M. OZAWA

KŌDAI MATH. SEM. REP.
27 (1976), 1-10

ON CERTAIN CRITERIA FOR THE LEFT-PRIMENESS OF ENTIRE FUNCTIONS, II

By Mitsuru Ozawa

1. Introduction. In our previous paper [5] we had proved two general theorems guaranteeing the left-primeness of entire functions. The first one may be stated in the following manner:

Theorem A. Let $F(z)$ be an entire function of finite order whose derivative $F^{\prime}(z)$ has infinitely many zeros. Assume that the equations $F(z)=c$ and $F^{\prime}(z)=0$ have only finitely many common roots for any constant c. Then $F(z)$ is leftprime in entire sense.

Although this has a wide range of applicability, there are lots of defects, for example, this does not work to the function $z \sin z+z$. The function has infinitely many double zeros and hence $F(z)=0$ and $F^{\prime}(z)=0$ have infinitely many common roots. We shall now fill up this kind of defect. Our theorems are the following.

Theorem 1. Let $F(z)$ be an entire function of finite order. Assume that for a certain constant $A F(z)=A$ has at least one but at most finitely many simple roots and has infinitely many multiple roots all of whose multiplicities are the same. Assume further that the equations $F(z)=c, F^{\prime}(z)=0$ have only a finite number of common roots for any $c \neq A$. Then $F(z)$ is left-prime in enture sense.

Theorem 2. Let $F(z)$ be such an entire function that for a constant A $F(z)=A$ has at least one but at most finitely many simple roots and has infinitely many multiple roots all of whose multiplicities are the same. Assume that
and

$$
N(r, A, F)-\bar{N}(r, A, F) \geqq K m(r, F)
$$

$$
N\left(r, 0, F^{\prime}\right)-(N(r, A, F)-\bar{N}(r, A, F)) \geqq k m(r, F)
$$

for some $K, k>0$. Assume further that $F(z)=c, F^{\prime}(z)=0$ have only a finite number of common roots for any $c \neq A$. Then $F(z)$ is left-prime in entire sense.

Firstly we should remark that any entire function has neither three perfectly branched values nor a finite Picard exceptional value and a perfectly branched value. Here we call a a perfectly branched value of $F(z)$ when $F(z)=a$ has

Recerved Jan. 15, 1974.
infinitely many multiple roots except for a finite number of simple roots. We shall make use of the above fact repeatedly.
2. Proof of Theorem 1. Suppose that $F(z)=f(g(z))$ with transcendental f and g. Then by Pólya's result $\rho(f)=0$, where $\rho(f)$ indicates the order of f. Assume that $f(w)-A$ has three simple zeros w_{1}, w_{2}, w_{3}. Then $g(z)=w$, should have only finitely many simple roots by the finiteness of simple zeros of $F(z)-A$. This is impossible. Further at least one zero of $f(w)-A$ should be simple, since $F(z)-A$ has at least one simple zero. Hence there occur three possibilities:

1) $f(w)-A=B\left(w-w_{1}\right) M(w)^{\mu}$,
2) $f(w)-A=B\left(w-w_{1}\right)\left(w-w_{2}\right)^{\lambda} M(w)^{\mu}, \lambda \geqq 2$,
3) $f(w)-A=B\left(w-w_{1}\right)\left(w-w_{2}\right) M(w)^{\mu}$,
where $M(w)$ has infinitely many simple zeros and $\mu \neq \lambda$. Here μ is the order of multiple zeros of $F(z)-A$. In what follows we shall prove the existence of a w_{0} for which $f^{\prime}\left(w_{0}\right)=0$ but $f\left(w_{0}\right) \neq A$. Suppose this is not the case. Then any zero of $f^{\prime}(w)$ satisfies $f(w)=A$ and every multiple root of $f(w)=A$ satisfies $f^{\prime}(w)=0$.

