R.ROSCA KÕDAI MATH. SEM. REP. 27 (1976), 51-61

QUANTIC MANIFOLDS WITH PARA-COKÄHLERIAN STRUCTURES

BY RADU ROSCA

Following J. M. Souriau [1] a quantic manifold $(Q, \bar{\omega})$ is a Hausdorff manifold having a Pfaffian structure defined by $d \wedge \bar{\omega} = \bar{\Omega}$ where $\bar{\Omega}$ is a *pre-symplectic* form with dim (ker $\bar{\Omega}$)=1. The present paper is concerned with a class of quantic manifolds such that $Q = K \times h$ where K is a *para-Kählerian* manifold and h is a time-like vector. Such manifolds are called by the author *quantic manifolds with para-coKählerian structure* and are denoted by Q_k . Some properties of the *selforthogonal* Grassman manifolds over Q_k are studied and a simple result regarding minimal immersions in Q_k is stated. Next is investigated the behaviour of a tangential concurrent vector field (in the sense of K. Yano and B. Y. Chen [2]) of immersed para-Kählerian manifolds in Q_k . In the last section the notion of "minimal harmonic inclusion" for an isotropic (or total null) submanifold is defined, and is applied to Planck submanifolds of Q_k .

1. Preliminaries.

Let (M, Ω) be a *potential symplectic* manifold M (of dimension 2n), i.e. such that

(1)
$$\Omega = d \wedge \omega, \quad \omega \in \Lambda^1(M).$$

If M is a Hausdorff manifold, then M is quantificable [1] and the quantic manifold derived from M is defined as the direct product $Q=M\times T$. By a definition of J. M. Souriau [1] a Hausdorff manifold \overline{M} , is a general quantic manifold if the following conditions are fulfilled:

(i) The existence on \overline{M} of a differentiable field of 1-forms $\overline{p} \rightarrow \overline{\omega}$ ($\overline{p} \in \overline{M}$), which gives to \overline{M} a Pfaffian structure defined by $d \wedge \overline{\omega} = \overline{\Omega}$; dim (Ker $\overline{\Omega}$)=1;

(ii) dim (ker $(\overline{\omega}) \cap ker(\overline{\Omega}) = 0$.

In consequence of the above definitions, one may state that

- (i)' \overline{M} is pre-symplectic;
- (ii)' \overline{M} is a foliated manifold;
- (iii) \overline{M} is a fiber space whose basis is a symplectic manifold (M, Ω) and dim M=dim \overline{M} -dim ker $(\overline{\Omega})$.

Now suppose that M is a *para-Kählerian* manifold [3] (denoted by K) and let $T_p(K)$ be the tangent space to K at $p \in K$. As is known [4] with a real basis

Received Feb. 2, 1974.

of $T_n(K)$ is injectively associated a *Witt basis* (W basis). One has the following decomposition of Witt

(2)
$$T_p(K) = S_p \oplus S'_p$$

where S_p and S'_p are two self-orthogonal vectorial subspaces [5] of the same dimension *n*. The pair (S_p, S'_p) defines an *involutive automorphism* \mathcal{V} satisfying $\mathcal{U}^2 = +1$ [3]. If $h_{\alpha} \in S_p$ and $h_{\alpha'} \in S'_p$ $(\alpha = 1, \dots, n; \alpha' = \alpha + n)$ are isotropic (real) vectors of the *W* basis, one has $\mathcal{U}h_{\alpha} = h_{\alpha'}$, $\mathcal{U}h_{\alpha'} = h_{\alpha}$.

Remark. $T_p(K)$ may be also considered as the *orthogonal sum* of the *n* hyperbolic 2-planes $P_{\alpha} \equiv (h_{\alpha}, h_{\alpha'})$ [6], that is

$$T_p(K) = P_1 \perp P_2 \perp \cdots \perp P_n$$
.

