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THE AXIOM OF SPHERES IN KAEHLER GEOMETRY
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1. Introduction. Let M be an Hermitian manifold of complex dimension
> 1 with almost complex structure / and Riemannian metric g. A 2-dimensional
subspace σ of Mm, the tangent space of M at m, is called a holomorphic (resp.,
antiholomorphic) plane if Jσ=σ (resp., Jσ is orthogonal to σ). M is said to satisfy
the axiom of holomorphic (resp., antiholomorphic) planes if for every m e M and
every holomorphic (resp., antiholomorphic) plane σ at m, there exists a totally
geodesic submanifold N satisfying m^N and Nm=σ. Yano and Mogi [7] showed
that a Kaehler manifold satisfying the axiom of holomorphic planes has constant
holomorphic curvature. The same conclusion prevails for a Kaehler manifold
satisfying the axiom of antiholomorphic planes, as was recently shown by Chen
and Ogiue [2].

A Riemannian manifold M of (real) dimension d^3 is said to satisfy the
axiom of r-spheres (2^r<d) if for each /WGM and any r-dimensional subspace
S of Mm, there exists an r-dimensional umbilical submanifold N with parallel
mean curvature vector field satisfying meiV and Nm=S. This notion was intro-
duced by Leung and Nomizu [6] who proved that a manifold with this property
for some fixed r, 2^r<df has constant sectional curvature. This generalizes the
well-known theorem of Cartan [1] concerning the axiom of r-planes.

For an Hermitian manifold M, one of the authors [3] recently introduced
the axiom of holomorphic 2-spheres and generalized the theorem of Yano and
Mogi. Similarly, Harada [5] has introduced the axiom of antiholomorphic 2-
spheres and generalized the theorem of Chen and Ogiue.

A subspace S of Mm, where M is an Hermitian manifold, is said to be holo-
morphic (resp., antiholomorphic) if JS=S (resp., JS is orthogonal to S). Let
d=άιmc M.

Axiom of holomorphic 2r-planes (resp., 2r-spheres). For each m<=M and 2r-
dimensional holomorphic subspace S of Mm, l^r<d, there exists a totally geodesic
submanifold (resp., umbilical submanifold with parallel mean curvature vector
field) N satisfying m^N and Nm=S.

Axiom of antiholomorphic r-planes (resp., r-spheres). For each m^M and
r-dimensional antiholomorphic subspace S of Mm, 2^r<d, there exists a totally
geodesic submanifold (resp., umbilical submanifold with parallel mean curvature
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vector field) N satisfying m^N and Nm=S.

We shall prove the following.

THEOREM 1. Let M be a Kaehler manifold of complex dimension d>l
satisfying the axiom of holomorphic 2r-spheres for some fixed r, l^r<d. Then,
M has constant holomorphic curvature.

COROLLARY. Let M be a Kaehler manifold of complex dimension d>l
satisfying the axiom of holomorphic 2r-planes for some fixed r, l^r<d. Then,
M has constant holomorphic curvature.

THEOREM 2. Let M be a Kaehler manifold of complex dimension d>l
satisfying the axiom of antiholomorphic r-spheres for some fixed r, 2^r<d. Then,
M has constant holomorphic curvature.

COROLLARY. Let M be a Kaehler manifold of complex dimension d>l
satisfying the axiom of antiholomorphic r-planes for some fixed r, 2^r<d. Then,
M has constant holomorphic curvature.

2. Preliminaries. We consider a Kaehler manifold (M, g) as a Riemannian
manifold with metric g admitting a skew-symmetric linear transformation field
/ satisfying J2= — /(identity) and DJ=0, where D is the covariant differentiation
operator of the Levi-Civita connection of g. For any tangent vectors X, Y(=Mm,
the curvature transformation is defined by

R(X, Y)=DίXiYΊ-DxDγ+DγDx,

and the curvature at a 2-dimensional subspace σ of Mm is given by

K(σ)=K(X, Y)=g(R(X, Y)X, Y)

for an arbitrary orthonormal basis {X, Y) of σ. If σ is a holomorphic plane,
{X, JX) is an orthonormal basis of σ for X an arbitrary unit vector in σ. The
curvature transformation satisfies the relations

(2.1) R(X,JY)=-R(JX,Y)

(2.2) K(X, JY)=K(JX, Y).

For a submanifold N of a Riemannian manifold M, let D! denote the induced
connection on N and let D2- denote the connection in the normal bundle of N
in M. The second fundamental form h is defined by

DxY=D'zY+h{X,Y),

where X and Y are vector fields tangent to N. Thus, h is a normal bundle-
valued symmetric tensor field of type (0, 2) on N. If ξ is a vector field normal
to N, a linear transformation field Aξ on N is defined by
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Dxξ=Dϊξ-AeX,

where X is tangent to N. We have the well-known relation

g(h(X, Y), ξ)=g(A?X, Y).

The normal form of Codazzi's equation is

(2.3) (R(X, Y)Z)n={VYh)(X, Z)-(Pxh)(Y, Z),

where X, Y and Z are tangent to N, the subscript n denotes the normal com-
ponent, and Vh is the van der Waerden-Bortolotti covariant derivative of h with
respect to the covariant derivative operators D/ and D x given by

(Fzh)(Y, Z)=DΪ(h(Y, Z))-h(D'zY, Z)-h(Y, Df

xZ).

