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§ 1. Introduction. This paper gives (§§ 2, 3) a generalization of a well-
known theorem of R. Nevanlinna [7, Theorem 7, page 48] to a simple class of
functions of two complex variables which includes functions central in such
important chapters of classical analysis as (a) the coefficient problem for bounded
analytic functions treated by I. Schur [10], who introduced the algorithm named
after him for this purpose, as (b) the interpolation problem for bounded analytic
functions along with cognate boundary questions treated by R. Nevanlinna with
the aid of an algorithm generalizing that of Schur in fundamental papers [5, 6,
7] culminating in the paper to which reference was made at the outset, as well
as (c)—what is historically first—WeyΓs theory of singular boundary problems
[15], (d) the theory of Jacobi matrices, cf. [1, 12], and (e) the moment problem,
cf. [1, 12]. To be exact, in the three last cited situations and [6] the subject
functions enter modified by appropriate Mobius transformations.

We are concerned with functions / defined on J x C , where Δ denotes the
open unit disk of the complex plane and C the extended complex plane, which
satisfy the following conditions: (i) w^>f{z, w) is a constant of modulus at most
one or else a non-degenerate Mobius transformation mapping Δ into itself, ^ G J ,
but is not a constant for all Z G J ; (ii) z-+f(z, w) is analytic on J, U G J . We
term such functions Weyl-Schur-Nevanlinna ("WSN" for short) functions since
in the work of these authors to which reference has been made an important
role is played by instances of such functions (possibly modulo appropriate Mobius
transformations).

The conditions (i) and (ii) taken together imply that the set & of Z G J for
which w-^f(z, w) is constant satisfies the Blaschke condition

(1.1) Σ ( l -

and that |/(z, w)\<\ for z, w^Δ.
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Actually, the conditions (i) and (ii) imply that / admits exactly one repre-
sentation of the form

(12) f(z w)
c(z)w+l '

where a, b, and c are analytic on Δ and satisfy: \a(z)\<,l, \b(z)\<l, | φ r ) | < l
for all Z G ! [The introduction of a normalized representation of this kind in
the Pick-Nevanlinna theory is due to Walsh [14, 298-304]. This assertion may
be established as follows.

The uniqueness of a(z), b(z), c(z) is clear for Z<ΞΔ\B since for such z we
are concerned with non-degenerate Mobius transformations and so the coefficients
are determined up to a nonzero common factor. The hypothesis of analyticity
on α, b and c then implies that there is at most one such (α, b, c) satisfying (1.2).

Existence. Given wlfw2(Φw1)^Δf then f(z, w2)— f(z, w^—O if and only if
z<^<B. Using this fact and the invariance of crossratio under nondegenerate
Mobius transformations, we conclude on introducing three distinct points wk^Δ
and the associated z-*f(z, wk) that (1.2) holds for z^Δ\$ with α, b, c analytic
on Δ\B (but as yet subject to no further condition beyond the nondegeneracy
condition: a(z)—b(z)c(z)ΦQ, z^Δ\B). It is to be observed that w-^>f(z, w) does
not have a pole in Δ when 2 G J \ J by virtue of (i). Hence the normalization
of the denominator is allowable.

We remark that if

aw+β
T'.w-

γw+1

is a nondegenerate Mobius transformation satisfying T(Δ)aΔ, then \<x\ ^ 1 , \β\ <1,
I T Ί < 1 . Indeed, |/3| = |T(O)|<1 by the conditions imposed on T thanks to the
maximum principle. Let us consider γ. If \γ\>l, T would have a pole in J,
while if \γ\= 1, T(—γ)=oo. Since neither conclusion is admissible, we see that
I T Ί < 1 . Now let S denote the Mobius transformation

w+γ

which, we observe, maps the unit circumference onto itself. From the analyticity
of the product TS at each point of {|w|^l}, we infer on applying the maximum
principle that a, which is the value of the product TS at oo, has modulus at
most one.