2. Quantic manifolds Q_k .

Assume that the pseudo-Riemannian metric of the manifold $Q=K\times T$ is of index n+1. Denote by $h=h_{2n+1}$ the time-like vector tangent to T. Then a unitary frame (or normed) $\{\bar{p}, h_A; A=1, 2, \dots, 2n, 2n+1\}$ at $\bar{p} \in Q$ is defined by

(3)
$$\langle h_{\alpha}, h_{\beta'} \rangle = \delta_{\alpha\beta}, \quad \langle h, h \rangle = 1,$$

 $\langle h, h_{\alpha} \rangle = 0 = \langle h, h_{\alpha'} \rangle.$

The line element $d\bar{p}$ of Q is

$$(4) d\bar{p} = \bar{\theta}^A \otimes h_A$$

where $\{\bar{\theta}^A\}$ is the dual basis of $\{h_A\}$.

From (3) and (4) the metric of Q in terms of $\bar{\theta}^A$ is expressed by the quadratic para-coHermitian [7] form

(5)
$$ds^2 = 2\sum_{2} \bar{\theta}^{\alpha} \bar{\theta}^{\alpha'} + (\bar{\theta})^2$$

The para-Hermitian component of ds^2 that is $2\sum_{\alpha}\bar{\theta}^{\alpha}\bar{\theta}^{\alpha'}$ is exchangeable with the 2-form of rank 2n

(6)
$$\bar{\mathcal{Q}} = \sum_{\alpha} \bar{\theta}^{\alpha} \wedge \bar{\theta}^{\alpha'}$$
.

The manifold Q is structured by the connection

(7)
$$\overline{V}h_A = \overline{\theta}^B_A \otimes h_B$$

where $\bar{\theta}_{A}^{B} = \bar{l}_{AC}^{B} \bar{\theta}^{c}$ are the connection forms on the principal frame bundle $\mathscr{B}(Q) = \bigcup \{\bar{p}, h_{A}\}$ and from (3) one finds easily

(8)
$$\bar{\theta}^{\alpha}_{\beta} + \bar{\theta}^{\beta'}_{\alpha'} = 0.$$

(8')
$$\bar{\theta}_{\alpha}^{2n+1} + \bar{\theta}_{2n+1}^{\alpha'} = 0, \quad \bar{\theta}_{2n+1}^{2n+1} = 0.$$

K and h being a para-Kählerian manifold and a time-like vector respectively, we shall call the quantic manifold defined by

a quantic manifold with para-coKählerian structure (denoted by Q_k).

By reasoning similar to that for coKählarian manifolds [8] and from (8), we deduce

$$(10) d\wedge \bar{\theta} = 0,$$

(11)
$$\nabla h = 0 \Rightarrow \bar{\theta}_{\alpha}^{2n+1} = 0 = \bar{\theta}_{\alpha'+1}^{\alpha'}$$

and if \mathcal{M} is the connection matrix on $\mathcal{B}(Q_k)$ one has

(12)
$$\mathcal{M} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \bar{\theta}^{\alpha}_{\beta} & 0 \\ 0 & 0 & \bar{\theta}^{\alpha'}_{\beta'} \end{pmatrix} .$$

In the following we shall call h and $\bar{\theta}$ the canonical field and the canonical covector of Q_k , respectively (h may be also called the anisotropic vector [6] corresponding to the splitting $T_{\bar{p}}(Q_k) = S_{\bar{p}} \oplus S_{\bar{p}} \oplus h$ of the tangent space $T_{\bar{p}}(Q_k)$ at $\bar{p} \in Q_k$). Let $\bar{\omega}$ be the 1-form which defines the quantic structure of Q_k and ω its induced value on K.

Since ω is *semi-basic* with respect to the Pfaffian structure of Q_k , we may write

(13)
$$\bar{\omega} = \omega + \bar{\theta}$$
.

