^a<oo), there exists an x0

such that /((x0, oo))c/)(α).

Let σ(a) and Z)*(α) be the images under (2.1) of A(R) and Ω*(R), respec-
tively, where α=logi?. The length θ(a) (=θ(ea)) of σ(a) satisfies

(2.6) 0<θ(a)^2π

for ao<a<oo and, because of (2.4),

(2.7) τr^lim0(α).
α->-f oo

For a, b with ao<a<b, let D*(a, b) be the image of Ω*(ea, eb) under (2.1).
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Denote by m(a, b) the module of Γ(a, b) which is by definition the family of
the locally rectifiable curves in D*(a, b) separating σ(ά) from σ(b). Let mo(a, b)
be the module of the family {σ(u)\a<u<b}. We have m{a, b)=M(ea, eb) and

du _,

Finally, let D be the connected component of D f\S containing (αo» °°λ and
m{a, b) be the quantity m(a, b) considered with respect to the domain D. Now,
Parts (a) and (b) of Theorem 1 are equivalent respectively to the following:

PROPOSITION 1. // the finite limiting value (2.3) exists, then

m(a*, b)——

is bounded {above and below) for α*<6<oo, where a* (>α 0) is arbitrary.
PROPOSITION 2. // there exist a* (>a0) and a* (>α 0 ) such

m(a*, b)——

is bounded below for a*<b<oo, and

is bounded above for ά*<b<oo, then the finite limiting value (2.3) exists.

2.2. For a greater than a0, γa=f~\σ(a)) is a cross-cut of the domain S. Its
end points are not +oo and, except possibly for one α, not — oo and, there-
fore,

x'(a)= inf Re z, xff{a)— sup Re z

are finite.

LEMMA 3. There exists an aλ (>α 0 ) such that, for every a^alf one end
point of γa is on the upper edge {z\lmz=π/2} of S and the other is on the
lower edge {z\lmz=—π/2}. Furthermore

(2.9) lim x\u)=oo .
u—xx.

It is trivial from the boundary correspondence (1.4), (1.5).

LEMMA 4. // a^a<b,

(2.10) m(a, b)^^-(x»(b)-xf(a)).

If further x"(a)^xf(b),

(2.11) m(a, b)£-±-(x'(b)-x"(a))+2.

Proof. The former is trivial. The latter is nothing but the inequality (2)
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of Jenkins-Oikawa [8; p. 665].

LEMMA 5. If a, b, and c satisfy ax<a<b, x'^aj^x^a), a1+2c^a, {w\a—2c
<Rew<b+2c, \\mw\<c}aD*{a-2c, b+2c), then

(2.12) —(x"(b)-x'(a))^m(a, b)+-^-.

Proof. The following lines are generalization of the argument in Jenkins-
Oikawa [8; pp. 668-669]. Let Γ be the family of the/-images of curves joining
the upper edge and lower edge of S within {z\x'(a)<Rez<x"{b)}r\S. Put Γo=
Γ—Γ(a, b). Clearly their modules m{Γ) and m(Γ0) satisfy

-±-(x"(b)-x'(a))=m(Γ)^m(a, b)+rn(Γ0).

In order to estimate m(Γ0), observe that, for every γ^Γ0, the following five
cases can occur:

(i) γdD*(a—2c, a+2c); then a subarc of γ joins {w|Im w—c) and {w\\mw
= -c} within {w\a-2c<Re w<a+2c, \lmw\<c}.

(ii) γc:D*(b-2c,b+2c); similarly within {w\b-2c<Re w<b+2c, \lmw\<c}.
(iii) neither (i) nor (ii), and γr^D*(a-\-2c, b—2c)Φ0; then there exists a sub-

arc of γ either joining σ(a) and σ(a-\-2c) within D*(a, a+2c), or joining
σ(b-2c) and σ(b) within D*(b—2c, b).

(iv) neither (i) nor (ii), and γr\D*(b-{-2c)φ0 then a subarc of γ joins σ{b)
and σ(b+2c) within D*(b, b+2c).

(v) neither (i) nor (ii), and γr\{D—D*(α—2c))φ0; then a subarc of γ joins
σ(a—2c) and σ(a) within D*(a—2c, a).

