M. KISHI KODAI MATH. SEM. REP. 27 (1976), 181–187

POSITIVE IDEMPOTENTS ON A LOCALLY COMPACT ABELIAN GROUP

Dedicated to Professor Yûsaku Komatu on his sixtieth birthday

By Masanori Kishi

1. Introduction.

It will be shown by a potential theoretical method that a positive Radon measure σ on a locally compact abelian group G is a unit Haar measure on a compact subgroup of G, if the convolution $\sigma * \sigma$ is well defined and verifies the relation $\sigma * \sigma = \sigma$. This is an easy consequence of $(\hat{\sigma})^2 = \hat{\sigma}$, $\hat{\sigma}$ being the Fourier transform of σ , if σ is bounded or of finite total mass. In order to show the compactness of the support of σ , we shall make use of potential theoretical properties of σ .

2. Resolvent.

Let κ be a positive (Radon) measure on a locally compact abelian group G. We shall denote by $D^+(\kappa)$ the totality of positive measures μ for which the convolution $\kappa * \mu$ is well defined. Here $\kappa * \mu$ is the positive measure defined by

$$\kappa * \mu(\varphi) = \iint \varphi(x + y) d\kappa(x) d\mu(y)$$

for every non-negative continuous function φ with compact support. This is well defined if and only if the above integral converges for every φ .

A family $\{\kappa_p; p>0\}$ of positive measures is called a *resolvent* associated with κ , if for every p>0, κ_p belongs to $D^+(\kappa)$ and

(1)
$$\kappa - \kappa_p = p \kappa * \kappa_p$$

and if $\kappa = \lim_{p \downarrow 0} \kappa_p$ (vague limit). In this case we shall say that κ has a resolvent $\{\kappa_p\}$.

It is known that if $\{\kappa_p\}$ is a resolvent of κ , then for every p>0

(2)
$$p\left(\kappa + \frac{1}{p}\varepsilon\right) = \sum_{n=0}^{\infty} (p\kappa_p)^n,$$

Received March 30, 1974.

MASANORI KISHI

where ε is the unit point measure on the origin 0 of G and $(p\kappa_p)^0 = \varepsilon$, $(p\kappa_p)^n = (p\kappa_p)*(p\kappa_p)^{n-1}$. The positive measure of the right hand side of (2) is called an *elementary kernel*. From (2) it follows that the resolvent is uniquely determined by κ .

Let ω be an open subset of G and μ be a positive measure in $D^+(\kappa)$. A positive measure $\mu_{\omega} \in D^+(\kappa)$ supported by $\overline{\omega}$ (the closure of ω) will be called a *balayaged measure* of μ to ω with respect to κ , if the following three conditions are satisfied:

i) $\kappa * \mu_{\omega} \leq \kappa * \mu$ in *G*,

ii) $\kappa * \mu_{\omega} = \kappa * \mu$ in ω ,

iii) if ν is a positive measure in $D^+(\kappa)$ and if $\kappa * \nu$ dominates $\kappa * \mu$ in ω , then $\kappa * \nu$ dominates $\kappa * \mu_{\omega}$ in G.

PROPOSITION 1. If κ has a resolvent, there exists uniquely the balayaged measure for every $\mu \in D^+(\kappa)$ and for every open set ω .

This is proved by using the existence of balayaged measures with respect to elementary kernels and by the relation (2). For the details we refer to [2], [3]. The following proposition is also known.

PROPOSITION 2. If κ has a resolvent, it satisfies the domination principle, that is, if μ and ν are positive measures in $D^+(\kappa)$ and $\kappa*\mu \leq \kappa*\nu$ in a neighborhood of the support supp (μ) of μ , then $\kappa*\mu \leq \kappa*\nu$ in G.

3. Two lemmas.

We shall need the following convergence lemma.

LEMMA 1. Suppose that κ has a resolvent. If a net $\{\mu_{\alpha}\}$ of positive measures in $D^{+}(\kappa)$ converges vaguely to μ and if there exists a positive measure $\nu \in D^{+}(\kappa)$ such that $\kappa * \nu$ dominates every $\kappa * \mu_{\alpha}$ in G, then $\{\kappa * \mu_{\alpha}\}$ converges vaguely to $\kappa * \mu$.