The case 1). In this case

$$
\frac{f^{\prime \mu}}{(f-A)^{\mu-1}}=\frac{1}{B^{\mu-1}\left(w-w_{1}\right)^{\mu-1}} .
$$

By integration of this equation we have

$$
\mu(f-A)^{1 / \mu}=B^{(1-\mu) / \mu} \mu\left[\left(w-w_{1}\right)^{1 / \mu}-d\right] .
$$

We put $w=w_{1}$. Then $f\left(w_{1}\right)=A$ implies $d=0$. Thus

$$
f-A=B^{(1-\mu)}\left(w-w_{1}\right) .
$$

This is impossible.
The case 2). In this case $\left(g(z)-w_{2}\right)^{\lambda}$ has infinitely many zeros, whose orders should be equal to μ. Hence $\lambda s=\mu, s \geqq 2$. Then consider

$$
\frac{f^{\prime \mu}}{(f-A)^{\mu-1}}=\frac{1}{B^{\mu-1}\left(w-w_{1}\right)^{\mu-1}\left(w-w_{2}\right)^{\mu-\lambda}} .
$$

Integrating this equation we have

$$
\begin{aligned}
\mu(f-A)^{1 / \mu} & =B^{(1-\mu) / \mu} \int \frac{d w}{\left(w-w_{1}\right)^{1-1 / \mu}\left(w-w_{2}\right)^{1-\lambda / \mu}} \\
& =B^{(1-\mu) / \mu}(L(w)-d) .
\end{aligned}
$$

We put $w=w_{1}$ or $w=w_{2}$. Then $d=L\left(w_{1}\right)=L\left(w_{2}\right)$. Thus $L\left(w_{2}\right)-L\left(w_{1}\right)=0$. However

$$
L\left(w_{2}\right)-L\left(w_{1}\right)=\int_{w_{1}}^{w_{2}} \frac{d w}{\left(w-w_{1}\right)^{1-1 / \mu}\left(w-w_{2}\right)^{1-\lambda / \mu}}
$$

$$
\begin{aligned}
& =\frac{1}{(-1)^{1-\lambda / \mu}\left(w_{2}-w_{1}\right)^{1-1 / \mu-\lambda / \mu}} \int_{0}^{1} \frac{d W}{W^{1-1 / \mu}(1-W)^{1-\lambda / \mu}} \\
& \neq 0
\end{aligned}
$$

This is a contradiction.
The case 3). Consider

$$
\frac{f^{\prime \mu}}{(f-A)^{\mu-1}}=\frac{1}{B^{\mu-1}\left\{\left(w-w_{1}\right)\left(w-w_{2}\right)\right\}^{\mu-1}} .
$$

Similarly as in the case 2) we have

$$
\begin{aligned}
0 & =L\left(w_{2}\right)-L\left(w_{1}\right) \\
& =\int_{w_{1}}^{w_{2}} \frac{d w}{\left\{\left(w-w_{1}\right)\left(w-w_{2}\right)\right\}^{1-1 / \mu}} \\
& =\frac{1}{(-1)^{1-1 / \mu}\left(w_{2}-w_{1}\right)^{1-2 / \mu}} \int_{0}^{1} \frac{d W}{\{W(1-W)\}^{1-1 / \mu}} \\
& \neq 0 .
\end{aligned}
$$

This is untenable.
Hence in all the cases there exists a w_{0} such that $f^{\prime}\left(w_{0}\right)=0$ but $f\left(w_{0}\right) \neq A$. Then consider $g(z)=w_{0}$. At all the roots of $g(z)=w_{0} F(z)=f\left(w_{0}\right) \neq A$ and $F^{\prime}(z)$ $=0$, which have only a finite number of common roots. Hence $g(z)=w_{0}$ has only finitely many roots, that is, w_{0} is a Picard exceptional value of g. However g has already at least one perfectly branched value w_{1}. This is impossible. Therefore $F(z)$ is pseudo-prime in entire sense.

Suppose that $F(z)=f(g(z))$ with a non-linear polynomial f and entire g. Then similarly as in the above we have three possibilities:

$$
\begin{array}{ll}
f-A=B\left(w-w_{1}\right)\left(w-w_{2}\right)^{\mu} \cdots\left(w-w_{s}\right)^{\mu}, & s \geqq 2, \\
f-A=B\left(w-w_{1}\right)\left(w-w_{2}\right)^{\lambda}\left(w-w_{3}\right)^{\mu} \cdots\left(w-w_{s}\right)^{\mu}, & \lambda \geqq 2, \quad s \geqq 2
\end{array}
$$

and

$$
f-A=B\left(w-w_{1}\right)\left(w-w_{2}\right)\left(w-w_{3}\right)^{\mu} \cdots\left(w-w_{s}\right)^{\mu}, \quad s \geqq 2 .
$$

