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BOUNDED BIHARMONIC FUNCTIONS ON THE

POINCARE iV-BALL

DENNIS HADA, LEO SARIO AND CECILIA WANG

An important role in the harmonic and biharmonic classification theory of
Riemannian manifolds is played by the Poincare iV-ball B%, that is, the manifold
{x=(xλ, ... f χ*)\r=\x\ <1} endowed with the metric ds=λ(χ)\dx\, λ(r)=(l—r2)a,
a a real constant, and \dx\ the Euclidean metric. The existence of harmonic
and quasiharmonic functions with various boundedness properties on B% has
been completely characterized in terms of a, and so has the existence of bihar-
monic functions which are positive or have a finite Dirichlet integral (Sario, Wang
[22], [24], [25], Hada, Sario, Wang [1], [2]). In contrast, the existence of
bounded biharmonic functions has remained an open problem. The difficulty lies
in the fact that the space of these functions is not a Hubert space. The pur-
pose of the present paper is to give a complete solution to this problem.

It will be necessary to divide the investigation into the following eight cases,
which require a variety of different methods.

Case I: a<— 1.
Case II: α>3/(Λ/-4).
Case III: -Kα<l/(iϊ-2).
Case IV: 1/(N—2)<a<3/(N— 4), and a is not an integral multiple of

Case V : l/(Λ/-2)<α<3/(Λ/-4), and a is an integral multiple of l/(N—2).
Case VI: a=l/(N-2).
Case VII: α=3/(.Λ/-4).
Case VIII: a=~L

The solutions in Cases I and II will be based on the use of testing functions
and on the self-adjointness of the Laplace-Beltrami operator Δ—δd.

Case III is a consequence of what is already known about the existence of
bounded quasiharmonic functions on Bξ.

In Cases IV and V we expand the solutions of a differential equation at the
boundary in order to determine their boundedness. In Case V the roots of the
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indicial equation differ by an integer, and the convergence proof requires more
delicate estimates than in Case IV.

Case VI is solved by using the reasoning developed in Cases IV and V.
The most intriguing cases are VII and especially VIII. The absence of

Hubert space methods necessitates the construction of all biharmonic functions
and an estimation of their orders of growth.

The outcome of our study is as follows. Let OH2B and 0H2B be the classes
of Riemannian manifolds for which the class H2B of bounded nonharmonic bihar-
monic functions is void or nonvoid, respectively. Then

r α > - l for N=2, 3, 4,

\

This result will have consequences in several directions of biharmonic clas-
sification theory. These applications, an elaborate problem in its own right, will
be discussed in later studies.

For a convenient survey of recent work on biharmonic classification theory
we append a Bibliography.

1. We start by recalling some properties of harmonic functions on B%. Let
(r, θ), θ=(θ\ •••, θN-ι\ be the polar coordinates. A function Sn(β) is, by defini-
tion, a spherical harmonic of degree n if do(rnSn(θ))=O, where J o is the Laplace-
Beltrami operator relative to the Euclidean metric. Denote by H the class of
harmonic functions. Then fn(r)Sn(θ)^H, rc^O, Sn^0, if

Mr)=rn+ Σ cn,2ιr
n+2*,

1 = 1

_ » (n-2+2j)(n+N-4+2(N-2)a+2j)-n(n+N-2)
6n,2i-i=i (n+2jχn+N-2+2j)-n(n+N-2)

In fact,

J(/»Sn)=(J/n)Sn+/nJS f t

which gives

Since r=0 is a regular singular point, there is a power series solution of the
form /n=rpΣ£=o<W\ cn0=l. On substituting this into our equation and equating
to 0 the coefficient of the lowest power we obtain the indicial equation with
roots p=n, — (n+N— 2). Since fnSn must be harmonic at the origin, only p=n
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qualifies, and we have the asserted expansion for fn, with the cnt obtained by
annihilating the coefficients of the other powers of r.

It is clear that if n^O, then fn(r)>0 for every 0<r<l, and limr_1/n(r)>0.
In fact, if /n(r)=0 for some such r, or limr-*1/n(r)=0, then by fnSn^H we would
have fnSn=0 for Sn^0, hence / n =0, in violation of /n(OΛ"n—*1 as r—>0. This
also shows that fn is actually positive for 0<r<l . Observe that, in particular,
fn is bounded away from 0 in some neighborhood of 1.

