S. SASAO KODAI MATH. SEM; REP. 27 (1976), 163-167

NOTE ON SPACES WITH $H^*(; Z) = E[x_1, x_2]$

Dedicated to Prof. Y. Komatu on his 60-th birthday

BY SEIYA SASAO

§1. Let K be a 1-connected CW complex such that $H^*(K; Z)$ is the exterior algebra over Z generated by two elements x_i , i=1, 2 with dim $x_i=n_i$ $(n_1 < n_2)$. In this note we shall consider the problem:

When does there exist a map $K \rightarrow S^{n_2}$ so that $H_*(K; Z)$ maps onto $H_*(S^{n_2}; Z)$

(this is the special case of r=2 of the problem 50 in [2]).

It is clear that there exists such a map if and only if K has the same homotopy type as the total space of a n_1 -spherical fibre space over S^{n_2} , so this problem has already solved in some sence. Our purpose is to obtain one of sufficient conditions for the existence of such a map.

Since we may regard K as a CW complex of the form $S^{n_1} \cup e^{n_2} \cup e^{n_1+n_2}$, we denote by L the subcomplex of $K \times K = S^{n_1} \cup e^{n_2} \times S^{n_1}$. Now we consider the following condition:

(A) there exists a map $h: L \to K$ such that $h | S^{n_1} \cup e^{n_2} \times (*)$ and $h | (*) \times S^{n_1}$ are both the identity.

We say that K is of type (A) if K satisfies the condition (A). We shall prove

THEOREM. If K is of type (A), then there exists a map $K \rightarrow S^{n_2}$ so that $H_*(K; Z)$ maps onto $H_*(S^{n_2})$.

For example, if K is an H-space K is of type (A). Therefore we have

COROLLARY. If K is an H-space K has the same homotopy type as the total space of a S^{n_1} -spherical fibre space over S^{n_2} .

Remark. Mimura, Nishida and Toda has classified *H*-spaces with rank 2 up to homotopy.

Now we denote by α and β the attaching maps for the cells e^{n_2} , $e^{n_1+n_2}$ respectively.

Received March 20, 1974.

§2. The case of $n_1 = n_2$.

Since $n_1 = n_2$ K has the form $S^{n_1} \vee S^{n_2} \cup e^{n_1 + n_2}$ and

$$\beta = \iota_1 \circ \beta_1 + \iota_2 \circ \beta_2 + [\iota_1, \iota_2], \qquad \beta_i \in \pi_{2n-1}(S^n)$$

where ι_{j} denotes the inclusion $S^{n} = S^{n_{1}} \rightarrow S^{n_{1}} \lor S^{n_{2}}$ and $n = n_{1} = n_{2}$.

LEMMA 1. If K is of type (A), then K is $S^n \times S^n$ (n=3,7) up to homotopy. Hence K is also an H-space.

Proof. Let ι be the generator of $\pi_n(S^n)$ and let ι be the inclusion map $S^{n_1} \vee S^{n_2} \rightarrow K$. Since $L = S^{n_1} \vee S^{n_2} \times S^{n_1}$ the condition (A) means that $\iota_*([\iota_1, \iota_1]) = 0 = i_*([\iota_1, \iota_2])$ where [,] denotes Whitehead product. Therefore there exist two integers a, b such that

(2.1)
$$\ell_{1*}([\ell, \ell]) = a(\ell_1 \circ \beta_1 + \ell_2 \circ \beta_2 + [\ell_1, \ell_2])$$

(2.2)
$$[\iota_1, \iota_2] = b(\iota_1 \circ \beta_1 + \iota_2 \circ \beta_2 + [\iota_1, \iota_2]).$$

From (2.1) we have a=0, i. e. $\iota_{1*}([\iota, \iota])=0$. Since ι_{1*} is monic we have $[\iota, \iota]=0$, i. e. n=3 or 7. Moreover, from (2.2), we have that b=1 and $\beta_1=\beta_2=0$. Thus the proof is completed.

Now Theorem follows from lemma 1.

§3. The case
$$n_1 < n_2$$
 (since n_1 must be odd this means $n_2 > n_1 + 1$).

Let $\bar{\alpha}: (D^{n_2}, S^{n_2-1}) \rightarrow (K, S^{n_1})$ and $\bar{\beta}: (D^{n_1+n_2}, S^{n_1+n_2-1}) \rightarrow (K, S^{n_1} \cup e^{n_2})$ be the characteristic map for the cells e^{n_2} and $e^{n_1+n_2}$ respectively.