The connection \overline{V} being torsionless (since a para-coKählerian structure is integrable) by virtue of (12) the structure equations of Q_k are

 $d \wedge \bar{\theta}^{\alpha} = \bar{\theta}^{\beta} \wedge \bar{\theta}^{\alpha}$

(14)
$$d \wedge \bar{\theta}^{\alpha'} = \bar{\theta}^{\beta'} \wedge \bar{\theta}^{\alpha'}_{\beta'},$$

 $d \wedge \bar{\theta} = 0$

and

(14')
$$d \wedge \bar{\theta}^{a'}_{\beta'} = \bar{\mathcal{Q}}^{a'}_{\beta'} + \bar{\theta}^{a'}_{\beta} \wedge \bar{\theta}^{a'}_{\gamma'}$$

where $\bar{\Omega}^{\alpha}_{\beta}$, $\bar{\Omega}^{\alpha'}_{\beta'}$ are the curvature 2-forms.

3. Self-orthonormal Grassman manifolds $G^n(T^*_p(Q_k))$ over Q_k .

 $d \wedge \bar{\theta}^{\alpha}_{a} = \bar{\Omega}^{\alpha}_{a} + \bar{\theta}^{\gamma}_{a} \wedge \bar{\theta}^{\alpha}_{z}$

Consider the simple unitary form σ (resp. σ') of the self-orthogonal *n*-plane spanned by h_{α} (resp. $h_{\alpha'}$). Accordingly one has

RADU ROSCA

(15)
$$\bar{\sigma} = \bar{\theta}^1 \wedge \cdots \wedge \bar{\theta}^n$$

(15')
$$\bar{\sigma}' = \bar{\theta}^{1'} \wedge \cdots \wedge \bar{\theta}^{n'}$$

and by (14) we get

(16) $d\wedge \bar{\sigma} = -\tau \wedge \bar{\sigma},$

$$(16') d \wedge \bar{\sigma}' = \tau \wedge \bar{\sigma}'$$

where $\tau = \sum_{\alpha} \bar{\theta}^{\alpha}_{\alpha}$; $\sum_{\alpha} \bar{\theta}^{\alpha}_{\alpha} + \sum_{\alpha'} \bar{\theta}^{\alpha'}_{\alpha'} = 0$.

It follows from (16) and (16') that the two self-orthogonal subspaces $S_{\bar{p}}$ and $S_{\bar{p}}$ define on Q_k a G-structure of type $G=GL(n; R)\times GL(n; R)$ [9], and consequently an (n, n) foliation on Q_k . Hence we may say that $\bar{\sigma}$ (resp. $\bar{\sigma}'$) defines a Grassman manifold $G^n(T^*_{\bar{p}}(Q_k))$ (resp. $G'^n(T^*_{\bar{p}}(Q_k))$ of dimension n over the dual space $T^*_{\bar{p}}(Q_k)$. We shall call $\bar{\sigma}$ and $\bar{\sigma}'$ the self-orthogonal Grassmann manifolds over Q_k and τ the trace 1-form associated with the W-basis $\{h_{\alpha}, h_{\alpha'}\}$.

Remark. If $\tau=0$, the connection \overline{V} is proper spin-euclidean [10] ($\tau=0$, defines the one modular linear group on $S_{\overline{p}}$).

Since

(17)
$$\bar{\sigma} \wedge \bar{\sigma}' \wedge \bar{\theta} =_*(1)$$

is the volume element of Q_k , we readily find

(18)
$$*\bar{\theta} = \bar{\sigma} \wedge \bar{\sigma}'$$

and by means of (16) and (16') we get

(19)
$$d \wedge (*\bar{\theta}) = 0 \Rightarrow \delta\bar{\theta} = 0 \Rightarrow \Delta\bar{\theta} \equiv (d\delta + \delta d)\bar{\theta} = 0$$

But by virtue of the property $_{**}() = -()$ of the star operator, we have also

(20)
$$\Delta(*\bar{\theta}) = 0.$$

Thus we may say that the simple unit 2*n*-form $_{*}\bar{\theta}$ satisfies the general Maxwell equations in vacuum.