Every h^H(B%) has an expansion h=yΣn=ofn(r)Sn(θ). This follows from such
an expansion on {|*| =ro<l}, its harmonic extension to {|x|^r0}, which exists
since /n(^)^=0, 0<r<l , and the invariance of the Sn'$ in the expansion as r0

varies.

2. Note that for N—2 or a—0, we have cni=0 for all i^l, and therefore
fn(r)=rn- To study the order of growth of fn as r-4, A^3, we change the
variable to p=l—r. For convenience we take the liberty of writing /TO(r)=
fn(l—ρ) as fn(p). The differential equation then transforms into

where
v_ 2(JV-2)«(l-/>)
>- 2-p

(N-ί)p
1-p

This is again a linear equation, with p—0 a regular singular point. The roots
of the indicial equation

Q(P)=P(p-l)+a(0)p+b(0)=p(p-l)+(N-2)ap=0

are p=0, l-(N-2)a.

LEMMA 1. For Λ^3 and n>0,

a>-
1

-Klogp, a= N_2 ,

N-2 '

as p-*0, with K some positive constant, not always the same.

Proof. For 1—(N— 2)α<0, two linearly independent solutions Ξ£0 are of the
form
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where σl9 σ2 are power series in p with σ^ΦO, σ2(0)Φ0. Since linear combina-
tions of these two solutions span the solution space, there exist real constants
A, B such that fn=Afnl+Bfn2. We recall that B% belongs to the class OG of
parabolic manifolds (i.e., manifolds without Green's functions) if and only if
α l̂/C/V—2) Sario and Wang Q22]), and that OG is contained in the class OHB

of manifolds which do not carry nonconstant bounded harmonic functions (see,
e. g., Sario and Nakai [7]). The function fnl cannot be bounded, for otherwise
fnlSn^HB, in violation of B%<=OG. Since fnl is bounded near p=0, it must have
a singularity at p=l, that is, r=0. Therefore BΦQ, for otherwise fn

==Afnl, con-
trary to the fact that fn does not have a singularity at r=0. Hence fn^Kp1"^'2^.

For l-C/V-2)α=0,

are linearly independent solutions, and the reasoning is the same as above.
For l-(iV-2)α>0, we have

and therefore fn=Afnl+Bfni~K. That K>0 follows from the fact that / n^0
and is bounded away from 0 in a neighborhood of 1.

We shall now embark upon a discussion of the various cases in the order
described in the introduction.

3. Case I: a<— 1.

LEMMA 2. B%(=OH2B for a<—1, Λf^2.

Proof Suppose there exists a u^H2B(B%), with Δu=h. For fixed numbers
0</3<^<l, take a function soeCo[O, 1), so^O, so^O, suppsoc(/3, γ), and set st(r)
=s0((l-r)/O, ^>0. We know that Λ=Σn=o/»Sn, where Sn=£0 for some n^O. Set
φt=stSn. Since λN~c(l—r)Na as r-»l,

Here and later c is a positive constant, not always the same.
On the other hand,

It follows that
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z ri-βt r1~βt r1~βt \

(1, \Jφt\)<t(N-2)a(cΛ sl'dr+cj-1] s'tdr+cΛ stdr)
\ Jι-γt Jl-γt Jl-γt /

For α < — 1 , tNot+ι grows more rapidly than tiN~2)ct~ι as f-»0. This contradicts
I (A, ^)l = \(u,Δφt)\ SK{ly \Δφt\).

4. Case II: a>3/(iV-4).

LEMMA 3. B»<EOH2B for a>3/(N-4), N>4.

Proof. For a>l/(N-2), n>0, / ^ ( l - r ) 1 " ^ 2 ^ , and

I (A, ̂ ) I > c f 1~^/nsί^^r> c f ' " ^ ( l - r ) 2

Jl-γt Jl-γt

We have a contradiction for 2α+2<(W— 2)α—1, that is, α>3/(J/V—4), and infer
that h=c. If cΦO, then c"1^ belongs to the class QB of bounded quasiharmonic
functions v, characterized by Δv—\. But we know that B%^OQB if and only if
-Ka<l/(N—2) (Sario and Wang [22]). Therefore c=0, and we//, in violation
of u(=H2B.

