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THE AXIOM OF SPHERES IN KAEHLER GEOMETRY
By .S.I. GOLDBERG” AND E.M. MOSKAL

1. Introduction. Let M be an Hermitian manifold of complex dimension
>1 with almost complex structure J and Riemannian metric g. A 2-dimensional
subspace ¢ of M, the tangent space of M at m, is called a holomorphic (resp.,
antiholomorphic) plane if Jo=o (resp., Jo is orthogonal to ). M is said to satisfy
the axiom of holomorphic (resp., antiholomorphic) planes if for every meM and
every holomorphic (resp., anttholomorphic) plane o at m, there exists a totally
geodesic submanifold N satisfying meN and N,=¢. Yano and Mogi [7] showed
that a Kaehler manifold satisfying the axiom of holomorphic planes has constant
holomorphic curvature. The same conclusion prevails for a Kaehler manifold
satisfying the axiom of antiholomorphic planes, as was recently shown by Chen
and Ogiue [2].

A Riemannian manifold M of (real) dimension d=3 is said to satisfy the
axiom of r-spheres (2<r<d) if for each meM and any r-dimensional subspace
S of M, there exists an r-dimensional umbilical submanifold N with parallel
mean curvature vector field satisfying meN and N,=S. This notion was intro-
duced by Leung and Nomizu [6] who proved that a manifold with this property
for some fixed 7, 2=<7<d, has constant sectional curvature. This generalizes the
well-known theorem of Cartan [1] concerning the axiom of r-planes.

For an Hermitian manifold M, one of the authors [3] recently introduced
the axiom of holomorphic 2-spheres and generalized the theorem of Yano and
Mogi. Similarly, Harada [5] has introduced the axiom of antiholomorphic 2-
spheres and generalized the theorem of Chen and Ogiue.

A subspace S of M, where M is an Hermitian manifold, is said to be holo-
morphic (resp., antiholomorphic) if JS=S (resp., JS is orthogonal to S). Let
d:dimc M.

Axiom of holomorphic 2r-planes (resp., 2r-spheres). For each meM and 2r-
dimensional holomorphic subspace S of M,, 1=r<d, there exists a totally geodesic
submanifold (resp., umbilical submanifold with parallel mean curvature vector
field) N satisfying meN and N,=S.

Axiom of antiholomorphic r-planes (resp., 7-spheres). For each meM and
r-dimensional antiholomorphic subspace S of M,, 2=r<d, there exists a totally
geodesic submanifold (resp., umbilical submanifold with parallel mean curvature
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vector field) N satisfying meN and N,=S.
We shall prove the following.

THEOREM 1. Let M be a Kaehler manifold of complex dimension d>1
satisfying the axiom of holomorphic 2r-spheres for some fixed r, 1=r<d. Then,
M has constant holomorphic curvature.

COROLLARY. Let M be a Kaehler manifold of complex dimension d>1
satisfying the axiom of holomorphic 2r-planes for some fixed r, 1=r<d. Then,
M has constant holomorphic curvature,

THEOREM 2. Let M be a Kaehler manifold of complex dimension d>1
satisfying the axiom of antiholomorphic r-spheres for some fixed r, 2<r<d. Then,
M has constant holomorphic curvature.

COROLLARY. Let M be a Kaehler manifold of complex dimension d>1
satisfying the axiom of antiholomorphic r-planes for some fixed r, 2<r<d. Then,
M has constant holomorphic curvature.

2. Preliminaries. We consider a Kaehler manifold (M, g) as a Riemannian
manifold with metric g admitting a skew-symmetric linear transformation field
J satisfying J?=—1I (identity) and DJ=0, where D is the covariant differentiation
operator of the Levi-Civita connection of g. For any tangent vectors X, YeM,,
the curvature transformation is defined by

R(X, Y)=Dx,yi—DxDy+DyDy,

and the curvature at a 2-dimensional subspace o of M, is given by
K(o)=K(X, Y)=g(R(X, V)X, Y)

for an arbitrary orthonormal basis {X, Y} of o. If ¢ is a holomorphic plane,

{X, JX} is an orthonormal basis of ¢ for X an arbitrary unit vector in ¢. The
curvature transformation satisfies the relations

@2n R(X, JY)=—R(JX,Y)
(2.2) KX, JY)=K(JX,Y).

For a submanifold N of a Riemannian manifold M, let D’ denote the induced
connection on N and let D+ denote the connection in the normal bundle of N
in M. The second fundamental form % is defined by

DyY=D3:Y+h(X,Y),

where X and Y are vector fields tangent to N. Thus, A is a normal bundle-
valued symmetric tensor field of type (0,2) on N. If € is a vector field normal
to N, a linear transformation field A¢ on N is defined by
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DxE=D}i—A:X,
where X is tangent to N. We have the well-known relation
g(h(X,Y), )=g(A:X, Y).
The normal form of Codazzi’s equation is
(23) (R(X, Y)Z2),=(Fyh)(X, Z)—(F xh)(Y, Z),

where X,Y and Z are tangent to NN, the subscript n denotes the normal com-
ponent, and V1 is the van der Waerden-Bortolotti covariant derivative of 2 with
respect to the covariant derivative operators D’ and D+ given by

V x )Y, Z)=Dx(h(Y, Z))—h(DxY, Z)—h(Y, DxZ).
The mean curvature normal H of N in M is defined by

trace Ae.=dim N-g(&, H)

for arbitrary & normal to N. H is parallel (in the normal bundle) if DfH=0.
The submanifold N is umbilical in M if

WX, Y)=g(X, Y)H,

and it is fotally geodesic if it is umbilical and H vanishes. The following lemma
will be required.