Moreover one finds

$$d \wedge_* \bar{\sigma} = \tau \wedge_* \bar{\sigma} ,$$

$$(21') d \wedge_* \bar{\sigma}' = -\tau \wedge_* \bar{\sigma}$$

and this shows that both *n*-forms $\bar{\sigma}$ and $\bar{\sigma}'$ which are visibly orthogonal $(\bar{\sigma}, \bar{\sigma}')=0$) are co-completely integrable.

Putting

(21")
$$\tau = l_{\alpha} \bar{\theta}^{\alpha} + l_{\alpha'} \bar{\theta}^{\alpha'}$$

one finds from (21) and (21')

(22)
$$\delta \bar{\sigma} = (-1)^{n+1} \sum_{\alpha} (-1)^{\alpha-1} l_{\alpha} \bar{\theta}^{1} \wedge \cdots \wedge \hat{\bar{\theta}}^{\alpha} \wedge \cdots \bar{\theta}^{n},$$

(22')
$$\delta \bar{\sigma}' = (-1)^n \sum_{\alpha'} (-1)^{\alpha' - 1} l_{\alpha'} \bar{\theta}^1 \wedge \cdots \wedge \hat{\bar{\theta}}^{\alpha'} \wedge \cdots \bar{\theta}^{n'}$$

(the roof indicates the missing term).

Making now use of G. de Rham formula [11] for $\bar{\sigma}$ and $\bar{\sigma}'$, that is

$$d \wedge (\bar{\sigma} \wedge_{\ast} (d \wedge \bar{\sigma}') - \bar{\sigma}' \wedge_{\ast} (d \wedge \bar{\sigma}) + \delta \bar{\sigma} \wedge_{\ast} \bar{\sigma}' - \delta \bar{\sigma}' \wedge_{\ast} \bar{\sigma})$$

= $\Delta \bar{\sigma} \wedge_{\ast} \bar{\sigma}' - \Delta \bar{\sigma}' \wedge_{\ast} \bar{\sigma} = 0 \Rightarrow \Delta \bar{\sigma} \wedge \bar{\sigma} - \Delta \bar{\sigma}' \wedge \bar{\sigma} = 0$

one finds with the help of (16), (16'), (22) and (22')

$$\varDelta \bar{\sigma} = 0 \Leftrightarrow \varDelta \bar{\sigma}' = 0$$

We may state the preceding results as follows:

THEOREM. Let Q_k be a quantic monifold with para-coKählerian structure and let h be the canonical field of Q_k and $\bar{\sigma}$, $\bar{\sigma}'$ the simple unitary forms of the self-orthogonal sub-spaces $S_{\bar{p}}, S'_{\bar{p}}$, respectively. Then

(i) $\bar{\sigma}$ (resp. $\bar{\sigma}'$) defines a Grassman manifold of dimension n;

(ii) h is an infinitesimal automorphism of the G-structure defined by the volume element of Q_k (in other words h is divergence-free) and the adjoint, $*\bar{\theta}$ of the canonical covector $\bar{\theta}$ satisfies Maxwell general equations in vacuum; (iii) $\bar{\sigma}$ and $\bar{\sigma}'$ are co-completely integrable and $\Delta \bar{\sigma} = 0 \Leftrightarrow \Delta \bar{\sigma}' = 0$.

 $\lim_{n \to \infty} \mathbf{0} \quad \text{and} \quad \mathbf{0} \quad \text{are co-completely integrable and } \mathbf{10} = \mathbf{0} \leftrightarrow \mathbf{10}$