We now conclude on applying the observations of the preceding paragraph]
and the fact that & clusters at no point of Δ that the functions a, b, c intro-
duced two paragraphs back are all restrictions of functions analytic on Δ. For
convenience we shall understand that a, b, c will denote the corresponding latter
functions with domain Δ. It is now clear that | α ( z ) | ^ l , |6(z) |<l, \c(z)\<l
for 2-eJ and that (1.2) is valid on ΔxΔ. Also z-*f{z, w) is analytic on Δ for
each w(=Δ.
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In the opposite direction, we see that if / is given by (1.2) with α, b, c sub-
ject to the restrictions stated in the preceding paragraph, then at least / satisfies
(π).

We shall not need the fact in the present paper, but we note that a neces-
sary and sufficient condition for α, b, c analytic on Δ to be associated with a
WSN function / in the sense of (1.2) is that | c ( z ) | < l , that

(1.3) \a(z)\z+\b(z)\z-\c(z)\2-l+2\a(z)blJ)-c(z)\^0f

for -?GJ, and that a—be not be the constant 0.
We also remark without proof that, if / is a WSN function with the repre-

sentation (1.2), then at a point zo<=$, the Taylor expansion of

(1.4) z-^ fίz,g(z)l,

g being analytic and taking values of modulus at most 1 on Δ, has coefficients
independent of g for indices less than the multiplicity of a—be at z0. An even
stronger statement holds: an inner function component (in the sense of Beurling)
of the difference of two functions (1.4) formed with distinct g is up to a constant
factor of modulus one the product of inner function components of a—be and
the difference of the g.

§ 2. Nevanlinna's theorem concerning extremal functions. Theorem 7 of
Nevanlinna's 1929 paper [7, p. 48] asserts that the WSN function there intro-
duced in connection with the indeterminate case of the Pick-Nevanlinna inter-
polation problem, which we shall denote /, has the property that z-+f(z, w) has
Fatou boundary values of modulus one p.p. for each w, \w\=L The functions
2—>/(£, w) are called by Nevanlinna the extremal functions associated with the
interpolation problem. The asserted boundary property of the extremal func-
tions is the property termed (A) by Seidel [11] (referred to as "(U)" in the
Japanese literature, cf. [13]) and the property of being inner by Beurling [2].
We note without proof that every analytic function on Δ taking values of modulus
at most one which is of class (A) is an extremal function in the sense of
Nevanlinna.

In the present paper we extend Nevanlinna's Theorem 7 to the setting of
the theory of WSN functions. Before we formulate the extended theorem, we
shall develop some simple properties of WSN functions. Given 2 E J and a WSN
function / we denote by D(z, f) the image of Δ with respect to w-+f(z, w). For
the / encountered in the Pick-Nevanlinna interpolation problem it is known that
if two such /, say Λ and /2, satisfy D(ztf1)=D(zff2)f Z(ΞΔ, then fi(zLw)=f1lz9 a(w)~]
where a is a Mobius transformation independent of z mapping Δ onto itself, cf.
[7, §§29, 39]. The asserted property persists for unrestricted WSN functions
as we shall see.

To that end, let Λ and f2 be WSN functions satisfying the stated hypothesis
and for each z such that D(z, fλ) does not reduce to a point let az be the unique
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Mobius transformation satisfying

(2.1) /f(z, w)=f£z, az{w)1.

The transformation az maps 2 onto itself. We conclude using this observation
and (2.1) that

where A, B, C are analytic on Δ, and | ;4(z) |=l and C(z)=A(z)Bζz) for Z<ΞΔ.
It follows that A, B, C are constant. Indeed by the maximum principle for
analytic functions A is constant. It is now clear that C is analytic and con-
jugate analytic. It follows that B and C are constant. The Mobius transforma-
tion αz is independent of z and the asserted property of WSN functions follows.
Of course, we are merely observing that the argument of Nevanlinna persists
in the unrestricted WSN theory.

To continue, we introduce a notion of majorization in the class of WSN
functions. Given WSN functions / and g, we say that g is mαjonzed by /
provided that

(2.3) D(z,g)^D{z,f), z^Δ.