We shall prove the existence of w_{0} such that $f^{\prime}\left(w_{0}\right)=0$ but $f\left(w_{0}\right) \neq A$. In each case we put x the number of roots of $f^{\prime}=0$ other than the ones satisfying $f(w)$ $=A$. We compute the degree of f^{\prime} in two manners. Then we have

$$
\mu(s-1)=(\mu-1)(s-1)+x
$$

in the first case,

$$
\mu(s-2)+\lambda=(\mu-1)(s-2)+\lambda-1+x
$$

in the second case and

$$
\mu(s-2)+1=(\mu-1)(s-2)+x
$$

in the third case. In every case we have

$$
x=s-1 \geqq 1 .
$$

This gives the desired result. Then considering $g(z)=w_{0}$ and hence the equations $F(z)=f\left(w_{0}\right) \neq A, \quad F^{\prime}(z)=0$ and remarking the existence of a perfectly branched value w_{1} of g we have a contradiction.
q.e.d.

We can release our assumptions on the roots of $F(z)=A$ in the following manner: $F(z)-A=B\left(z-z_{1}\right)^{\lambda_{1}} \cdots\left(z-z_{s}\right)^{\lambda_{s}} L(z)^{\mu}$ for a certain A, where λ_{s} and μ are coprime for each $\jmath(1 \leqq j \leqq s), s \geqq 1$ and $L(z)$ has only infinitely many simple zeros.
3. Proof of Theorem 2. Suppose that $F=f(g)$ with transcendental f and g. Then we have again three possibilities:

1) $f(w)-A=B\left(w-w_{1}\right) M(w)^{\mu}$,
2) $f(w)-A=B\left(w-w_{1}\right)\left(w-w_{2}\right)^{\lambda} M(w)^{\mu}, \lambda \geqq 2$
and
3) $f(w)-A=B\left(w-w_{1}\right)\left(w-w_{2}\right) M(w)^{\mu}$.

Here $M(w)$ is transcendental entire. In all the cases we shall firstly prove the existence of infinitely many zeros of $M(w)$. In the case 1)

$$
\begin{aligned}
N(r, A, F) & \leqq N\left(r, w_{1}, g\right)+\mu \sum_{j=2}^{p} N\left(r, w_{\jmath}, g\right) \\
& \leqq(\mu p-\mu+1) m(r, g) .
\end{aligned}
$$

However

$$
\begin{aligned}
N(r, A, F)-\bar{N}(r, A, F) & \geqq K m(r, F) \\
& \geqq K \operatorname{sm}(r, g)(1-\varepsilon)
\end{aligned}
$$

for $r \notin E_{g}$, which is of finite measure. This gives a contradiction, since s is arbitrary. Hence $M(w)$ has infinitely many simple zeros in this case. Quite similarly we can prove the existence of infinitely many (simple) zeros of $M(w)$ in the remaining two cases.

Next we shall prove the existence of at least one w_{0}, for which $f^{\prime}\left(w_{0}\right)=0$ but $f\left(w_{0}\right) \neq A$. Suppose this is not the case. Then in the case 1)

$$
N\left(r, 0, f^{\prime}(g)\right)=N(r, A, F(g))-\bar{N}(r, A, f(g))
$$

Therefore for $r \notin E_{g}$

$$
\begin{aligned}
N\left(r, 0, F^{\prime}\right) & =N\left(r, 0, f^{\prime}(g)\right)+N\left(r, 0, g^{\prime}\right) \\
& \leqq N(r, A, F)-\bar{N}(r, A, F)+N\left(r, 0, g^{\prime}\right) \\
& \leqq N\left(r, 0, F^{\prime}\right)-k m(r, F)+m(r, g)(1+\varepsilon)
\end{aligned}
$$