Consider the part of the homotopy exact sequence of the pair $(S^{n_1} \cup e^{n_2}, S^{n_1})$:

$$\pi_*(S^{n_1}) \xrightarrow{\longrightarrow} \pi_*(S^{n_1} \cup e^{n_2}) \xrightarrow{\longrightarrow} \pi_*(S^{n_1} \cup e^{n_2}, S^{n_1})$$
$$j_*$$

where * means $n_1 + n_2 - 1$.

Since $x_1 \cup x_2$ is a generator of $H^{n_1+n_2}(K; Z)$ there exists an element γ of $\pi_*(D^{n_2}, S^{n_2-1})$ such that

$$j_*(\beta) = [\bar{\alpha}, \iota_1]_r + \bar{\alpha} \circ \gamma$$

where [,]_r denotes relative Whitehead product and $i_*(\iota_1) = \iota_1$.

Let $p: S^{n_1} \cup e^{n_2} \to S^{n_2}$ and $q: D^{n_2} \to S^{n_2}$ be the natural pinching maps. Then we have

$$p_*(\beta) = q_*(\gamma).$$

Now let $h: L \rightarrow K$ be the map satisfying the condition (A). Since

164

SPACES WITH
$$H^{*}(; Z) = E[x_1, x_2]$$
 165
 $h^{*}(x_1 \cup x_2) = h^{*}(x_1) \cup h^{*}(x_2)$

$$\begin{array}{l} *(x_1 \cup x_2) = h^*(x_1) \cup h^*(x_2) \\ = (1 \otimes x_1 + x_1 \otimes 1) \cup (x_2 \otimes 1) \\ = x_2 \otimes x_1 \end{array}$$

h is a map of degree 1 on $e^{n_1+n_2} = e^{n_1} \times e^{n_2}$. Let \widetilde{L} be the subcomplex $L - e^{n_1+n_2}$ of L and let θ be the attaching class for the cell $e^{n_1+n_2}$ of L $(\theta \in \pi_*(\widetilde{L}))$.

Then, from the above argument, we have

(3.2)
$$\widetilde{h}_*(\theta) = \beta \qquad (\widetilde{h} = h \mid L) \,.$$

Since we can regard the restriction $h|S^{n_1} \times S^{n_1}$ as a map $S^{n_1} \times S^{n_1} \rightarrow S^{n_1} \cup e^{n_2}$ we have a map $\lambda: S^{2n_1} \rightarrow S^{n_2}$ defined by the following diagram

LEMMA 2. $\alpha \circ (E^{-1}\lambda) = [\iota_{n_1}, \iota_{n_1}]$ in $\pi_{2n_1-1}(S^{n_1})$, where E denotes the suspension isomorphism: $\pi_{2n_1-1}(S^{n_2-1}) \rightarrow \pi_{2n_1}(S^{n_2})$.

Proof. Consider the following diagram

Then, the proof follows from the commutativity in each block and $\partial^{-1} q_* = E$.

Lemma 3.

$$q_*(\gamma) = \lambda \circ E^{n_1} \alpha$$
.

Proof. From pinching $S^{n_1} \vee S^{n_1}$ to a point we obtain a map $\tilde{p}: \widetilde{L} \to S^{n_2} \vee S^{2n_1}$ such that the following diagram is commutative

$$\begin{array}{ccc} \widetilde{L} & \longrightarrow & S^{n_2} \vee S^{2n_1} \\ \widetilde{h} & & \widetilde{p} & & \downarrow & \iota_{n_2} \vee \lambda \\ S^{n_1} \cup & e^{n_2} & \longrightarrow & S^{n_2} \\ & & p \end{array}$$

Then we have

 $\widetilde{P}_*(\theta) = \iota_{2n_1} \circ E^{n_1} \alpha ,$

where ι_{2n_1} denotes the inclusion $S^{2n_1} \rightarrow S^{n_2} \vee S^{2n_1}$. For, let $q_1: S^{n_2} \vee S^{2n_1} \rightarrow S^{n_2} = S^{n_2} \vee S^{2n_1}/S^{2n_1}$ be the pinching map. Since it is clear that the composition

$$L = S^{n_1} \cup e^{n_2} \times S^{n_1} \longrightarrow S^{n_1} \cup e^{n_2} \longrightarrow S^{n_2}$$

pro. p

is an extension of the map $q_1 \circ \tilde{p}$ over L, we have

(3.4)
$$q_{1*}\tilde{p}_{*}(\theta) = 0$$
.