We see that g is majorized by / if and only if there exists a WSN function h
satisfying

(2.4) g(z, w)=fίz, h(z, w)l, (z, M;)€= Δx Δ .

such h is necessarily unique.
In the Nevanlinna theory one is concerned with a sequence (/n), n=l, 2, •••,

of WSN functions, where fn+1 is majorized by fn for all n. Suppose (Grenzkreis
case) that rn(z), the radius of D(z, /„), does not tend to 0 as n-^oo for some
z^Δ. In this case one is assured by suitable normalization of the fn (Denjoy
normalization cf. [3]) that (/n) tends to a WSN function. The question was
treated by Nevanlinna for the situation with which he was concerned via the
theory of normal families. This approach was not in accord with the canons
set by Weyl for himself in [16]. (v. pp. 242-3 ibid.) We take this occasion to
show that one can treat the convergence of (/n) in the presence of Denjoy
normalization most simply and without the intervention of the theory of normal
families.

As a first step, we note that if | ζ | < 1 and F is an analytic function on Δ
taking values of modulus at most one, then with L(z)=(ζ—z)/(l—ζz), we have

(2.5) | F ( * ) - l l {t\l{l]\

The inequality (2.5) is trivial when F is a constant of modulus 1.
Otherwise we have
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where ψ is an analytic function on Δ taking values of modulus at most one
(Lemma of Schwarz-Pick), and so

whence we conclude (2.5).
We let | M / | = 1 and take as F the function z^>f(z, w)/w, where / is a WSN

function. Applying (2.5) we obtain with μ=m<aiK\w\Sίl\f{ζ,w)—w\ the inequalities

(2.8) |α(*)-l | , \b{z)\,\c{z)\^2μ ί ί j ^ j j

where a, b, c refer to the representation (1.2) of /. Indeed, using (2.5) as indi-
cated, (1.2), and the inequality | c ( z ) | < l , z<=Δ, we obtain

(2.9) \-c{z)w*+la(z)-ϊ\ jίffi*]!

and (2.8) by the Cauchy inequalities.
A WSN function / is said to be Denjoy normalized at ζe//\E provided that

c(ζ)=0, α(ζ)>0. Given a WSN function / and ζ e j \ £ , there exists a unique
Mδbius transformation τ mapping Δ onto itself such that f\_z, τ{w)~\ is Denjoy
normalized at ζ.

We return to the situation considered four paragraphs back and suppose
that l imr n (ζ)>0 and that each /„ is Denjoy normalized at ζ. We affect the
coefficients α, b, c entering the representation (1.2) of fn with the subscript "w".
Given m<n, we have

(2.10) fn(z, w)=fmίz, φmn(z, w)l,

for exactly one WSN function φmn. cf. (2.4). Further φmn is Denjoy normalized
at ζ. We denote the functions a, b, c entering the representation (2.1) of φmn by
<*mn, βmn, ϊmn respectively, and note that lim α m n ( ζ ) = l , and that γmn(ζ)=0 for

m,n—>oo

all allowed m, n. Since w^φmn(ζ, w) maps Δ into itself, we have amn(ζ)+ \βmn(ζ)\
^ 1 , whence we see that lim βmn(ζ)=O. We conclude that

m,n-*°°

(2.11) lim max | φmn(ζ, w)-w \ = 0 .
m,n->°° |w | = i

On representing an, bn, cn in terms of am, bm, cm and amn, βmn, γmn and using the
inequalities (2.8) relative to φmn, we conclude that the sequences (an), (bn), (cn)
are uniformly Cauchy on compact subsets of Δ. The respective limit functions
of the three sequences, say Λ, B, C, are analytic on Δ and take values of modulus
at most one. Since cn(ζ)=0, n=l, 2, •••, we have | C ( ^ ) | < 1 for z<=Δ. Since
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l^ l , n = l , 2 , •••, we have sup|6 n (ζ) |<l and hence
We conclude that / defined by

(2.12) M w ) = *

is a WSN function and /n—>/ uniformly on compact subsets of J x J. One verifies
that D{z,f) is the limit of the monotone sequence {D{z, fn)) and reduces to a
point if and only if D{z, fn) does for some finite index n.

The following result may now be concluded : Let (/n) be a sequence of WSN
functions satisfying: (1) fn majorizes fn+1, all n, (2) (fn) is in the Grenzkreis
case, (3) (fn) converges uniformly to f on compact subsets of JxΔ. Further, let
gn(z, w)—fn[_z, βn(w)2 where βn is the unique M'όbius transformation mapping Δ
onto itself such that gn is Denjoy normalized at a point ζ satisfying inf rn(ζ)>0,
rn(ζ) being taken relative to fn. Let g~ lim gn. Then

(2.13) to, u>)=g£z, a(w)l, (z,w)ejχj,

where a is either a constant of modulus one or a Mδbius transformation mapping
Δ onto itself.