Thus

$$
k m(r, F) \leqq m(r, g)(1+\varepsilon) .
$$

However

$$
k m(r, F) \geqq k \sin (r, g)(1-\varepsilon)
$$

for $r \notin E_{g}$. Hence

$$
k s \leqq 1
$$

which is impossible, since s is arbitrary. This gives the desired existence of w_{0}, for which $f^{\prime}\left(w_{0}\right)=0$ but $f\left(w_{0}\right) \neq A$ in the case 1). Similarly we can prove the desired existence of w_{0} in the remaining two cases. Once the existence of w_{0} such that $f^{\prime}\left(w_{0}\right)=0, f\left(w_{0}\right) \neq A$ is acertained, the remaining part of the proof is quite similar as in Theorem 1. Then we have the pseudo-primeness of F in entire sense. If $F(z)=f(g(z))$ with a non-linear polynomial f and entire g, we can prove the existence of $w_{0}: f^{\prime}\left(w_{0}\right)=0, f\left(w_{0}\right) \neq A$ as in Theorem 1 and then we have the left-primeness of F.
q. e. d.

As in the case of Theorem 1 we can release the condition on the roots of $F=A$.

4. Applications.

Corollary 1. $P(z)(\sin z+1)$ is prime, where $P(z)$ is a polynomial of odd degree.

Proof. Let A be zero. Then

$$
F(z)=P(z)\left(\frac{e^{2 z / 2}+i e^{-z z / 2}}{\sqrt{2 \imath}}\right)^{2}
$$

Since $P(z)$ is of odd degree, there is at least one zero of P of odd multiplicity. Consider

$$
\begin{aligned}
& F(z)=P(z)(\sin z+1)=c \neq 0 \\
& F^{\prime}(z)=P^{\prime}(z)(\sin z+1)+P(z) \cos z=0
\end{aligned}
$$

Then we have

$$
2 P(z)^{3}=C P(z)^{2}+C P^{\prime}(z)^{2}
$$

This has only finitely many roots. Hence $F(z)$ is left-prime in entire sense.
Consider the distribution of zeros of $F(z)=f(g(z))$ with a non-linear polynomial g. Then g should be quadratic. Let $g(z)$ be $\alpha(z-a)^{2}+b$. In the present case a should be either $2 n \pi+5 \pi / 2$ or $2 n \pi+3 \pi / 2$, where n is an integer. Hence with $x=z-a$

$$
\begin{aligned}
P(a+x)\{\sin (a+x)+1\} & =F(a+x)=f\left(\alpha x^{2}+b\right)=f\left(\alpha(-x)^{2}+b\right) \\
& =F(a-x)=P(a-x)\{\sin (a-x)+1\} .
\end{aligned}
$$

However $\sin (a+x)+1=\sin (a-x)+1$. Hence $P(a+x)=P(a-x)$. By comparing the leading coefficients of both sides we have a contradiction. Thus we have the right-primeness of F in entire sense. Hence F is prime by Gross' theorem [2].
q. e. d.

By the above proof we can say that $P(z)(\sin z+1)$ is prime if $P(z)$ does not have the form $Q(z)^{2}$ and does not satisfy $P(a-z)=P(a+z)$ for any $a=2 n \pi+2 \pi$ $+\pi / 2$ or $2 n \pi+\pi+\pi / 2$. These conditions are necessary as the following examples show :

$$
\begin{aligned}
& z^{2}(\sin z+1)=\left(z \frac{e^{i z / 2}+i e^{-i z / 2}}{\sqrt{i 2}}\right)^{2} . \\
& z(z-\pi)(\sin z+1)=\left\{\left(w-\frac{\pi^{2}}{4}\right)(\cos \sqrt{w}+1)\right\} \circ\left(\frac{\pi}{2}-z\right)^{2} .
\end{aligned}
$$

Corollary 2. $z\left(e^{\alpha z}+e^{\beta z}\right)^{2}$ is prime if either $\alpha \beta \neq 0, \alpha \beta^{-1}$ is real or $\alpha=0$, $\beta \neq 0$ or $\alpha=\beta=0$.

