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ON CERTAIN CRITERIA FOR THE LEFT-PRIMENESS
OF ENTIRE FUNCTIONS, II

BY MITSURU OZAWA

1. Introduction. In our previous paper [5] we had proved two general
theorems guaranteeing the left-primeness of entire functions. The first one may
be stated in the following manner:

THEOREM A. Let F(z) be an entire function of finite order whose derivative
F'(z) has infinitely many zeros. Assume that the equations F(z)—c and F'(z)=0
have only finitely many common roots for any constant c. Then F{z) is left-
prime in entire sense.

Although this has a wide range of applicability, there are lots of defects,
for example, this does not work to the function z sin z+z. The function has
infinitely many double zeros and hence F(z)=0 and F'(z)=0 have infinitely many
common roots. We shall now fill up this kind of defect. Our theorems are the
following.

THEOREM 1. Let F(z) be an entire function of finite order. Assume that
for a certain constant A F(z)=A has at least one but at most finitely many sim-
ple roots and has infinitely many multiple roots all of whose multiplicities are the
same. Assume further that the equations F(z)=c, F'(z)=0 have only a finite
number of common roots for any cφA. Then F(z) is left-prime in entire sense.

THEOREM 2. Let F(z) be such an entire function that for a constant A
F(z)=A has at least one but at most finitely many simple roots and has infinitely
many multiple roots all of whose multiplicities are the same. Assume that

N(r, A, F)-N(r, A, F)^Km(r, F)
and _

N(r, 0, F')-(N(r, A, F)-N(r, A, F))^km(r, F)

for some K, k>0. Assume further that F(z)=cf F'(z)=0 have only a finite num-
ber of common roots for any cφA. Then F{z) is left-prime in entire sense.

Firstly we should remark that any entire function has neither three perfectly
branched values nor a finite Picard exceptional value and a perfectly branched
value. Here we call a a perfectly branched value of F(z) when F(z)=a has
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infinitely many multiple roots except for a finite number of simple roots. We
shall make use of the above fact repeatedly.

2. Proof of Theorem 1. Suppose that F(z)=f(g(z)) with transcendental
/ and g. Then by Pόlya's result /o(/)=0, where ρ(f) indicates the order of /.
Assume that f(w)—A has three simple zeros wu w2, wz. Then g{z)—w3 should
have only finitely many simple roots by the finiteness of simple zeros of F(z)—A.
This is impossible. Further at least one zero of f(w)—A should be simple, since
F(z)—A has at least one simple zero. Hence there occur three possibilities:

1) Aw)-A
2) Aw)-A
3) Aw)-A

where M(w) has infinitely many simple zeros and μφλ. Here μ is the order of
multiple zeros of F(z)—A. In what follows we shall prove the existence of a
w0 for which /'(u/0)=0 but f(wo)φA. Suppose this is not the case. Then any
zero of f{w) satisfies f(w)=A and every multiple root of AW)~A satisfies

The case 1). In this case

fμ _ 1

By integration of this equation we have

We put w=.wx. Then AwJ=A implies d=0. Thus

This is impossible.

The case 2). In this case (g(z)—w2)
λ has infinitely many zeros, whose orders

should be equal to μ. Hence λs=μ, s^2. Then consider

f = 1

Integrating this equation we have

dw

'j=w2. Then d=L(w1)=L(w2). Thus L(w2)—Lζw^O. However

" 2 dwc 2

L(u;2)-L(w;1)=J ^ (w-Wiy-
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Φθ.

This is a contradiction.

The case 3). Consider

Similarly as in the case 2) we have

f
~JW

dw

dW4-

This is untenable.

Hence in all the cases there exists a w0 such that f(wQ)=Q but f(wo)ΦA.
Then consider g(z)=w0. At all the roots of g(z)=w0 F(z)=f(wo)ΦA and F7^)
=0, which have only a finite number of common roots. Hence g(z)=w0 has only
finitely many roots, that is, w0 is a Picard exceptional value of g. However g
has already at least one perfectly branched value wλ. This is impossible.
Therefore F(z) is pseudo-prime in entire sense.

Suppose that F(z)=f(g(z)) with a non-linear polynomial / and entire g.
Then similarly as in the above we have three possibilities:

f—A=B(w—w1)(w—w2)r ... (w-wsy,

f-A=B(w-w1Xw-w2)\w-w3y ••• (w-wsy,
and

f-A=B(w-w1)(w-w2)(w-Wι)ft ••• (w-wsy ,

We shall prove the existence of w0 such that f(wo)=O but f(wQ)ΦA. In each
case we put x the number of roots of f'=0 other than the ones satisfying f(w)
— A. We compute the degree of /' in two manners. Then we have

in the first case,
μ(s-2)+λ=(μ-ϊ)(s-2)+λ-l+x

in the second case and
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in the third case. In every case we have

This gives the desired result. Then considering g(z)=w0 and hence the equ-
ations F(z)=f(wo)ΦA, F'(z)=0 and remarking the existence of a perfectly
branched value wλ of g we have a contradiction. q. e. d.