Nevanlinna's Theorem 7, quoted at the beginning of this section treats a
situation where / is the limit of a sequence of WSN functions (/n), fn having a
representation (1.2) with a, b, c rational functions, w-*fn{z, w) mapping Δ onto
itself for each z satisfying M = l , and A majorizing fn+1, n=l, 2, •••. The stated
properties of the fn arise out of their genesis by a generalized Schur algorithm.
The following theorem extends Nevanlinna's theorem to the general theory of
WSN functions.

THEOREM. Let (fn) be a sequence of WSN functions. We suppose that (/„)
tends to the WSN function f uniformly on compact subsets of JxΔ {here, Δ may
be replaced by a subset of three distinct points) and that each fn majorizes /,
n—1, 2, •••. We suppose further that there exists a Lebesque measurable subset E
of the unit circumference, meas. E>0, such that for each n the a, b, c entering
the representation (1.2) of fn, say an, bn, cn have Fatou radial limits existing at

and

an{z)w+bn{z)
(2.14) w cn{z)w+l

maps Δ onto itself, for each z<=E. [_Here an{z), bn{z), cn{z) will by convention
denote the Fatou radial limits of an, bn, cn respectively at z and the corresponding
convention will be understood throughout^ Then for almost all

(2.15) ww c{z)w+l

maps Δ onto itself, a, b, c referring to the representation (1.2) of f. In particular,
there is a subset Ex of E having zero measure such that z^>f{z, w) has Fatou
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radial limits of modulus one on E\EX for all w, \w\=l.
The Fatou radial limit function of an (resp. bn, cn) converges in measure on

E to the Fatou radial limit function of a (resp. b, c).

The proof of this theorem will be given in § 3. It has two aspects. One
looks to the proof given by Nevanlinna of his cited theorem in its appeal to the
skilful use of hyperbolic distance made by him. The other aspect is based on
the observation that log |α n —b n c n \ and — log (1— \cn\

2) are both subharmonic.
This observation and the formula

(o 1fiN r {r,\- \an(z)-bn(z)cn(z)\
^ i b ; Tn{z)- l-\cn(z)\>

for the radius of D(z, fn) yield useful information about cn thanks to the fact
that rn(z)^l for z^Δ. [For (2.16) cf. [7], p. 40, (23).] The normalized form of
a WSN function which we are using plays a simplifying role.

The convergence in measure properties of the an, bn, cn will be seen to fol-
low from their convergence properties in Δ taken together with a standard L2

argument which establishes strong convergence in the presence of weak con-
vergence and convergence of the norm.

The WSN functions merit further study. A question of interest is that of
the pointwise convergence of an(z), bn(z), cn(z), z^E. A very special case of
this question is the one corresponding to interpolation to zero on a set satisfy-
ing the Blaschke condition. It is essentially the open question concerning the
convergence set on the unit circumference of the sections of a convergent
Blaschke product.

§3. Proof of the Theorem. Since (2.14) maps Δ onto itself for z<=E we
have

(3.1) |βn(*)l=l, cn(z)=an(z)5Jz), z^E, n = l , 2, - ,

and hence

(3.2) \cn(z)\ = \bn(z)\

for the same z and n. Further, from formula (2.16) and the fact that rn

for 2-G J, n = l , 2, •••, we see that

( 3 3 ) l 0 g 1-K(z)|« = ' ° g \an(Z)-ί(z)cn(z)\ ' Z^Δ' n = 1 ' 2 ' -

Now the left side of (3.3) is subharmonic and the right side is superharmonic on
Δ. Since a{z)—b(z)c{z)ΦQ for some z ε i , say ζ, and, in addition, /„ majorizes
/, all n, and αn(ζ)-α(ζ), 6,(0-6(0, cn(O-c(O, it follows that
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has a positive lower bound. Since the value at ζ of the least harmonic majorant
of the left side of (3.3) does not exceed the value at ζ of the right side of (3.3),
it follows from the classical Harnack inequalities for positive harmonic functions
on Δ and the subharmonicity of

l o g 1-k.l1

that there exists a positive number M such that

(3.4) J^log 1 _ | C ( r g ^ ) | 2 dθ^M, Orgr<l, n = l , 2,

Using the Fatou radial limit theorem and Fatou's lemma, we conclude that

(3.5)

and, a fortiori,

(3.6) j>g l-K

whence by (3.2) we have

(3.7)

the inequalities holding for all n. In the last two integrals dθ is construed in
the sense of Lebesgue measure on the unit circumference.