Proof. We firstly consider the case $\alpha \neq \beta, \alpha \beta \neq 0$. Consider

$$
\begin{aligned}
& F(z)=z\left(e^{\alpha z}+e^{\beta z}\right)^{2}=c \neq 0, \\
& F^{\prime}(z)=\left\{(2 z \alpha+1) e^{\alpha z}+(2 z \beta+1) e^{\beta z}\right\}\left(e^{\alpha z}+e^{\beta z}\right)=0 .
\end{aligned}
$$

Then

$$
(\alpha-\beta) z=\log \frac{z+1 / 2 \beta}{z+1 / 2 \alpha}+\log \frac{\beta}{\alpha}+\pi \imath+2 p \pi \imath
$$

and

$$
\alpha z=\log \frac{z+1 / 2 \beta}{z}-\frac{1}{2} \log z+\log \frac{\beta \sqrt{c}}{\beta-\alpha}+2 q \pi \tau .
$$

Taking their real parts we have

$$
\left(1-\frac{\beta}{\alpha}\right) \Re(\alpha z)=\log \frac{|z+1 / 2 \beta|}{|z+1 / 2 \alpha|}+\log \left|\frac{\beta}{\alpha}\right|
$$

and

$$
\Re(\alpha z)=\log \frac{|z+1 / 2 \beta|}{|z|}+\log \frac{|\beta \sqrt{c}|}{|\beta-\alpha|}-\frac{1}{2} \log |z| .
$$

If $z \rightarrow \infty$, then $|\Re(\alpha z)|$ is bounded but by the second equation $\Re(\alpha z) \rightarrow-\infty$. This is impossible. Hence the equations $F=c \neq 0, F^{\prime}=0$ have only finitely many common roots. Hence F is left-prime in entire sense.

We next consider the right-primeness. To this end we consider the distribution of zeros of F. The set of zeros of F is $\{0\}$ and $\{(2 p-1) \pi \imath /(\alpha-\beta)\}$ $p=0, \pm 1, \cdots$. The latter ones are of order 2. Hence $F(z)=f(g(z))$ with a polynomial g implies that g is of degree two or one. Since the set of zeros of F is symmetric with respect to the origin only, $g(z)$ must be $a z^{2}+b$ if $\operatorname{deg} g=2$. Then $F(-z)=F(z)$. This implies that

$$
e^{-\alpha z}+e^{-\beta z}=+i\left(e^{\alpha z}+e^{\beta z}\right) .
$$

This is impossible by the impossibility of Borel's identity [1], [3]. Hence F is right-prime in entire sense. Hence F is prime.

Next we consider the case $\alpha=\beta \neq 0$. We may consider the function $z e^{\alpha z}$. This has 0 as a Picard exceptional valve. Hence $z e^{a z}$ is pseudo-prime [4]. Then the remaining part is almost trivial. The case $\alpha=\beta=0$ is trivial.

If $\alpha=0$, we consider

$$
\begin{aligned}
& F=z\left(e^{\beta z}+1\right)^{2}=c \neq 0 . \\
& F^{\prime}=\left\{2 z\left(\beta e^{\beta z}+1\right)+e^{\beta z}+1\right\}\left(e^{\beta z}+1\right)=0 .
\end{aligned}
$$

By cancelling out $e^{\beta z}$ we have

$$
c(1+2 \beta z)^{2}=4 \beta^{2} z^{3},
$$

which has only three roots. Hence F is left-prime in entire sense. The rightprimeness is almost similarly proved as in the general case. Hence F is prime.
q.e.d.

Corollary 3.
is prime.
Proof. It is necessary to prove that

$$
\int_{0}^{z} e^{-t^{2}} d t+z
$$

has only finitely many multiple zeros and infinitely many simple zeros. However this fact was proved already in [5]. Let us consider

$$
\begin{aligned}
& F=z\left(\int_{0}^{z} e^{-t^{2}} d t+z\right)^{2}=c \neq 0 \\
& F^{\prime}=\left(\int_{0}^{z} e^{-t^{2}} d t+z\right)^{2}+2 z\left(e^{-z^{2}}+1\right)\left(\int_{0}^{z} e^{-t^{2}} d t+z\right)=0
\end{aligned}
$$

Then

$$
\int_{0}^{z} e^{-t^{2}} d t+z=\frac{\sqrt{c}}{\sqrt{z}} .
$$

Hence

$$
e^{-z^{2}}=-\frac{2 z \sqrt{z}+\sqrt{c}}{a z \sqrt{\bar{z}}},
$$

which implies

$$
\begin{aligned}
& -z^{2}=\log \frac{2 z \sqrt{z}+\sqrt{c}}{2 z \sqrt{z}}+\pi \imath+2 p \pi \imath, \\
& \Re\left(z^{2}\right)=-\log \frac{|z \sqrt{z}+\sqrt{c} / 2|}{|z \sqrt{z}|} .
\end{aligned}
$$