The mean curvature normal H of N in M is defined by

trace ^ = d i m N-g(ξ, H)

for arbitrary ξ normal to N. H is parallel (in the normal bundle) if D^H=0.
The submanifold N is umbilical in M if

h{X, Y)=g{X, Y)H,

and it is totally geodesic if it is umbilical and H vanishes. The following lemma
will be required.

LEMMA 2.1. Let N be an umbilical submanifold of a Riemannian manifold
M. Then, DχH=0 if and only if Vχh=0, where X is an arbitrary vector field
tangent to N.

Proof. Let X, Y, Z be arbitrary vector fields tangent to N. Then,

(Fxh)(Y, Z)=DKKY, Z))-KD'χY, Z)-h(Y, D'XZ)

, Z))H+g(Y, Z)DxH-g{Df

xYy Z)H-g(Y, DZZ)H

, Z)H+g(Y,

=g(Y,

3. Proofs of theorems. We shall require the following well-known fact
whose proof we give for the sake of completeness.

LEMMA 3.1. Let M be a Kaehler manifold of real dimension ^4. //
g(R(X, Y)JX, X)=0 for every orthonormal triple X, Y, JX<=Mm and for every

, then M has constant holomorphic curvature.

Proof If X, Y, JX^Mm are orthonormal, so are (X+Y)/Λ/2, RX+Y)/VT,
]{X—Y)/\rT. Applying the hypothesis to this triple and using relations (2.1)
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and (2.2), we get K(X, JX)=K(Y, JY). The Kaehlerian analogue of Schur's
theorem then gives the lemma.

PROPOSITION 3.2. Let M be a Kaehler manifold of complex dimension d>\
having the property that for each m^M and every holomorphic 2r-dimensional
subspace S of Mm, for some fixed r, l^r<d, there exists a submanifold N satis-
fying raeΛf, Nm=S and Fh=0. Then, M has constant holomorphic curvature.

Proof At an arbitrary point JMGM, let X,Y,JX be orthonormal vectors.
Let S be a 2r-dimensional holomorphic subspace of Mm with X, JX<=S and Y
orthogonal to S. Let N be a submanifold satisfying meN, Nm=S and Fh=0.
In particular, we have

(Fxh)(JX, * ) = 0 , (FJxh)(X, X)=0 .

Substituting in (2.3), we get (R(X, JX)X)n=0 hence, g(R(X, JX)X9 Y)=0. The
proposition now follows from Lemma 3.1.

PROPOSITION 3.3. Let M be a Kaehler manifold of complex dimension d>l
having the property that for each m^M and every antiholomorphic r-dimensional
subspace S of Mm for some fixed r, 2^r<d, there exists a submanifold N satis-
fying m<=N, Nm=S and Fh=Q. Then, M has constant holomorphic curvature.

Proof At an arbitrary point m^M, let X, Y, JX be orthonormal at m. Let
S be an r-dimensional antiholomorphic subspace of Mm with X, Y^S and JX
orthogonal to S. Proceeding as in the proof of Proposition 3.2, we get (Fχh)(Y, X)
=(Fγh)(X, X)=0, and hence (R(X, Y)X)n=0, so that g(R(X, Y)X, JX)=0.
Again, Lemma 3.1 completes the proof.

Theorems 1 and 2 now follow from Lemma 2.1 and Propositions 3.2 and 3.3.

Remarks, (a) The original proof of the theorem of Leung and Nomizu [6]
uses the tangential form of Codazzi's equation. It is easy to establish the Rieman-
nian analogue of Propositions 3.2 and 3.3, thereby providing a simplification by
using the normal form of Codazzi's equation and Lemma 2.1.

(b) If an umbilical submanifold iV of a Kaehler manifold (M, g) is complex,
then it is totally geodesic. Indeed, an arbitrary complex submanifold of (M, g)
is known to be minimal, that is H=0. On the other hand, the mean curvature
vector field of a 2r-dimensional ( l^r<dim c M) umbilical submanifold Λf of a
space of constant holomorphic curvature is a parallel field. In fact, if X and ξ
are any vector fields tangent and normal to N, respectively, then g(R(X,JX)ξ,JX)
=0. Hence, from the tangential form of Codazzi's equation X-g(ξ, H)—g(D^ξ, H),
from which D^H=0. The umbilical submanifolds of a Kaehler manifold of con-
stant holomorphic curvature K are known to be of three types:

( i ) Kaehler submanifolds of constant holomorphic curvature K,
(ii) totally real submanifolds of constant sectional curvature ϋf/4,
(iii) umbilical submanifolds of submanifolds of type (ii). (This classification
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is given by Chen and Ogiue in a forthcoming paper. Here, a sub-
manifold N is totally real if for any X tangent to N, JX is orthogonal
to N.)

(c) The case r—2 of the corollary to Theorem 1 is of interest because a
holomorphic 4-dimensional subspace S of Mm is spanned by the vectors in a pair
(σ, σ') of holomorphic planes. It is on just such a pair that one of the authors
and Kobayashi [4] defined the concept of biholomorphic curvature.
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