We now let m denote a positive number less than one, and let e(m, n) denote
the subset of E on which \bn(z)\^m.

From (3.7) we conclude that

(3.8) (log 1 - m 2 )[meas. £-meas. e(m, n)]^M

and consequently

(3.9) meas. e(m, n)^meas. E—M[\og -._ 2 ) .

The proof continues along the lines of Nevanlinna's argument using the
hyperbolic metric in Δ. Given u, v<=Δ, we recall that d[u,v~\, the hyperbolic
distance from u to v, is given by

(310) d[u vl- 1 log 1+1(^-
^ i U ; aιu,vj- 2 log 1_^v_

and that d satisfies the triangle inequality and is invariant under conformal
automorphisms of Δ.

We fix ω, | ω | = l , and A, 0 < J 4 < 1 . Let 6 denote the subset of E on which
\f(z,ω)\^A. [With g a WSN function and M = l , we understand g(z, ω) as
the Fatou radial limit lim g(tz, ω)Γ\ We let φn denote the unique WSN function
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satisfying

(3.11) /„[*, φn{z, w)l=f(z, w), fe

We have

(3.12) fnlz, φn(z, ω)]=/(z, ω),

as we see with the aid of the hypothesis on E, and also have \φn(z, ω ) | < l for
. Thanks to (3.12) and the invariance property of d we have

(3.13) dlf(z, ω), fn(z, mSdlφn(z, ω), 0] ,

Using the triangle inequality for d we obtain

(3.14) d[/(z, ω), fn{z, Omdίfiz, ω), 0]+d[0, fn{z, 0)]

=dZf(z, ω), 0]+rf[0, bn(z)l

<dίA,O2+dZO,bn(z)2, zee.

By (3.13), (3.14) and the definition of e(m, n) we conclude that given m there
exists C, 0<C<l, such that

(3.15) \φn(z,ω)\^C, z<=δr\e(m,n), n = l, 2, - .

From (3.15) and

(3.16) log I ^(0, ω) | g - ^ - J^log | φn(etβ, ω) \ dθ

^4z-\ \og\Ψn(z,ω)\dθ,

we obtain

(3.17) log|?>n(0, ω)\^-^-(log C) meas.ter\e(m, n)] .

Now for some ζ e Δ, φn(ζ, ω)->ω, thanks to the hypothesis of the theorem. Hence
by (2.5) we conclude that φn(0, α>)—>ω, and thereupon with the aid of (3.17) that

(3.18) lim meas. [βr\e(jn, *0]=0 .

Since

(3.19) e(m, n)ςz{E\β)\J\jβr\<m9 n)] ,

we obtain

(3.20) lim sup meas. e(m, n)igmeas. (E\€).
n-κχ>

Using (3.20) and (3.9) we obtain
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(3.21) meas. (£\£)^meas. E-M(log γ }

whence we conclude on letting m->l that meas. (E\<?)^meas. E and thereupon
that meas.8—0. It now follows that \Az,ώ)\—\ p.p. on E.

We now wish to show that w-»f(z, w), \w\^l, is the restriction of a Mobius
transformation mapping Δ onto itself for almost all 2 e £ TO that end, we start
by fixing wlf w2t wB, distinct points on the unit circumference, and noting that
for given j, k(φj) we have

(3.22) Rz,w,)Φf(z,wk)

for almost all z<=E. Otherwise, by the uniqueness theorem of F. and M. Riesz,
f(z, Wj)=f(z, wk) for all Z G J and/would not be a WSN function. Hence f(z, w3),
7=1, 2, 3, are distinct and of modulus one for almost all z<=E.