4. Minimal immersion in Q_k .

Consider first the immersion $x: \tilde{K} \to Q_k$ where \tilde{K} is a para-Kählerian manifold of dimension 2q. If $i=1, \dots, q$; i'=i+n are the tangential indices associated with x and dp, θ^i , θ^i , $\theta^{i'}$, θ^{a}_{β} and $\theta^{a'}_{\beta'}$ the restrictions on \tilde{K} of $d\bar{p}$, $\bar{\theta}^{\alpha}$, $\bar{\theta}^{\alpha'}_{\beta}$, $\bar{\theta}^{a'}_{\beta}$ and $\bar{\theta}^{a'}_{\beta'}$ respectively, we may write

$$(23) dp = \theta^i \otimes h_i + \theta^{i'} \otimes h_{i'}.$$

Let $T_p^{\perp}(\tilde{K}) = \{h_r, h_{r'}\}$ be the normal space to \tilde{K} at p $(r=q+\cdots n; r'=r+n$ are the normal indices corresponding to the isotropic normal vectors associated with x). From (23) we find that the adjoint of the line element dp is

(24)
$$*dp = \sum (-1)^{i-1} h_i \theta^1 \wedge \cdots \wedge \theta^q \wedge \theta^{1'} \wedge \cdots \wedge \hat{\theta}^{i'} \wedge \cdots \wedge \theta^{q'} + \sum (-1)^{i'-1} h_{i'} \theta^1 \wedge \cdots \wedge \hat{\theta}^i \wedge \cdots \wedge \theta^q \wedge \theta^{1'} \wedge \cdots \wedge \theta^{q'}$$

(25) $d \wedge_* dp = H_*(1);$ (1) volume element of \mathring{K}

where $H \in T_p^{\perp}(\tilde{K})$ represents as is known the *mean curvature* vector associated with x. From (7) and (14) one finds by straight forward calculation

$$d \wedge_* dp = 0 \Rightarrow H = 0$$
.

Remark. This result is analogous to the well known property of Kählerian subspaces of a Kählerian space.

Next consider the immersion $x: \hat{Q} \to \hat{Q}_k$ where Q is a para-coKählerian manifold of dimension 2q+1. In this case the line element dp of \hat{Q} is

(26)
$$dp = \theta^{i} \otimes h_{i} + \theta^{i'} \otimes h_{i'} + \theta \otimes h$$

and one finds

$${}_{*}dp = (\sum (-1)^{i-1}h_{i}\theta^{1} \wedge \cdots \wedge \theta^{q} \wedge \theta^{1'} \wedge \cdots \wedge \hat{\theta}^{i'} \wedge \cdots \wedge \theta^{q'} + \sum (-1)^{i'-1}h_{i'}\theta^{1} \wedge \cdots \wedge \hat{\theta}^{i} \wedge \cdots \wedge \theta^{q} \wedge \theta^{1'} \wedge \cdots \wedge \theta^{q'}) \wedge \theta + h\theta^{1} \wedge \cdots \wedge \theta^{q} \wedge \theta^{1'} \wedge \cdots \wedge \theta^{q'} .$$

Taking account of (10) and (11) one readly gets

$$d \wedge_* dp = 0 \Rightarrow H = 0$$
,

and so we have the

THEOREM. Any immersion of a para-Kählerian or a para-coKählerian manifold in Q_k is minimal.

5. Concurrent tangential vector fields over a para-Kahlerian submanifold of Q_{k} .

Let $x: \tilde{K} \rightarrow Q_k$ be the immersion considered at section 4, and let

$$(27) X=t^ih_i+t^{i'}h_i$$

be a tangential vector field over \check{K} . Following K. Xano and B. Y. Chen [2], X is concurrent if we have

$$dp + \nabla X = 0$$

By (7), (23) and (27) we get from (28)

(29)
$$dt^{i} + \theta^{i} + t^{j} \theta^{i}_{j} = 0, \quad i, j = 1, \cdots, q, \quad i' = i + n; \quad j' = j + n.$$

$$(30) dt^{i'} + \theta^{i'} + t^{j'} \theta^{i'}_{j'} = 0,$$

(31) $t^{i}\theta_{i}^{r}=0; \quad r=q+1, \cdots, n, \quad r'=r+n,$

$$(32) t^{i'}\theta^{r'}_{i'}=0$$

and by exterior differentiation one finds that the necessary and sufficient conditions for the above system to be closed are