Now, consider the density p(w) defined to be equal to 1 on Dr\ί{w\a—2c<Rew

<a+2c}\J{w\b-2c<Rew<b+2cU and 0 elsewhere. We have f p\dw\^2c for
7

every γ^Γ0. Therefore

— c '

2.3. If ax^La2<b and x'f(a2)^xf(b), then (2.11) implies

(m(a2, b)—|-) + ( -

If, further, α2 is taken so large that xrf{aλ)^x'(a2), a1+2π/3^a2, and {w\a2—2πβ
<Rew, |Imw;|^7r/3}c^*(α2-27r/3), then the (2.12) for c=π/3 implies

Consequently, if α2 is sufficiently large and xff(a2)^Lxr(b) (which is satisyed if b
is sufficiently large), we obtain
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/ o ;t"(α2) \
V π )

*-Λz))<ί(m(a»b)-

for every

2.4. Proof of Theorem 1, Part (a). We prove Proposition 1. Take a δ
with 0<<5<τr/2. Since the finite limit (2.3) exists, we find K such that — K^
Re(z—f(z))^K for every z^Sδ with Rez^a,. Take an a2 of (2.13) and then,
for every b with xn{a2)^xf{b), take z^γbr\Sδ. We have

Consequently, if α*=α2, rn(a*, b)—b/π is bounded for a*<b<oo. By Lemma 2
this α* may be replaced by any one greater than a0.

2.5. Proof of Part (b) needs the following (Ahlfors [1 pp. 29-31]):

THEOREM OF WOLFF-VALIRON-LANDAU-CARATH£ODORY. // a regular func-
tion G(z) on the right-half plane ReZ>0 satisfies ReG(Z)>0, then the limiting
value

exists,

2.6. The domain Ω of Theorem 1 possesses the accessible boundary point
p over W=oo determined by the positive real axis. Let P be the conformal
mapping of ReZ>0 onto Ω under which Z=oo corresponds to p. By Theorem
of Wolff-Valiron-Landau-Caratheodory the limiting value

exists.
As in 2.Γ, we transform W—F(Z) to w—f(z)f which satisfies logτ =

lim(2-/(2:)) as Sδ3^->+oo, —co<logτ^oo. Now, it is not difficult to find a
sequence {xn} of real numbers such that limxn=+oo and xn^γbn for some
bn—>+oo. We have

log τ — lim Re (xn—?(xn))

By the relation (2.13) with respect to /,

Re (xn-f(xn))^(m(ά,, bn)—
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Because of the hypothesis of Theorem 1, Part (b), namely that of Proposition
2, there exists an a* such that m(α#, b)—b/π is bounded above for b^ά*. On
taking a<^a*, we get m(ά2, b)—b/π^fh(ά*, b)—b/π for b>a2. We conclude that
Re(xn—f(xn)) is bounded above and, therefore,

τΦO, co .

Next, apply Theorem of Wolff-Valiron-Laudau-Caratheodory to F=F~1oF;
the limiting value

2
lim fr,VΛ = f , 0<r<Joo
Stolz

exists. Observe that W/F-\W)=(Z/F(Z))(F(Z)/Z) if W=F(Z). If W-oo from
a Stolz domain contained in Ω, then Z=F~\W)~^oo from a Stolz domain; this
is verified on applying Lemma 1 to F. Therefore, on putting τ /=τ/τ, we obtain

W
lim zr-i/Tj^ — τ ' i 0 < τ ' < o o .
w^oo b \W) ' —
Stolz

Now, logτ^limReO—f~\w)) as SδΞ>ιv-^+co. For real numbers £n

put zn=f~\bn). We have by (2.13)

Re (&»-/-1(&n))=Re (f(zn)-zn)

for sufficiently large n. The hypothesis of Proposition 2 (cf. also Lemma 2)
implies that — (m(α2, bn)—bn/π) is bounded above if α2 is taken sufficiently large.
Accordingly logτ^lim Re(6n—f~\bn))<co, namely

τ'^0, oo.

2.7. Proof of Theorem 1, Part (b). On applying Lemma 1 to F~\ we see
that, if Z-^oo from a Stolz domain, W=F(Z) tends to oo from a Stolz domain
and, therefore, Z/F(Z)=F-\W)/W-+l/τ'Φθ, oo.

3. Proof of Theorem 2.

3.1. Corresponding to the conditions (1.7)-(1.9), the domain D, the image of
Ω under the transformation (2.1), satisfies the following conditions:

(3.1) D(as)=D*(az)={u+ιv\az<u, -Θ1(u)<v<θ2(u)}

for some a^ax. Here θk(u) is a function on (α3, oo) such that

(3.2)

(3.3) The total variation Vk(a, b) of θk(u) over any [α, 6]c(α3,
does not exceed a fixed number
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k=l, 2. These assumptions imply the existence of the following finite limiting
values, which satisfy by (2.4) the following inequalities:

(3.4) lim 0*(tt)^-f-, fc=l,2.