Let z be $r e^{i \theta}$. Then if $z \rightarrow \infty, r^{2} \cos 2 \theta \rightarrow 0$. Therefore $\theta \rightarrow \pi / 4,3 \pi / 4,5 \pi / 4$ or $7 \pi / 4$ if $r \rightarrow \infty$. We firstly consider the case $\theta \rightarrow \pi / 4$. Then $r^{2} \cos 2 \theta \rightarrow 0$ as $r \rightarrow \infty$ implies $r^{2}(\theta-\pi / 4) \rightarrow 0$. In this case

$$
\left|\int_{r e}^{r e^{i \pi /} / 4} e^{-t^{2}} d t\right| \leqq\left|\int_{\pi / 4}^{\theta} r e^{-r^{2} \cos 2 \phi} d \phi\right| \leqq 2 r|\theta-\pi / 4| \rightarrow 0 \quad(r \rightarrow \infty) .
$$

Further

$$
\left|\int_{0}^{r e e^{2 \pi / 4}} e^{-t^{2}} d t\right|=\left|\int_{0}^{r} \cos s^{2} d s-\imath \int_{0}^{r} \sin s^{2} d s\right| \leqq M .
$$

Hence

$$
\left|z-\frac{\sqrt{c}}{\sqrt{z}}\right| \leqq\left|\int_{0}^{r e^{i \pi / 4}} e^{-t^{2}} d t\right|+\left|\int_{r e^{2 \pi / 4}}^{r e^{i \theta}} e^{-t^{2}} d t\right|
$$

implies that

$$
\left|z-\frac{\sqrt{\bar{c}}}{\sqrt{\bar{z}}}\right|
$$

is bounded as $z \rightarrow \infty$ along the solutions of $e^{-z^{2}}=-(2 z \sqrt{z}+\sqrt{c}) / 2 z \sqrt{\bar{z}}$ being near the ray $\theta=\pi / 4$. This is impossible. The same holds in the other three cases. Hence F is left-prime in entire sense.

The proof fo the right-primeness of F is quite similar as in the one of

$$
\int_{0}^{z} e^{-t^{2}} d t+z
$$

in [5]. We shall make use of the result in [5]. Firstly we have only one possibility for the right-factor, that is, g is a quadratic polynomial, if F is not right-prime. Then by the symmetry with respect to the origin $g(z)$ should be $\alpha z^{2}+b$. Hence $F(z)=F(-z)$. However it is immediate to prove $F(-z)=-F(z)$. This is impossible. Hence F is right-prime.
q. e. d.

Corollary 4. $z\left(e_{2}(z)-p(z)\right)^{2}$ is prime, where $e_{2}(z)=\exp e^{z}$ and $p(z)$ is a non-zero polynomıal.

Proof. Firstly it is necessary to prove that $e_{2}(z)-p(z)$ has only finitely many multiple zeros and infinitely many simple zeros. This was already proved in [5] for any non-constant $p(z)$. If $p(z)$ is a non-zero constant, this is almost trivial.

Since $e_{2}(z)-p(z)$ has only finitely many multiple zeros together with infinitely many simple zeros,

$$
\begin{aligned}
N(r, 0, F)-\bar{N}(r, 0, F) & \geqq N\left(r, 0, e_{2}(z)-p(z)\right)(1-\varepsilon) \\
& \geqq m\left(r, e_{2}(z)\right)(1-\varepsilon) \\
& \geqq \frac{1}{2} m(r, F)(1-\varepsilon)
\end{aligned}
$$

for $r \notin E_{\psi}$, which is of finite measure, and

$$
\begin{aligned}
& N\left(r, 0, F^{\prime}\right)-N(r, 0, F)+\bar{N}(r, 0, F) \\
& \quad=N\left(r, p+2 z p^{\prime},\left(1+2 z e^{z}\right) e_{2}(z)\right) \\
& \quad \geqq m(r, \phi)(1-\varepsilon) \geqq m\left(r, e_{2}(z)\right)(1-\varepsilon) \\
& \quad \geqq \frac{1}{2} m(r, F)(1-\varepsilon)
\end{aligned}
$$

for $r \notin E_{\phi}$, which is of finite measure. Here

$$
\phi=\frac{e_{2}(z)}{e_{2}(z)-p(z)}, \quad \phi=\frac{e_{2}(z)\left(1+2 z e^{2}\right)}{e_{2}(z)\left(1+2 z e^{2}\right)-p(z)-2 z p^{\prime}(z)}
$$