5. Case III: -Kα<l/(Λ/-2) .

LEMMA 4. ^ E O ^ /or α > - l , N=2; -Kα<l/(JV-2), A^^3.

This is a direct consequence of B%<=OQB for the above values of a (loc. cit.).

6. Case IV: l/(N-2)<a<3/(N-i), aΦm/(N-2), m an integer.

LEMMA 5. // a is not an integral multiple of 1/(N— 2), then B%<^OH2B for

Proof We seek functions gn(r) such that Δ{gn(r)Sn{θ))=fn(r)Sn(θ). On
writing the left-hand side explicitly, we see that gn satisfies

Since the right-hand side is of the form r"+V(r), where σ{r) is a power series
with radius of convergence 1, we are guaranted a solution gn(r)=rn+ίσ(r) hence
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σ(f) is a power series whose radius of convergence is also 1. However, a priori
there is no assurance that gn(r) is bounded.

In search of a bounded solution, we set ρ=l—r, suppress the subindex n in
our notation and obtain

where a(p), b(ρ) and L are the same as in No. 2. The roots of the indicial
equation q(p)=p(p—ΐ)+(N—2)ap=0 are again po=O and p1=l—(N—2)a. Since
a is not an integral multiple of l/(N—2), the roots do not differ by an integer.
Therefore / is of the form

f=A Σ ciP

%+B Σ r<^-<*-»«+».

Thus the right-hand side of our differential equation takes the form

-p2a+2(2-p)2af(p)=A Σ ciP

2a+2+ι+B Σ 7i
1=0 t = 0

L(gnl)= Σ c i ( o 2 w + 2 + t , L(gnt)= f ) f<|0»
t=0 1=0

n2 will be a solution. Let α(io)=ΣΓ=o

#m= Σ
0

If

then ^n=
function

Kp)=zΈΐ=oβiP1' The

gives

Therefore

>*-J+

= Σ ?iPp

t 0

i=l, 2, •••. That the denominator is never zero is clear since the roots of q are
nonpositive whereas p2+i=2α+2+x>0 for all i^O.

In the same fashion we find a solution gn2=Έ?=oδiPP3+ι, Ps=3—{N—A)a. In
the cases iV=3, 4, the condition a<3/(N— 4) is not needed to assure that the
δi's have a nonvanishing denominator q(3—(N—4)a+i) and that g n 2 is bounded
near ^=0. Thus for these dimensions we have obtained gn for all a>l/(N— 2),

/"—2).

7. To show that gn is well defined, we must establish the convergence of
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Σ,T=odipι and ΣΓ=o^^1.
Again we shall only consider ΣΓ=odt/o

ι since the convergence of ΣΠ=<A/0*
follows in the same manner. Choose a fixed 0<po<l. By virtue of the analy-
ticity of a(ρ), b(p), and Σ£*Άp% for 0^ 1 o<l, there exists an M>0 such that

l p , and

i=0,1, •••. Define D0=\d0\, and

Since

we have by a trivial induction \dt\^Dι for all i. We shall show by the ratio
test that "ΣT^Dip1 converges for p<p0. Clearly

q{Pz+ι+l)Dι+1=Mlpp-1+ Σ (
1=0

Hence
Dχ+iPx+ί

 = (i+p2-Po)(i+P2-p1)+M(ι+p2+l) p
DiP* (ι+Λ+l-ίo)(t+Λ+l-ίi) Po '

which approaches ρ/ρ0 as i—»oo.
We would like to say that gnSn(ΞH2B(B%), but ^τnSn may fail to be bihar-

monic at the center of B%. However, gnSn is biharmonic at r=0. Since gn and
gn are particular solutions of the same linear differential equation, they differ
by a solution of the homogeneous equation. Therefore, in the notation of Lemma
1, Sn—gn+Cfnl+Dfn2 for appropriate constants C and D. The function fnSn

with /n:=^/ni+^/n2 is harmonic at r=0, and a fortiori #nSΛ with gn

=gn—Dfn/B
is biharmonic at r=0. Also #n=^n+(C—ΛD/B)fnl is bounded since both gn and
/ n l are bounded. Thus gnSn^H2B.