(33)
$$\det\left(\mathcal{Q}_{j}^{i}\right)=0, \quad \det\left(\mathcal{Q}_{j'}^{i'}\right)=0,$$

(34)
$$t^{i} \Omega_{i}^{r} = 0, \qquad t^{i'} \Omega_{i'}^{r'} = 0.$$

Further, since the second fundamental forms associated with x are

(35)
$$\varphi_r = -\langle dp, \nabla h_r \rangle = \theta_{i'}^r \theta^{i'},$$

(36)
$$\varphi_{r'} = -\langle dp, \nabla h_{r'} \rangle = \theta_i^r \theta^i$$

the Lispchitz-Killing curvatures $K(p, h_r)$, $K(p, h_{r'})$ associated with x are defined by

(37)
$$K(p, h_r) = \det(\varphi_r),$$

(38)
$$K(p, h_{r'}) = \det(\varphi_{r'}).$$

Thus one gets from (31) and (32)

$$K(p, h_r) = 0 = K(p, h_{r'})$$
.

THEOREM. Let $x: \vec{k} \to Q_k$ be the immersion of a para-Kählerian manifold in a quantic manifold with para-coKählerian structure. If \vec{k} admits a concurrent tangential field then all Lipschitz-Killing curvatures associated with x vanish

Now consider the invariant (2q-1)-form

(39)
$$\Theta = \sum_{i} (-1)^{i-1} \langle X, h_{i'} \rangle \theta^{1} \wedge \cdots \wedge \hat{\theta}^{i} \wedge \cdots \wedge \theta^{q} \wedge \theta^{1'} \wedge \cdots \wedge \theta^{q'}$$
$$+ \sum_{i'} (-1)^{i'-1} \langle X, h_{i'} \rangle \theta^{1} \wedge \cdots \wedge \theta^{q} \wedge \theta^{1'} \wedge \cdots \wedge \bar{\theta}^{i'} \wedge \cdots \wedge \theta^{q'}$$

which is an integral relation of invariance for X, that is

By (14) and (27) we have

$$(41) d \wedge \Theta = -2q_*(1)$$

and since

we obtain

(43)
$$L_{X*}(1) = -2q_{*}(1)$$

 L_x : Lie differentiation with respect to the vector field X

$$L_{\mathbf{X}}\Theta = -2q\Theta.$$

Thus (43) and (44) show that X is a homothetic infinitesimal transformation over

RADU ROSCA

 Q_k and a conformal infinitesimal transformation of the G-structure defined on \tilde{K} by Θ , respectively.

Further, the dual form α of X being

(45)
$$\alpha = \sum_{i} t^{i'} \theta^{i} + \sum_{i} t^{i} \theta^{i'}; \quad i' = i + n$$

one finds by means of (29), (30)

(46)
$$\alpha = d \sum_{i} t^{i} t^{i'} = \frac{1}{2} d \langle X, X \rangle.$$

Calling α the concurrent tangential covector associated with x, (46) shows that α is a coboundary.

Now let $\tilde{\Omega}$ be the restriction of $\bar{\Omega}$ on \tilde{K} and let $\tilde{\alpha}$ be the dual form of X with respect to $\tilde{\Omega}$. That is the isomorphism

(4.7)
$$j: \wedge^2(\mathring{K}) \longrightarrow \wedge^1(\mathring{K}), \qquad \mathring{\Omega} \longrightarrow X \, \lrcorner \, \mathring{\Omega} = \tilde{\alpha}.$$