Proof. Let φ be a non-negative continuous function with compact support. Assuming that $\kappa \neq 0$, we shall prove

(3)
$$\kappa * \mu(\varphi) \ge \limsup_{\alpha} \kappa * \mu_{\alpha}(\varphi) \,.$$

This gives the required vague convergence, since it will be immediately seen that

$$\kappa * \mu(\varphi) \leq \lim \inf \kappa * \mu_{\alpha}(\varphi).$$

Let k be a positive integer. Then we have by (2)

$$(p\kappa_p)^k * \kappa * \mu_{\alpha} \leq (p\kappa_p)^k * \left(\kappa + \frac{1}{p}\varepsilon\right) * \nu$$

= $\frac{1}{p} \sum_{n=k}^{\infty} (p\kappa_p)^n * \nu \leq \kappa * \nu$

182

Hence by a convergence theorem in [3]

(4)
$$(p\kappa_p)^k * \mu(\varphi) = \lim_{\alpha} (p\kappa_p)^k * \mu_{\alpha}(\varphi) .$$

On the other hand, we have

$$\frac{1}{p}\sum_{n=k+1}^{\infty}(p\kappa_p)^n*\mu_{\alpha} = (p\kappa_p)^k*\frac{1}{p}\sum_{n=1}^{\infty}(p\kappa_p)^n*\mu_{\alpha}$$
$$= (p\kappa_p)^k*\kappa*\mu_{\alpha} \le (p\kappa_p)^k*\kappa*\nu$$
$$= \frac{1}{p}\sum_{n=k+1}^{\infty}(p\kappa_p)^n*\nu.$$

Therefore for a given positive number η , there exists a positive integer k such that

$$\frac{1}{p}\sum_{n=k+1}^{\infty}(p\kappa_p)^n*\mu_{\alpha}(\varphi) \leq \frac{1}{p}\sum_{n=k+1}^{\infty}(p\kappa_p)^n*\nu(\varphi) < \eta ,$$

so that by (4)

$$\begin{split} \left(\kappa + \frac{1}{p}\varepsilon\right) * \mu(\varphi) &\geq \frac{1}{p} \sum_{n=0}^{k} (p\kappa_{p})^{n} * \mu(\varphi) \\ &= \lim_{\alpha} \frac{1}{p} \sum_{n=0}^{k} (p\kappa_{p})^{n} * \mu_{\alpha}(\varphi) \\ &= \lim_{\alpha} \left\{ \frac{1}{p} \sum_{n=0}^{\infty} (p\kappa_{p})^{n} * \mu_{\alpha}(\varphi) - \frac{1}{p} \sum_{n=k+1}^{\infty} (p\kappa_{p})^{n} * \mu_{\alpha}(\varphi) \right\} \\ &\geq \lim_{\alpha} \sup \left(\kappa + \frac{1}{p}\varepsilon\right) * \mu_{\alpha}(\varphi) - \eta \,. \end{split}$$

Hence

$$\left(\kappa + \frac{1}{p}\varepsilon\right) * \mu(\varphi) \ge \limsup_{\alpha} (\kappa * \mu_{\alpha})(\varphi),$$

which proves (3), and the proof is completed.

The following lemma is due to M. Itô [4].

LEMMA 2. Let $\kappa \neq 0$ have a resolvent and $\sigma \neq 0$ be a positive measure in $D^+(\kappa)$ such that $\kappa * \sigma = \kappa$ in G, and a be a point of the support supp (σ) of σ . Then for every open neighborhood $\omega(a)$ of a, the balayaged measure $\varepsilon_{\omega(a)}$ of ε verifies $\kappa * \varepsilon_{\omega(a)} = \kappa$ in G.

Proof. The positive measure $\mu = \kappa - \kappa * \varepsilon_{\omega(a)}$ vanishes in a neighborhood ω of 0. In fact, if supp (μ) contains 0, it contains absurdly a, since

$$\mu = \kappa * \sigma - \kappa * \sigma * \varepsilon_{\omega(a)} = \mu * \sigma.$$

Consequently $\kappa * \varepsilon = \kappa * \varepsilon_{\omega(a)}$ in ω which contains supp (ε), and hence by Proposition 2, $\kappa \ge \kappa * \varepsilon_{\omega(a)}$. This proves $\kappa = \kappa * \varepsilon_{\omega(a)}$.

MASANORI KISHI

4. Positive idempotents.

THEOREM. Let $\sigma \neq 0$ be a positive measure such that $\sigma \ast \sigma$ is well defined and $\sigma \ast \sigma = \sigma$ in G. Then σ is a unit Haar measure of a compact subgroup of G.

Proof. First we shall show that supp (σ) is compact. Setting for p>0

$$\sigma_p = \frac{1}{p+1} \sigma,$$

we see that σ has a resolvent $\{\sigma_p\}$. Hence we can balayage ε to open neighborhoods of points in $\operatorname{supp}(\sigma)$ with respect to σ . If $\operatorname{supp}(\sigma)$ is not compact, there exists a net $\{\mu_{\alpha}\}$ of balayaged measures of ε , which converges vaguely to 0. By Lemma 2, $\sigma * \mu_{\alpha} = \sigma$ in G and by Lemma 1, $\{\sigma * \mu_{\alpha}\}$ converges vaguely to 0. Hence $\sigma = 0$ which contradicts our assumption.