Next, let $q_2: S^{n_2} \vee S^{2n_1} \rightarrow S^{2n_1} = S^{n_2} \vee S^{2n_1}/S^{n_2}$ be the another pinching map. Then $q_2 \circ \tilde{p}$ is extendable over L to the reduced join $S^{n_1} \cup e^{n_2} \times S^{n_1} = E^{n_1}(S^{n_1} \cup e^{n_2}) = S^{2n_1} \cup e^{n_1+n_2}$. Hence we have

$$(3.5) q_{2*}\tilde{p}_*(\theta) = E^{n_1}\alpha.$$

Now (3.3) follows from (3.4) and (3.5). Since, from (3.1), (3.2) and (3.3), we have

$$q_*(\gamma) = p_*(\beta) = p_* \tilde{h}_*(\theta) = (\iota_{n_2} \vee \lambda)_* \tilde{p}_*(\theta) = \lambda \circ E^{n_1} \alpha .$$

Thus the proof is completed.

Now, by lemma 2, we have

$$E\alpha\circ\lambda=E[\iota_{n_1},\iota_{n_1}]=0.$$

Therefore, by the equality

$$E^{n_2+1}\alpha \circ E^{n_2}\lambda = \pm E^{n_1+1}\lambda \circ E^{2n_1+1}\alpha = \pm E^{n_1+1}(\lambda \circ E^{n_1}\alpha),$$

we obtain

$$E^{n_1+1}(\lambda \circ E^{n_1}\alpha)=0$$
.

Since E^{n_1+1} is isomorphic $(n_2 > n_1+1)$ this means

$$\lambda e^{n_1} \alpha = 0.$$

On the other hand, it is clear that if $p_*(\beta)=0$ there exists a map $K \to S^{n_2}$ so that $H_*(K; \mathbb{Z})$ maps onto $H_*(S^{n_2})$. Hence the proof of Theorem is completed by lemma 3 and (3.6).

§4. Addendum.

Lemma 1 shows that if K is of type (A) $(n_1=n_2)$, K is an H-space. But this is not true in general $(n_2>n_1)$. In fact, lemma 2 and (3.2) show how to construct a complex of type (A). Let $[\iota_{n_1}, \iota_{n_1}]$ be decomposable as follows $(s-1>n_1)$

$$[\iota_{n_1}, \iota_{n_1}] = \alpha \circ \alpha', \quad \alpha \in \pi_{s-1}(S^{n_1}) \text{ and } \alpha' \in \pi_{2n_1-1}(S^{s-1}).$$

We consider the complex $S^{n_1} \cup e^s$ which is obtained from attaching e^s to S^{n_1} by α . Since $[\iota_{n_1}, \iota_{n_1}] = 0$ in $\pi_{2n_1-1}(S^{n_1} \cup e^s)$ there exists a map $k: S^{n_1} \times S^{n_1} \rightarrow S^{n_1} \cup e^s$ such that $k | S^{n_1} \vee S^{n_1}$ is the identity map. We define the map $\tilde{k}: \tilde{L} \rightarrow S_u^1 \cup e^s$ by

 $\tilde{k}|S^{n_1} \times S^{n_1} = k$.

 $\tilde{k} | S^{n_1} \cup e^s \times s_0 =$ projection to the first factor.

Let β be the element $\tilde{k}_*(\theta)$ of $\pi_{n_1+s-1}(S^{n_1} \cup e^s)$ and let K be the complex which is obtained from attaching e^{n_1+s} to $S^{n_1} \cup e^s$ by β . If n and s are both odd, $H^*(K; Z)$ is $E[x_1, x_2]$ and K is type of (A). For example, let σ be the generator of $\pi_s(S^7)$. Then we have

$$[\iota_7, \iota_7] = 0 = \sigma \circ 0$$
.

Hence there exists a complex $K=S^{\tau} \cup e^{9} \cup e^{16}$ of type (A) with $H_*(K; Z)=E[x_1, x_2]$. Then K is not an H-space by the Theorem of Adams in [1].

References

- [1] J.F. ADAMS, H-spaces with few cells, Topology, 1 (1962), 67-72.
- [2] J. MILGRAM, Problems presented to the 1970 AMS summer colloquim in Algebraic topology, Proc. Sympos. Pure Math., 22 (1971), 187-202.

Dept. of Math. Tokyo Inst. of Technology Ohokayama Meguro-ku Tokyo Japan