Since

(48)
$$\tilde{\Omega} = \sum_{i} \theta^{i} \wedge \theta^{i'}$$

one finds

(49)
$$\tilde{\alpha} = \sum_{i} t^{i} \theta^{i'} - \sum_{i} t^{i'} \theta^{i}$$

and by (29) and (30)

$$(50) d \wedge \tilde{\alpha} = -q \tilde{\Omega} .$$

Consequently we deduce

(51)
$$L_X \tilde{\Omega} = -q \tilde{\Omega}$$

and this shows that X is a conformal infinitesimal transformation of the symplectic structure $S_p(q, R)$ defined by $\tilde{\Omega}$ on \tilde{K} (\tilde{K} is not compact). On the other hand if we denote by $X_{\alpha} = -\tilde{\Omega}^{-1}(\alpha)$ the Hamiltonian field corresponding to α (by virtue of (46) on may say that $\frac{1}{2} \langle X, X \rangle$ is the energy integral of X_{α}) it is readly seen that

and one finds

(53)
$$L_{X_{\alpha}*}(1)=0$$
.

Hence X_{α} is an *infinitesimal automorphism* of the G-structure defined by the volume element of \vec{K} .

Fro the above we have the

QUANTIC MANIFOLDS

THEOREM. Let \mathring{K} be an 2q-dimensional para-Kählerian submanifold of a quantic manifold with para-coKählerian structure. If \mathring{K} admits a concurrent tangential vector field X, and α is the dual form of X, (or the concurrent tangential covector) then

- (i) X is a homothetic infinitesimal transformation over \breve{K} .
- (ii) X is a conformal infinitesimal transformation of the G-structure defined on \tilde{K} by $*\alpha$, and of the induced symplectic structure $\tilde{\Omega}$ on \tilde{K} .

(iii) α is a coboundary and its associated Hamiltonian field with respect to $\tilde{\Omega}$ is an infinitesimal automorphism of the G-structure defined by the volume element of \tilde{K} .

6. Planck manifolds.

Being given a quantic manifold Q any (horizontal) submanifold of Q, defined by $\overline{\omega}=0$ ($\omega=0$) is called a *Planck manifold* (denoted by \mathcal{P}). Since the reciprocal image of $d \wedge \overline{\omega}$ is also zero, it follows that any Planck manifold has an isotropic metric structure [1] (or is *total null*). In consequence of the splitting $T_{\overline{p}}(Q_k)=S_{\overline{p}}\oplus S'_{\overline{p}}\oplus h$, the *index* [6] of $T_{\overline{p}}(Q_k)$ is *n* (that is the maximal isotropic subspace of $T_{\overline{p}}(Q_k)$ is of dimension *n*). Let then \mathcal{P} be a Planck manifold of dimension $q \leq n$ and $T_p(\mathcal{P})$ and $T_p^{\perp}(\mathcal{P})$ the tangent space and the normal space at $p \in \mathcal{P}$ respectively. If q=n one has $T_p(\mathcal{P})\equiv T_p^{\perp}(\mathcal{P})$ and in this case we shall call \mathcal{P} a *self orthogonal* Planck manifold (or of maximal dimension). If q < n one has $T_p(\mathcal{P}) \subset T_p^{\perp}(\mathcal{P})$ and \mathcal{P} is called an *isotropic* Planck manifold.

For later convenience, in stating some results, the following definition will be made.

Definition. Let $x \in M \to \overline{M}$ be the inclusion of an isotropic manifold M in a pseudo-Riemannian manifold \overline{M} and let dp be the line element of M. We say that x is a minimal harmonic inclusion if $d \wedge_* dp = 0 \Rightarrow \Delta p = 0$, holds.

Suppose now that $T_p(\mathcal{P}) \subseteq S_p$, and denote by h_i $(i, j=1, 2, \dots, q)$ and h_r $(r=q+1\dots n)$ the normal tangential isotropic vector and the normal transveral isotropic vector, respectively, associated with the inclusion $x: \mathcal{P} \rightarrow Q_k$.

Since

$$(54) dp = \theta^{i} \otimes h_{i}$$

the adjoint *dp is expressed by

(55)
$$*dp = \sum_{i} (-1)^{i} h_{i'} \theta^{1} \wedge \cdots \wedge \hat{\theta}^{i} \wedge \cdots \wedge \theta^{q}.$$

Thus if q=n we deduce

$$(56) d \wedge_* dp = -\tau \wedge_* dp$$

where $\tau = \sum_{i} \theta_{i}^{i}$ is the trace 1-form associated with x.