Now let us consider

$$
\left\{\begin{array}{l}
F=z\left(e_{2}(z)-p(z)\right)^{2}=c \neq 0 \\
F^{\prime}=\left\{\left(2 z e^{z}+1\right) e_{2}(z)-p(z)-2 z p^{\prime}(z)\right\}\left\{e_{2}(z)-p(z)\right\}=0
\end{array}\right.
$$

We now assume that $p(z)$ is not a constant. Then

$$
e_{2}(z)=p(z)+\frac{\sqrt{c}}{\sqrt{\bar{z}}}
$$

and

$$
e^{z}=\frac{2 z \sqrt{z} p^{\prime}(z)-\sqrt{c}}{2 z(\sqrt{c}+\sqrt{z} p(z))}
$$

Hence

$$
\Re z=\log \left|\frac{2 z \sqrt{z} p^{\prime}(z)-\sqrt{c}}{2 z(\sqrt{z} p(z)+\sqrt{c})}\right| \rightarrow-\infty
$$

as $z \rightarrow \infty$. Putting $z=x+\imath y$ we have $x \rightarrow-\infty$. Further

$$
e^{x} \cos y=\log \left|p(z)+\frac{\sqrt{c}}{\sqrt{z}}\right| \rightarrow+\infty
$$

as $z \rightarrow \infty$. But $x \rightarrow-\infty$ implies the boundedness of $e^{x} \cos y$. This is impossible. We next assume that $p(z)$ is a non-zero constant a. Then

$$
e_{2}(z)=a+\frac{\sqrt{c}}{\sqrt{z}}
$$

and

$$
e^{z}=-\frac{\sqrt{c}}{a z \sqrt{z}+z \sqrt{c}}
$$

imply

$$
\log \left(a+\frac{\sqrt{c}}{\sqrt{z}}\right)+2 p \pi i=-\frac{\sqrt{c}}{a z \sqrt{\bar{z}+\sqrt{c} z}}
$$

and

Hence as $z \rightarrow \infty \log a+2 p \pi i=0$, that is, $a=1$. This implies $p=0$. Hence

$$
1-\frac{\sqrt{c}}{2 \sqrt{z}}+\cdots=-\frac{1}{z+\sqrt{c} \sqrt{z}}
$$

which is impossible. Hence in both cases $F=c \neq 0, F^{\prime}=0$ have at most a finite number of common roots. Therefore F is left-prime in entire sense.

For the right-primeness of F we remark the following fact:

$$
e^{x} \cos y=\log |p(z)|
$$

is satisfied by the non-zero roots of $F(z)=0$. Hence for $x \leqq x_{0}$ there are at most finitely many solutions of $F(z)=0$ if $p(z)$ is not a constant. Here x_{0} is arbitrary. Then we can conclude the right-primeness of F as in [5], Corollary 3. If $p(z)$ is a non-zero constant a, then

$$
\begin{aligned}
& e^{z}=\log a+2 p \pi i \\
& e^{x} \cos y=\log |a|
\end{aligned}
$$

Therefore there is no solution in $x \leqq-x_{0}$ for a sufficiently large x_{0} and there are infinitely many roots in $x \geqq x_{0}$. Therefore we can conclude the right-primeness of F in entire sense in a quite similar manner. Thus $F(z)$ is prime. q.e.d.

Bibliography

[1] Borel, E., Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
[2] Gross, F., Factorization of entıre functions which are periodic mod g, Indian Journ. pure Appl. Math., 2 (1971), 561-571.
[3] Nevanlinna, R., Einige Endeutıgkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[4] Ozawa, M., On the solution of the functional equation $f \circ g(z)=F(z)$, Kōdai Math. Sem. Rep., 20 (1968), 159-162.
[5] Ozawa, M., On certain cirteria for the left-primeness of entire functions. Kōdai Math. Sem. Rep., 26 (1975), 304-317.

Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, Japan