From now on, we replace as by a greater one, so that

(3.5) θk(u)£-ξ-, £=1,2

for u^az.
Theorem 2 is equivalent to the pair of the following propositions:

PROPOSITION 3. // the finite limiting values

(3.6) lim(*-/(*)) as

exists for every δ (0<δ<π/2), then the finite

exists for all a*>a0.
PROPOSITION 4. // there exists an a*>a0 for which the finite limiting value

(3.7) exists, then the finite

(3.8) lim (*-/(*))

exists.

3.2. We have Θ(u)=θ1(u)+Θ2(u). By (2.8), (2.10), and (2.11), if a3^a<b,

(3.9)

and, if further x"(a)<x'(b),

(3.10)

Next, by Theorem 2 af Jenkins-Oikawa [8; p. 666],

(3.11) m(α, b^-^y+^iV^a, b)+V2(a, b)),

if a3Sa<b. Hence, on applying Lemma 5 with respect to c=π/3 (cf. also (3.5)),
we have

(3.12) ^ ^ x ^ - χ f ^ ^

for a and b with aά<La<b, where α4=α3+2π/3.
This inequality implies
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du χ'(b

which permits us to apply some results of Jenkins-Oikawa [9] (cf. also Eke [4]).
First by Lemma 4 of [9; p. 47]

(3.13) lim(x"(«)-x'(K))=0;
U—>oo

secondly, the existence of the limiting value (21) of [9 p. 44] (cf. also the last
line of [9 p. 46]): The finite limiting value

(3.14) iim(J -^y~-jrRez) a s

exists for all δ (0<δ<π/2) and a (^α4).

3.3. Proof of Proposition 3. Consider

/ 1 π fRe
= ( 7 R e H . 4

and let ^e5^ tend to +oo. In the right-hand side, the limit of the first term
exists and is finite. Accordingly, the existence of the finite limit of the second
term is equivalent to that of (3.6). The latter is, as is easily verified, equivalent
to the existence of the finite limit (3.7) for α*=α4. Evidently α* may be replaced
by any one greater than α0. The proof of Proposition 3 is hereby complete.

Remark 1. Same reasoning is found in Eke [5]. He considered more general
domain Ω, and did not rule out the case where the limiting value of (3.7) is
— oo.

Remark 2. The above argument shows that the existence of finite limit
(3.7) conversely implies that of lim Re (z—f(z)) as Sδ^z->+oo. But this conclu-
sion is of no use for the proof of Proposition 4.

3.4. Suppose that the hypothesis of Proposition 4 is satisfied. From (3.4),
we have

(3.15) \]mθk(u)=-%-, fe=l,2.

Next, for every x greater than *"(α4), let sx—{z\Rez=x, \\mz\ <π/2}.
Clearly f(sx)cD(a4). Put

u'(x)= inf Re/(*), u"(x)= sup Ref(z).
Z<ESχ Z(ΞSχ

LEMMA 6.

(3.16) lim ^00=00,
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(3.17) lim (w"(x)-M'U))=0.

Proof, For any b, we have u'(x)>b whenever x>x"(b). This means (3.16).
Next,

From (3.16) and (3.13), we obtain (3.17).

LEMMA 7.

xf(b)-x'(a)=b-a+o(X)
as b>a—>+oo.

Proof. For the sake of simplicity, write α' and b" for u'{x'{a)) and u"(xrr{b))f

respectively. If a is sufficiently large,

Observe a1 <b" if a<b, and α'-^oo as α-^oo. We have

J»' ^(w) Jα θ(u)

as ^>α-^+oo and, therefore,

Together with (3.9), we obtain

On the other hand, the hypothesis of Proposition 4 implies

as b>a-++oo. On combining these, we obtain the desired relation.

3.5. As the first step of the Proof of Proposition 4, let us verify the ex-
istence of the finite limit lim Ra (z—f(z)). We have, by Lemma 7, the finite

limit lim(x'(a)-a)=β and, by (3.13), \\m(x"(a)-a)=β. Therefore, for any ε>0,
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it is possible to find a5 such that

\x'(a)-a-β\<e, \x»(a)-a-β\<ε

whenever a^a5. For all z<=S with Rez>x"(a5), we have Ref(z)>a5 and, there-
fore, — ε<Re(z—f(z))—β<ε. Consequently

lim Re(z-f(z))=β.