To simplify the notation we shall henceforth assume that gn has been nor-
malized so that gnSn is biharmonic on all of J32Γ. Furthermore, we note for later
use that r~ngn is real analytic at r=0.

8. Case V: l/(N-2)<a<2>/{N-i), a=m/(N-2).

LEMMA 6. // a is an integral multiple of l/(N—2), then B%<^0H2B for
-2)<a, N=3, 4,
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Proof. In the notation of Lemma 5,

L(g)=p2g*+pa(p)g'(p)+b(p)g(p)=-p*λ\p)f(p),

where this time, by virtue of the proof of Lemma 1, f(p) is of the form

Λp)=A Σ ci
ι=0

Hence,

) Σ ciP*).
ι=0

p) Σ c>
1=0 ι=0

By the proof of Lemma 5, there exist gnl, gn2 such that

L(gm)= Σ ?iP2a+2+l, L(gM)= Σ fip^*-^.
t=0 1=0

Therefore, if we can find a g"n3 such that

L(gm)=(logp)Σ?tp*a+*+ι,
1 = 0

then
gn=Agnl+B(gni+cgM)

will be a solution. We shall show that such a gnZi of the form

&..=(log ^ Σ ^ ^ 2 α + 2 + ι + Σ ^ ^ 2 α + 2 + t ,
1=0 1=0

exists. On substituting this into our equation we obtain

q(2a+2) '

- Σ C(2α+2+;> t . J +j8 < -,]d J

^=0

since

(log />) Σ ίq(2a+2+i)dt+
 l±\

1=0 J=0

ΣC(4α+3+2f+«oK+
t=0
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and

= Σ ίq(2a+2+i)δi+
 lΣ((

1 = 0 ; = 0

9. Again as in the proof of Lemma 5, ΣΓ=cAj0ι converges, and it suffices to
show the convergence of Σ?=oδipι for p<p0. Let M>0 be such that \at\^Mρpt

\βt\^Mpp9 and \dt\^Mpϊ\ Define Dt by D0=\δQ\ and

^(2α+2+OA=M[(4α+3+αo+(M+2)z>o" t+Σ (2a+3+j)pi~iDJl.
; = 0

We obtain in the same manner as in No. 7 that \δi\^Dt. Moreover,

=pϊίlq(2a+2+i)Dι+M(2a+3+i)Dι+M(M+2)pόil.

Therefore, for ϊ=0, 1, 2, —,

Dι+1=po1(Aι+1Dι+Bι+1poί),
where

χ = g(2a+2+i)+M(2a+3+i) β M(M+2)
1+1 g(2α+3+i) ' ι + 1 ^(2α+3+0 '

From this, we see that

where
— Π Δ Δ . Δ JL fi Δ Δ j . .. X R /I I R

Hence

But

which converges to 1 as i—>oo. It remains to show that Bi+1/Mi-+0 as z—>oo.
We have

Λι+1~~ q(2a+3+i) ^ q(2a+3+i) '
so that

B A A 4

Also,
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for some constant K>0. Consequently

Γ) Δ . Δ A- R Δ . Δ -L

1 q(2a+2+i)
i+K q(2a+3+i) '

which approaches 0 as

10. Case VI: a=l/(N-2).

LEMMA 7. ftV^

Proof. For a=l/(N— 2), the indicial equation has the repeated root 0.
Therefore, f{ρ) has the form

Λρ)=A Σ cίP*+B( Σ riiθ1+ΐ+(iog /o) Σ ctP*),

and

-p*λ\p)Λp)=A Σ c i / 0 ^ + 2 + ι +5( Σ fiP2a+s+t+(log p) Σ Q ^ + 2 + i ) .
1 0 t 0 t = 0

The existence of a £(/θ) satisfying L{p)——pzλ2{ρ)f(p) follows by taking g~
Agnl+B(gn2+gns) with

±fiP\ (gn3)(gp)±
t=0 1=0

as can be done by virtue of the proofs of Lemmas 5 and 6.

11. We insert here an expansion lemmas for the general biharmonic func-
tion on B% and all a. It will be utilized in the remaining cases α=3/(Λf—4) and
a——I. We recall that any spherical harmonic Sn(θ) of degree n can be written
as a finite linear combination of fundamental spherical harmonics Snm(θ), ra=l,
••*, mn.