LEMMA 2.1. Let N be an umbilical submanifold of a Riemannian manifold
M. Then, DEH=0 1f and only if Vyh=0, where X 1s an arbitrary vector field
tangent to N.

Proof. Let X,Y,Z be arbitrary vector fields tangent to N. Then,
W xh)(Y, Z)=Dx(h(Y, Z))—h(DzY, Z)—h(Y, DxZ)
=(Xg(Y, Z)H+g(Y, Z)DxH—g(DY, Z)H—g(Y, DxZ)H
=(Dxg)XY, Z)H+g(Y, Z)DxH
=g(Y, Z)DH.

3. Proofs of theorems. We shall require the following well-known fact
whose proof we give for the sake of completeness.

LEMMA 3.1. Let M be a Kaehler manifold of real dimension =4. If
g(R(X, Y)JX, X)=0 for every orthonormal triple X,Y, JXeM, and for every
meM, then M has constant holomorphic curvature.

Proof. 1f X,Y, JX€M,, are orthonormal, so are (X-+Y)/~2, J(X+Y)/+/Z,
J(X—Y)/~/2. Applying the hypothesis to this triple and using relations (2.1)
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and (2.2), we get K(X, JX)=K(Y,JY). The Kaehlerian analogue of Schur’s
theorem then gives the lemma.

PROPOSITION 3.2. Let M be a Kaehler manifold of complex dimension d>1
having the property that for each meM and every holomorphic 2r-dimensional
subspace S of M,,, for some fixed r, 1=<r<d, there exists a submanifold N satis-
fying meN, N,=S and Vh=0. Then, M has constant holomorphic curvature.

Proof. At an arbitrary point meM, let X,Y, JX be orthonormal vectors.
Let S be a 2r-dimensional holomorphic subspace of M, with X, JX&S and ¥
orthogonal to S. Let N be a submanifold satisfying meN, N,=S and Vh=0.
In particular, we have

Vxm)(JX, X)=0,  (F,xh)(X, X)=0.

Substituting in (2.3), we get (R(X, JX)X),=0; hence, g(R(X, JX)X, Y)=0. The
proposition now follows from Lemma 3.1.

PROPOSITION 3.3. Let M be a Kaehler manifold of complex dimension d>1
having the property that for each meM and every antiholomorphic r-dimensional
subspace S of M,, for some fixed r, 2<r<d, there exists a submanifold N satis-
fymmg meN, N,=S and Vh=0. Then, M has constant holomorphic curvature.

Proof. At an arbitrary point meM, let X, Y, JX be orthonormal at m. Let
S be an r-dimensional antiholomorphic subspace of M, with X,YeS and JX
orthogonal to S. Proceeding as in the proof of Proposition 3.2, we get (F xh)(Y, X)
=Fyh)(X, X)=0, and hence (R(X, Y)X),=0, so that g(R(X, Y)X, JX)=0.
Again, Lemma 3.1 completes the proof.

Theorems 1 and 2 now follow from Lemma 2.1 and Propositions 3.2 and 3.3.

Remarks. (a) The original proof of the theorem of Leung and Nomizu [6]
uses the tangential form of Codazzi’s equation. It is easy to establish the Rieman-
nian analogue of Propositions 3.2 and 3.3, thereby providing a simplification by
using the normal form of Codazzi's equation and Lemma 2.1.

(b) If an umbilical submanifold N of a Kaehler manifold (M, g) is complex,
then it is totally geodesic. Indeed, an arbitrary complex submanifold of (M, g)
is known to be minimal, that is H=0. On the other hand, the mean curvature
vector field of a 27-dimensional (1=7<dim; M) umbilical submanifold N of a
space of constant holomorphic curvature is a parallel field. In fact, if X and &
are any vector fields tangent and normal to N, respectively, then g(R(X, JX)E&, JX)
=0. Hence, from the tangential form of Codazzi’s equation X-g(¢§, H)=g(D%&, H),
from which DfH=0. The umbilical submanifolds of a Kaehler manifold of con-
stant holomorphic curvature K are known to be of three types:

(i) Kaehler submanifolds of constant holomorphic curvature K,
(ii) totally real submanifolds of constant sectional curvature K/4,
(ili) umbilical submanifolds of submanifolds of type (ii). (This classification
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is given by Chen and Ogiue in a forthcoming paper. Here, a sub-
manifold N is fotally real if for any X tangent to N, /X is orthogonal
to N.)

(¢) The case r=2 of the corollary to Theorem 1 is of interest because a
holomorphic 4-dimensional subspace S of M, is spanned by the vectors in a pair
(o, 6’) of holomorphic planes. It is on just such a pair that one of the authors
and Kobayashi [4] defined the concept of biholomorphic curvature.
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