Now σ being supported by a compact set, the equality $\sigma * \sigma = \sigma$ gives $(\hat{\sigma})^2 = \widehat{\sigma * \sigma} = \hat{\sigma}$ and hence $\hat{\sigma}$ has 1 and 0 as its values. We denote by Γ the dual group of G and set

$$\Gamma' = \{ \gamma \in \Gamma ; \hat{\sigma}(\gamma) = 1 \}.$$

Then $\hat{\sigma}$ being a positive definite continuous function, Γ' is a closed subgroup of Γ . It will be seen that σ is the unit Haar measure of the compact subgroup $G' = \{x \in G; (x, \gamma) = 1 \text{ for every } \gamma \in \Gamma\}$, where (x, γ) denotes the value of the character γ at x. In fact, Γ' is the annihilator of G' and $\hat{\sigma}$ is constant on every coset of Γ' , and hence σ is supported by G' (cf. [5]). We note then that $\hat{\sigma}$ is the characteristic function of Γ' to conclude our assumption.

5. Some consequences.

Let $\kappa \neq 0$ be a positive measure with resolvent. From (1) it follows that $\{p\kappa_p\}$ is vaguely bounded. We note that as $p \to \infty$, $\{p\kappa_p\}$ converges vaguely to a unit Haar measure of a compact subgroup of G. In fact, let σ be a vaguely adherent positive measure of $\{p\kappa_p\}$. Then for every p>0

(5)
$$\kappa_p = \sigma * \kappa_p$$
,

since by (1) and by Lemma 1

$$\kappa_p = \lim_q (\kappa_p - \kappa_q)$$

=
$$\lim_q q \kappa_q * \kappa_p - \lim_q p \kappa_q * \kappa_p$$

=
$$\sigma * \kappa_p.$$

Hence for any adherent measure σ' of $\{p\kappa_p\}$

$$\sigma = \sigma * \sigma' = \sigma' * \sigma = \sigma'$$
.

Thus $\{p\kappa_p\}$ converges vaguely to a positive idempotent $\sigma \neq 0$. Hence by our theorem it converges to a unit Haar measure of a compact subgroup of G.

First we consider the case $\sigma = \varepsilon$.

LEMMA 3. Suppose that κ has a resolvent $\{\kappa_p\}$ such that $\{p\kappa_p\}$ converges vaguely to ε as $p \to \infty$. Then κ satisfies the unicity principle, that is, $\kappa * \mu = \kappa * \nu$ holds if and only if $\mu = \nu$.

Proof. If μ and ν are positive measures of $D^+(\kappa)$ and $\kappa * \mu = \kappa * \nu$, then by (1), $p\kappa_p * \mu = p\kappa_p * \nu$. Hence $\mu = \varepsilon * \mu = \lim_{\nu} p\kappa_p * \mu = \lim_{\nu} p\kappa_p * \nu = \nu$.

A positive measure κ is called a *Hunt kernel*, when it has the following integral representation

$$\kappa = \int_0^\infty \alpha_t dt$$
,

where $\{\alpha_t; t \ge 0\}$ is a vaguely continuous semigroup with $\alpha_0 = \varepsilon$. The resolvent $\{\kappa_p\}$ of κ is given by

$$\kappa_p = \int_0^\infty e^{-pt} \alpha_t dt$$
 ,

and $\{p\kappa_p\}$ converges vaguely to ε (cf. [3]). Conversely if κ has a resolvent $\{\kappa_p\}$ such that $\{p\kappa_p\}$ converges vaguely to ε , then it satisfies the unicity principle. Hence we can construct the representing semigroup as in [3]. Thus we have

PROPOSITION 3. Let κ be a positive measure with resolvent $\{\kappa_p\}$. Then it is a Hunt kernel if and only if $\{p\kappa_p\}$ converges vaguely to ε as $p \to \infty$.

COROLLARY. Suppose that G has no other compact subgroup than $\{0\}$. Then a positive measure $\kappa \neq 0$ is a Hunt kernel if and only if κ has a resolvent.

Now we consider the case $\sigma \neq \varepsilon$, σ being a unit Haar measure of a compact subgroup H of G. We denote by G/H the factor space and by π the canonical mapping $G \rightarrow G/H$.