LEMMA 8. For all a, every biharmonic function u(r, θ) on B% has an expan-
sion

u(r, θ)= Σ Σ (anmfn(r)+bnmgn(r))Sm{θ),
n=0 m=l

where gn{r) satisfies
Δ(gn(r)Sn(θ))=fn{r)Sn{θ)

and gn(r)Φ0, 0<r<l .

Remark. That for all a there exists at least one gn(r) satisfying the hypo-
thesis is clear. For let g(r) be as at the beginning of the proof of Lemma 5.
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(Note that g(r) is well defined not only for the α's considered in Lemma 5 but
for all a). The function r~ng(r) is bounded near r=0, and limr-ign(r)^oo exists.
Consequently, since r~nfn{r) is bounded away from 0, there exists a constant C
such that r-ngn(r)+Cr-nfn(r)Φ0, 0<r<l . A fortiori gn(r)=gn(r)+Cfn(r)Φθf

Proof. For u^H2(B%), Δu has by No. 1 an expansion

Δu(r, θ)= Σ Σ bnmfn(r)Snm(θ),
n—0 m = l

where the bnm's are constants. For a fixed 0<r0<l» since gn(^o)^Of there exist
constants cnm such that

Σ Σ ω » ( r ) S M ( ί )
n=0 w=l

converges absolutely and uniformly to w on the sphere S(r0) of radius r0. Let
B(r0) be the ball bounded by S(r0), and denote by g(x, y) the Green's function
on B(r0). The Riesz decomposition of gnSnm reads

where hnm is the harmonic part, and the potential part

G(fnSnm)(x)= f fn(y)Snm(y)g(x, y)dy
J Biro)

vanishes identically in S(r0). By taking inner products with Snm over S(r0) on
both sides of the decomposition, we obtain for some constant dnm,

on S(r0) and hence on B(r0). Substituting the decomposition into the expansion
of u on S(r0) we see that

is harmonic, and converges absolutely and uniformly to u on S(r0). It follows
that

ΈΈ(cnmhnm+bnmG(fnSnm))
n m

= Σ Σ ί(cnm-bnm)hnm+bnm(hnm+G)fnSnm))2

where anm=(cnm—bnm)dnm. Since HnΈmbnmfnSnm converges absolutely and uni-
formly on B(r0), so does ΣnΣm^nm^CA^nm). As a consequence, the expansion we
have deduced is absolutely and uniformly convergent on B(r0) and converges to
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u on 5(r0). On applying Δ to the expansion, we obtain Δu and conclude that
the expansion is indeed that of u on B(r0). That the anm'$ and bnm'$ are inde-
pendent of r0 follows easily by the uniqueness of the coefficients of an expansion
in the Snm's.

12. Case VII: α=3/(W-4).

LEMMA 9. BξKN-» e O^2£, iV>4.

Proof. Again we seek a function g"(ι°) such that

The roots 0 and 1—(AT— 2)α of the indicial equation are now distinct and non-
positive the function f(p) has the form

ΛP)=Λ Σ ciP*+B{ Σ r^-^^^+cdog p) Σ ^ * ) , £*0,
1 = 0 1 = 0 1 = 0

and

-p*λ\p)f(p)=A Σ ^ 2 α + 2 + * + 5 ( Σ f^+^(log p) Σ Q ^ + 2 + i ) .
1 = 0 1 = 0 1 = 0

Let gnl and gnz be as in the proof of Lemma 6. We must assure the existence
of a gn2 such that

We try

£»2(/t>)= Σ dip'+ddog p) Σ c i i 0 ,
1 = 0

On substituting we obtain

(ao-l)co '

i==l, 2, •••. That ΣΓ=o^/θι converges is seen in the same manner as before.
It follows that

gn(p)=Agnl+B(gn2+cgns)
satisfies

Δ(gnSn)=fnSn.

Moreover, gn(p)~C\og p as p-*0. Using the remark at the end of No. 7, and
arguing as in the remark prior to the proof of Lemma 8, we can assume gn^O,
0 < r < l . Hence by Lemma 8, if u<=H2, then u has an expansion

u(r, θ)= Σ Σ (anmfn+bnmgn)Snm,
71=0 W = l
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where bnmφθ for some n^O. Now suppose u is bounded. Then f uSnmdθ is
J Θ

bounded as a function of r. But

Snmdθ=(Snmi Snm)(anmfn(r)+bnmgn(r))

is not bounded since fnip^p1'™'®" and gn(p)~log p are not bounded as p-+Q.
Thus we have a contradiction.