We can release our assumptions on the roots of F(z)=A in the following
manner: F(z)—A=B(z—zx)

λl ••• (z—zs)
λsL(z)μ for a certain A, where λ3 and μ

are coprime for each j ( l^ i^s ) , s^l and L(z) has only infinitely many simple
zeros.

3. Proof of Theorem 2. Suppose that F—f{g) with transcendental / and
g. Then we have again three possibilities:

1) f(w)-A=B(w-w1)M(wy,
2) fiw)-A=Biw-wί)(w-w2)

λM(wy, λ^2
and

3) f(w)—A=B(w—w1)(w—w2)M(wY.

Here M(w) is transcendental entire. In all the cases we shall firstly prove the
existence of infinitely many zeros of M(w). In the case 1)

N(r, A, F)£N(r, wlt g)+μ%N(r, wJf g)
3 — 2

^(μp-μ+ϊ)m(r, g).
However

N(r, A, F)-N(r, A, F)^Km(r, F)

for r&Eg, which is of finite measure. This gives a contradiction, since s is
arbitrary. Hence M(w) has infinitely many simple zeros in this case. Quite
similarly we can prove the existence of infinitely many (simple) zeros of M(w)
in the remaining two cases.

Next we shall prove the existence of at least one w0, for which f(wo)=O
but f(wo)ΦA. Suppose this is not the case. Then in the case 1)

N(r, 0, f'(g))=N(r, A, F(g))-N(r, A, f(g)).

Therefore for r&Eg

N(r, 0, F')=N(r, 0, f'(g))+N(r, 0, gf)

^N(r, A, F)-N(r, A, F)+N(r, 0, g')

^N(r, 0, F')-km(r, F)+rn(r,
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Thus

However

km(r, F)^

for r$Eg. Hence

which is impossible, since s is arbitrary. This gives the desired existence of w0,
for which f/(w0)—0 but f(wo)ΦA in the case 1). Similarly we can prove the
desired existence of w0 in the remaining two cases. Once the existence of w0

such that f/(i^o)=O} f(wo)ΦA is acertained, the remaining part of the proof is
quite similar as in Theorem 1. Then we have the pseudo-primeness of F in
entire sense. If F(z)=f(g(z)) with a non-linear polynomial / and entire g, we
can prove the existence of wo:f'(wo)=0, f(wo)φA as in Theorem 1 and then
we have the left-primeness of F. q. e. d.

As in the case of Theorem 1 we can release the condition on the roots of
F=A.

4. Applications.

COROLLARY 1. P(zXsinz+ϊ) is prime, where P{z) is a polynomial of odd
ree.

Proof. Let A be zero. Then

Since P{z) is of odd degree, there is at least one zero of P of odd multiplicity.
Consider

( ) ( ( ( cos z=0 .

Then we have

2P(zY=CP(z)2+CP/(z)2.

This has only finitely many roots. Hence F(z) is left-prime in entire sense.

Consider the distribution of zeros of F(z)=f(g(z)) with a non-linear poly-
nomial g. Then g should be quadratic. Let g{z) be a(z—a)2+b. In the present
case a should be either 2nπ+5π/2 or 2nπ+3π/2, where n is an integer. Hence
with x—z—a

P(a+x){sm(a+x)+l}=F(a+x)=f(ax2+b)=f(a(-x)2+b)

=F(a-x)=P(a-x){$m(a-x)+l} .
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However sin(α+x)+l=sin(α—x)+l. Hence P(a+x)=P(a—x). By comparing
the leading coefficients of both sides we have a contradiction. Thus we have
the right-primeness of F in entire sense. Hence F is prime by Gross' theorem
[2]. q. e. d.

By the above proof we can say that POXsin^+l) is prime if P(z) does not
have the form Q(z)2 and does not satisfy P(a—z)=P(a+z) for any a=2nπJ

Γ2π
+7r/2 or 2nπ+π-\-π/2. These conditions are necessary as the following examples
show:

etz/2+ie-χz/2\2

COROLLARY 2. z(eaz+eβz)2 is prime if either aβφO, aβ'1 is real or a=0,
or a=β=0.

Proof. We firstly consider the case aφβ, aβφO. Consider

Then

(cc-β)z=log iXlfyi + log £
and

az=log ϊ+ψL^ ^ io g z+log

Taking their real parts we have

and

m(az)=log lz+ffβl +log

If z^oo, then |$H(αz)| is bounded but by the second equation Sft(α2r)->—oo. This
is impossible. Hence the equations F—cφO, F'=0 have only finitely many com-
mon roots. Hence F is left-prime in entire sense.

We next consider the right-primeness. To this end we consider the dis-
tribution of zeros of F. The set of zeros of F is {0} and {(2p-l)πι/(a-β)}
p=0, ±1, — . The latter ones are of order 2. Hence F(z)=f(g(z)) with a
polynomial g implies that g is of degree two or one. Since the set of zeros of
F is symmetric with respect to the origin only, g(z) must be az2-\-b if degg"=2.
Then F(-z)=F(z). This implies that
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This is impossible by the impossibility of BoreΓs identity [1], [3]. Hence F is
right-prime in entire sense. Hence F is prime.