In case q < n we shall introduce the following quadratic forms associated with x

(57)
$$\varphi_r = -\langle Udp, \nabla h_r \rangle$$

where \mathcal{U} is the parahermitian operator defined at section 1. By straight forward calculation one finds

(58)
$$d \wedge_* dp = -\tau \wedge_* dp - \{\sum_r (\operatorname{trace} \varphi_r) h_r\}_*(1)$$

where r'=r+n and *(1) is the volume element of \mathcal{P} .

Calling φ_r the para-Hermitian quadratic forms associated with the inclusion $x: \mathcal{D} \rightarrow Q_k$, we formulate the

THEOREM. Let $x: \mathcal{D} \to Q_k$ be the inclusion of a Plack manifold \mathcal{D} in a quantic manifold Q_k with para-coKählerian structure and let τ and φ_r be the trace 1-form and the para-Hermitian quadratic forms associated with x, respectively. Then

(i) If \mathcal{P} is self-orthogonal, the necessary and sufficient condition that \mathcal{P} be minimal harmonic is that τ vanishes;

(ii) If \mathcal{P} is isotropic, the necessary and sufficient conditions that \mathcal{P} be minimal harmonic is that both τ and trace (φ_r) vanish.

Remark. From (16) and we deduce if \mathcal{P} is self-orthogonal, then the above results may be expressed as follows:

The necessary and sufficient condition that \mathcal{P} be minimal harmonic is that the associated Grassman manifold σ be harmonic.

That is $\Delta p=0 \Leftrightarrow \Delta \sigma=0$; σ is the restriction of $\bar{\sigma}$ on \mathcal{P} . This property is in some regards related to the theory of harmonic simple forms constructed by Tachibana [12].

Reference

- [1] I.M. SOURIAU, Structure des systemes dynamiques, Dunod, Paris 1970.
- [2] K. YANO AND B.Y. CHEN, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep., 23 (1971), 363-350.
- [3] P. LIBERMANN, Sur le problème d'équivalence de certaines structure infinitésimales, Ann. Mat. Pura Appl., 36 (1954), 27-120.
- [4] A. CRUMEYROLLE, Structures spinorielles, Ann. Inst. Poincaré vol. XI, no. 1, 1969, 19-55.
- [5] R. ROSCA ET L. VANHECKE, Espace pseudo-euclidian E²ⁿ⁺¹ de signature (n+1, n) structuré par une connexion self-orthogonale involutive, C. R. Acad. Sci. Paris, t. 277 (1973), Séries A, pp. 433-436.
- [6] E. ARTIN, Geometric algebra, Interscience Publishers Inc. New York, 1957.
- [7] R. ROSCA, Sur les variétés totalement isotropes incluses dans un espace pseudoeuclidien réel de signature (n, n+1), C.R. Acad. Sci. Paris, t. 276, séries A (1973), pp. 799-802.

QUANTIC MANIFOLDS

- [8] I. BOUZON, Structures presque-complexes, Rend. Sem. Turino, 24 (1965), pp. 53-122.
- [9] S. KOBAYASHI, Transformation groups in differential geometry Springer Verlag, Berlin (1972).
- [10] A. CRUMEYROLLE, Dérivations, formes et opérateurs usuels sur les champs spinoriels des variétés différentielles de dimension paire, Ann. Inst. H. Poincaré vol. XVI, no. 3 (1972), 171-201.
- [11] G. DE RHAM, Variétés différentiables, Hermann, Paris (1960).
- [12] S. TACHIBANA, On harmonic forms, Tensor N.S. vol. 27, no. 1 (1973), 123-130.

Prof. R. Rosca, Institutul de Matematica, Calea Grivitei 21, Bucuresti 12 Romania