13. Case VIII: α = - l .

Solving for #n was simplest in Case IV, for the hypothesis assured that
there was no difficulty with the indicial roots. In Cases V and VI the indicial
roots differed by an integer or were repeated this complicated the form of /n.
However, the difficulty encountered in Case VII was more critical in that the
indical root 0 prevented us from solving for d0, and thereby required the addi-
tion of the term d(log p)Σΐ=oCιpι in the expression for gn2. In the remaining
case to be now discussed, the indicial roots cause the greatest complication and
necessitate a quite involved expression for gn.

LEMMA 10. B^^OH2Bf

Proof. Once more we look for a g satisfying

L(g(p))=-p*λ\p)Xp).
Since a——1,

Λp)=A f ciP"-^+B( Σ ϊiPι+c(\og p) Σ ciP»-1+i),
1 = 0 1 = 0 t = 0

and

-p2λ\p)f(p)=A Σ ciP"-^+B( Σ f ̂ ι+c(log p) Σ ciP^
ί+ί).

1 = 0 1 = 0 ί = 0

That there exists a gnί with L{gnι)=ΣΓ=<ApN~1+ι follows from the proof of Lemma
9 and the fact that the indicial roots are 0 and Λf—1. Thus, the present task
is to find a gn2 such that

gn*)= Σ f ̂ +c(log p) Σ ciP

N~^.
1=0 1=0

We shall express gn2 as the sum of three functions,

gn2 = Φl + Φ2 + ΦS

Let

Φi=eι(\og p)( Σ γιPι+c{\og p) Σ ciP^'^+^
1=0 1=0 1=0

where
ei (nr 1 W f ° '
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1=1, •••, N—2. In view of

=c(log p) Σ ί(2N-3+2i)c%+ Σ at.ic)lp
κ-1+t+2c Σ ciP"~

1=0 J=0 t=0

+(α o -l) r o +
1

and

Σ rfi)ίΣ2[(i)rft+Σ ϋaι.,+βt.,)d)lp*+ Σ
^ = 0 l i V l1=0 1 = 1 ^ = 0 l=N-l 3 = 0

it follows that
N — 2 oo oo

L(Φi)= Σ fiP%-\r Σ siio
ΛΓ"1+t+c(log jθ) Σ θipN~ι+%,

with the s/s and σ/s constants. Next choose
oo oo

φ2=e2(\og p)2 Σ CipN-1+%+c(\og p) Σ δipN-1+t

ι=0 ι=0

with

2(2iV-3+αo)co ' t y°~ x '

t —1

a v = ^o '— — : *°c% J=°C

q(N—l-\-ι)

Since
; Σ CipN-L+i)

1 — 1

.7 = 0 * "̂  J

and

m

we have

Finally, set

=2Σc,
1 = 0

log/o)Σ<

+(log io )Σ&(
ί = 0

- Φ 2 ) =

•f2(log p) Σ [(2iV-3+2i+αo)c,
1 = 0

oo I — 1

1 = 0 * ^ = 0

J = 0

^ — 2 oo

Σ f iPι+ Σ ^ ^ - ^ H

oo

1 = 0

- ' * • •

ot

-c(logρ)2Σ ^ ^ " 1 + ι .
0
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where

(2N-3+ao)co > a°~lf

3ί=Z ~ q(N-l+ι) ~ '

2=1, 2, •••. We infer from

£((log p) Σ c,^-1 + i)= Σ l(2N-3+2ι+ao)c%+ Σ α t - Λ > ^ m

1 = 0 1=0 J=0

and

1=0 1=0 ; = 0

that gn 2 satisfies our equation. Clearly Φλ is well defined. The convergence of

Φ2 and Φz is seen by arguing as before.

As in Lemma 9, gn^Clog p, and the proof is herewith complete.

14. We have thus obtained the following complete solution of our problem:

THEOREM. B%^OH2B if and only if

r α > - l for N=2,3,4,

3 for N>4,
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