Next we consider the case a=βφθ. We may consider the function zeaz.
This has 0 as a Picard exceptional valve. Hence zeaz is pseudo-prime [4].
Then the remaining part is almost trivial. The case α=/3=0 is trivial.

If a=0, we consider

By cancelling out eβz we have

which has only three roots. Hence F is left-prime in entire sense. The right-
primeness is almost similarly proved as in the general case. Hence F is prime.

q. e. d.
COROLLARY 3.

is prime.

Proof. It is necessary to prove that

Ce~t2dt+z

has only finitely many multiple zeros and infinitely many simple zeros. However
this fact was proved already in [5]. Let us consider

F=z(J'e-t2dt+z)2=cΦ0,

F'=(j *e-*dt+z)2+2z{e-z2+V)(j 'e-»dt+z)=0 .

Then

Hence

which implies

- * 2 = l o g
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Let z be reiθ. Then if z->oo, r2 cos20-+O. Therefore Θ^π/A, 3π/4, 5π/4 or 7π/4
if r^oo. We firstly consider the case 0—>7r/4. Then r2 cos 20^0 as r-*oo implies
r2(#-τr/4)->0. In this case

Further

Hence

e~t2dt ^ I re-r2cos2*dφ
rei7C/A [ J 7Γ/4

I Λ r et7T/4 Λ r (. r

e~t2dt = \ cos s2ds-ι\ sin s2ds
I«/ o J o Ό

>oo).

z— e~t2dt
\J

 reιπ/4:
-t2dt

implies that

is bounded as z->oo along the solutions of e~z2=—(2ZΛ/Z + +Jc )/2z*Jz being
near the ray θ—π/L This is impossible. The same holds in the other three
cases. Hence F is left-prime in entire sense.

The proof fo the right-primeness of F is quite similar as in the one of

Ve~t2dt+z
Jo

in [5]. We shall make use of the result in [5]. Firstly we have only one
possibility for the right-factor, that is, g is a quadratic polynomial, if F is not
right-prime. Then by the symmetry with respect to the origin g(z) should be
az2+b. Hence F(z)=F(—z). However it is immediate to prove F(—z)=—F(z).
This is impossible. Hence F is right-prime. q. e. d.

COROLLARY 4. z(e2(z)—p(z)Y is prime, where e2(z)=expez and p(z) is a
non-zero polynomial.

Proof. Firstly it is necessary to prove that e2(z)—p(z) has only finitely many
multiple zeros and infinitely many simple zeros. This was already proved in [5]
for any non-constant p{z). If p{z) is a non-zero constant, this is almost trivial.

Since ^{z)—p{z) has only finitely many multiple zeros together with infinitely
many simple zeros,

N(r, 0, F)-N(r, 0, F)^N(r, 0, e2(z)-p(z))(l-s)

^ro(r, e2(z))(l-ε)

for which is of finite measure, and
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N(r, 0, F')-N(r, 0, F)+N(χ, 0, F)

=N(r, p+2zp', (l+2ze')e,(z))

for r<ξEφ, which is of finite measure. Here

e2(z)(l+2ze°)
e2(z)(l+2ze>)-p(z)-2zp'(z) 'V e,{z)-p{z) '

Now let us consider

F=z(e2(z)-p(z))2=cΦ0

F'= {(2ze*+l)e2(z)-p(z)-2zp'(z)} {e2(z)-p(z)}=0.

We now assume that p(z) is not a constant. Then

and

Hence

as z—>oo. Putting z=x+ιy we have x—»—oo. Further

Λ/C~
e^ cos 3̂ —log ί(^)+-^τ=

as 2:—>oo. But x—>—00 implies the boundedness of £*cos.y. This is impossible.
We next assume that p(z) is a non-zero constant a. Then

and

az^/z

imply

and

log

+2pm-
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Hence as z-*cπ log a+2pπi=0, that is, α=l. This implies ί = 0 . Hence

i ...

which is impossible. Hence in both cases F=cΦθ, F'=0 have at most a finite
number of common roots. Therefore F is left-prime in entire sense.

For the right-primeness of F we remark the following fact:

excosy=log\ρ(z)\

is satisfied by the non-zero roots of F(z)=0. Hence for x^x0 there are at most
finitely many solutions of F(z)=0 if p{z) is not a constant. Here x0 is arbitrary.
Then we can conclude the right-primeness of F as in [5], Corollary 3. If p(z)
is a non-zero constant a, then

ez=\oga-\-2pπi,

Therefore there is no solution in x^—x0 for a sufficiently large x0 and there
are infinitely many roots in x^x0. Therefore we can conclude the right-prime-
ness of F in entire sense in a quite similar manner. Thus F(z) is prime. q. e. d.
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