3.6. Proof of the existence of lim Im (z—f(z)) needs some preparation.^
For an arbitrary c>0, there exists an a6(c) such that

x»(a)-x'(a)<-±- and \(x'{b)-xf{a))-{b-a)\<-±-

whenever a6(c)^a<b; this is a consequence of (3.13) and Lemma 7. It is not
difficult to prove that, far a (>α6(c)), b ( ^ α + c ) , and η (\η\ <π/2), the connected
component of {z\Imz=η}ΓΛf~\D*(a, b)) which joins γa and γb is determined
uniquely.

Apply this for c=l/2, and put a6=a6(l/2). For a (>a6) and η (\η\<π/2),
we denote by

the uniquely determined connected component of {z\\mz=η}r\f~\D*(a,
joining γa and γa+1. Notice the following readily verified relation:

(3.18) {z\

if a^a6.

3.7. Put v'(a, 37) = inf {lmf(z)\z^ξ(af η)}, and v*(α, j?) =
f(α,?)}.

LEMMA 8.

lim(^(α, ?)-z/(α, 7 ) ) = 0 ,
α—>oo

uniform convergence for \η\<π/2.

Proof. Suppose the assertion is false. There exist ε (0<ε<π/2), an (>α6

and -*oo), and ηn (\ηn\<π/2) such that v"{an, η^—v'^a^ ηn)^ε. Take δ (0<δ
<π/2) and fix it for a moment. For sufficiently large n, we apply (3.15), Lemma

1) Professor Warschawski pointed out that the proof of the existence of
limlm (z—f(z)) is immediate if we apply a well-known property of the Poisson inte-
gral. In fact, the bounded harmonic function Im (z—f(z)) converges to 0 as z=
x+i(τc/2)-*Όo and z=x—/(π/2)-*oo. That this implies Im (z—/(z))=0 as S32-»oo is
a conseqnence of Schwarz's theorem for the Poisson integral, applied on transform-
ing S onto the unit disk. Neverthpless, we shall present our alternative proof based
on the method of module, because it may be utilized in future where more general
domains will be considered.
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7, and (3.13) to obtain

(3.19)

(3.20) x'(an+ί)-x'(an)<l+δ

(3.21) x"(an)-x'(an)<δ.

Put Ξn={f(ξ(an, η))\ \η\ <π/2}. On considering f'\Ξn) we have immediately

(3 22)

where m(Ξn) is the module of #„. On the other hand, on the w-plane, put
vn = (l/2)(v'(any ηn)+v"(any ηn)) and Qn= {w\an<Rew<an+l, |Im w-v n |<e/6} .
The density pn{w) being equal to (l+ε 2/9)- 1 / 2 for w^Qn, 1 for w^D(an, an+l)

—Qn, and 0 elsewhere satisfies \ pn\dw\>l for every ξ^Ξn. Thus

On combining this with (3.22), and on letting δ-»0, we obtain

π<π— ε*
- 3(9+ε2) '

a contradiction.

3.8. LEMMA 9.

lim z/(α, ^)=lim ^ ( α , 57)=^ ,

uniform convergence for \η\<π/2.

Proof. Suppose the assertion is not true. There exist ε (0<ε<τr/2), an

(>a6 and —"00), and ηn ( | ^ n | < ^ / 2 ) such that either

(3.23) τ]n—^-^υ'(an,ηn),

or

(3.230 Vn+-γ^v'{an,ηn).

Without loss of generality, we may assume that the former occurs for every n.
Take a δ (0<<5<ττ/2) and fix it for a monent. Let n be sufficiently large so
that (3.19), (3.20), and (3.21) hold, and furthermore, v"(an, rj)—vf(an, 5?)<ε/4 for
all η (\η\<π/2). Then

v\an, ηn)<ηn—|-.

Let 5;={/(£(αn, η))\-π/2<η<ηn). We have immediately m(Ξ'n)^ηn+π/2
+^-ε/4 and m(f-\Ξ'n))^(ηn+π/2)/(\+2δ). Thus
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Now, let δ-+0. On taking a cluster value 27* of 2?n's, we obtain

a contradiction.

3.9. Proof of Proposition 4 is now complete. In fact, by (3.18) and Lemma

9, we see that, for any ε>0, there exists an aΊ (^α 6 ) such that, for any η with

\η\<ft/2, the/-image of {z\a7<Rez, Im z=η} is contained in {w\\lmw—Ύ]\<ε}.

This means

lim lm(z-f(z))=0.

Together with 3.5°, we obtain

lim (z-f(z))=βΦ ±00 .
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