PROPOSITION 4. Let κ be a positive measure with resolvent. Then there exist a compact subgroup H of G and a Hunt kernel κ , on G/H such that for every continuous function φ with compact support on G

(6)
$$\int_{G/H} \varphi^{\flat} d\kappa^{\flat} = \int_{G} \varphi \, d\kappa \,,$$

where φ^{\flat} is the continuous function on G/H defined by

$$\varphi^{\flat}(\pi(x)) = \int_{H} \varphi(x+y) d\sigma(y) \, .$$

These H and κ^{\flat} are uniquely determined by κ .

Proof. We suppose that $\{p\kappa_p\}$ converges vaguely to σ , a unit Haar measure on a compact subgroup H. For every point $y \in H$,

MASANORI KISHI

$$\kappa * \varepsilon_y = \kappa * \sigma * \varepsilon_y = \kappa * \sigma = \kappa$$
, $\kappa_p * \varepsilon_y = \kappa_p$.

Consequently there exist positive measures κ^{\flat} , κ_p^{\flat} such that

$$\int_{G/H} \varphi^{\flat} d\kappa^{\flat} = \int_{G} \varphi \, d\kappa \, , \qquad \int_{G/H} \varphi^{\flat} d\kappa^{\flat}_{p} = \int_{G} \varphi \, d\kappa$$

(cf. [1]). It is easily seen that $\{\kappa_p^{\flat}\}$ is a resolvent of κ^{\flat} by using the fact: for a continuous function f with compact support on G/H, $(f \circ \pi)^{\flat} = f$. It is also seen that $\{p\kappa_p^{\flat}\}$ converges vaguely to ε on G/H, so that κ^{\flat} is a Hunt kernel on G/H. In order to verify the uniqueness we assume the representation (6) by a compact subgroup H and a Hunt kernel κ^{\flat} on G/H. Then

$$\begin{split} \lim_{p} p \int \varphi \, d\kappa_{p} = \lim_{p} p \int \varphi^{\flat} d\kappa_{p}^{\flat} \\ = \varphi^{\flat}(\pi(0)) = \int_{H} \varphi(y) d\sigma(y) \, . \end{split}$$

Hence $\{p\kappa_p\}$ converges vaguely to the unit measure on *H*. Thus *H* and κ , are uniquely determined by κ . This completes the proof.

For a positive measure μ on G, let $\pi\circ\mu$ be the positive measure on G/H defined by

$$\int_{G/H} fd(\pi \circ \mu) = \int f(\pi(x)) d\mu(x) \, d\mu(x)$$

We remark that under the same assumption of Proposition 4, it holds that $\kappa * \mu = \kappa * \nu$ ($\mu, \nu \in D^+(\kappa)$) if and only if $\pi \circ \mu = \pi \circ \nu$. In fact, if $\kappa * \mu = \kappa * \nu$, then by the convergence theorem in [3], $\sigma * \mu = \sigma * \nu$ and hence

$$\int f d(\pi \circ \mu) = \int (f \circ \pi) d\mu$$
$$= \int \int (f \circ \pi) (x + y) d\mu(x) d\sigma(y)$$
$$= \sigma * \mu (f \circ \pi) = \sigma * \pi (f \circ \pi) = \int f d(\pi \circ \nu)$$

for every continuous function with compact support on G/H. Conversely suppose that $\pi \circ \mu = \pi \circ \nu$. Then $(\check{\mu} * \varphi)^{\flat} = (\check{\nu} * \varphi)^{\flat}$ and $\kappa * \mu(\varphi) = \kappa * \nu(\varphi)$.

We shall also remark that with respect to κ of Proposition 4 every positive κ -excessive measure s ($p\kappa_p * s \leq s$ for every p > 0) is decomposed as follows:

$$s = \kappa * \mu + \nu$$
,

where $\mu \in D^+(\kappa)$, $\nu \in D^+(\kappa_p)$ for every p > 0 and $p\kappa_p * \nu = \nu$, and $\pi \circ \mu$ and ν are uniquely determined by s.

186

POSITIVE IDEMPOTENTS

References

- [1] N. BOURBAKI, Intégration, Chapitres 7 et 8, Paris 1963.
- [2] J. DENY, Les noyaux élémentaires, Séminaire Brelot-Choquet-Deny, 4 (1959/ 60).
- [3] J. DENY, Noyaux de convolution de Hunt…, Ann. Inst. Fourier, 12 (1962), 643-667.
- [4] M. ITô, Caractérisation du principe de domination pour les noyaux de convolution non-bornés, à paraître.
- [5] W. RUDIN, Idempotent measures on abelian groups, Pacific J. Math., 9 (1959), 195-209.

NAGOYA UNIVERSITY