For each non-exceptional z<=E let Lz denote the unique Mobius transforma-
tion satisfying Lz(Wj)=f(z, Wj), 7=1, 2, 3. Thanks to the facts that the f(z, w3)
are distinct and that Lz{w3)—Mm f(rz, w3), j=l, 2, 3, we shall conclude that α, b, c

r—l

have Fatou radial limits at z and that a(z)—b(z)c(z)Φθ and |c(2r)|<l. For this
purpose we note that the determinant with rows

(3.23) iw,Rz,w,\w,A), 7=1,2,3,

does not vanish. Otherwise, we should conclude that Lz has a pole at 0, and
hence, by the cross ratio formula for a Mobius transformation and a continuity
argument, that w-*f(rz, w) would have a pole in Δ for r near 1. This is not
possible. Since the determinant in question does not vanish, we conclude by a
continuity argument that lim a(rz), lim b(rz), lim c(rz) exist. At least two of the

r—l r—l r—l

Wj are distinct from —l/c(z). For them we have

(3 24) a(z)wj+b(z) _f( )

Since the f(z, w3) are distinct for j distinct, we see that a(z)—b(z)c(z)Φθ. If

\c(z)\=l, then Mmf[rz, — c(i)]=oo. This conclusion being false, we see that
r—1

| c(^) |<l . Using these facts we infer that

(325) a(z)w+b(z)

is the Mobius transformation Lz and that

(3.26) Mm f(rz, w)=Lz(w), \w\^l.
r-*l

By its construction Lz maps the unit circumference onto itself and Lz(J)(z3 by
(3.26). Hence
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(3.7) La{Δ)=Δ.

The first assertion of the Theorem is thereby established. From (3.27) we obtain
the relation

(3.28) a(z)bζz)=c(z).

Remark 1. Let ζ be a point of the unit circumference. Let / be an arbitary
WSN function. Let Mr denote the map

(3.29) w —> /(rζ, w), w e Δ ,

r satisfying 0 ^ r < l . Suppose that limMr is a conformal automorphism of Δ.
r-»l

Using a determinant argument of the kind introduced above we conclude that
limα(rζ), lim b(rζ), lim c(rζ) all exist and are equal to the respective coefficients
r-»l r-»l r-»l

of the normalized representation (Aw+B)/(Cw+l) of limMr. If, in addition, g
r—1

is an analytic function on Δ taking values of modulus at most one and g has a
Fatou radial limit at ζ, then lim/[rζ, g(rζy\ exists and is equal to

ri

(3 30)

This observation leads to the conclusion that if f is a WSN function associated
with the Grenzkreis case of the Pick-Neυanlinna interpolation problem and g is
a function of class (A) in the sense of Seidel (equwalently, if g is an inner
function), then z-*f[z,g(z)2, z^Δ, also has the property (A).

Remark 2. (concerning the proof of the first assertion of the Theorem).
Since a, b, c take values of modulus at most 1, it is clear that one may show
that a(z)—b(z)c(z)ΦQ p.p. on E with the aid of the uniqueness theorem of F.
and M. Riesz and thereupon that | c (^) |< l p.p. on E.

Remark 3. The requirements on an, bn, cn of the third sentence of the
Theorem may be replaced by the equivalent one that w-^fn(rz, w) tends on Δ to
a conformal automorphism of Δ.

We now turn to the proof of the second assertion of the Theorem. In any
case, by virtue of the convergence hypothesis on (fn) we see with the aid of
the above determinant argument and Stieltjes' convergence theorem for sequences
of uniformly bounded analytic functions that an-+a, bn-^b, cn-^c uniformly on
compact subsets of Δ. Since the analytic functions an, bnj cn, a, b, c all take
values of modulus at most 1, they are all representable as the Poisson integrals
of their Fatou boundary functions. Thus

(3.31) aiz)=-^r)0

 a{eW) lett-zl' dθ<

corresponding representations holding for the remaining functions in question.
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Since the functions with domain R given by

(3.32) θ—> l~e^l\* ,

span a dense linear subset of the space of complex-valued continuous functions
on R having period 2ττ, their restrictions to [0, 2ττ] span a dense linear subspace
of L2[0, 2π] considered over C. Thanks to this observation, the pointwise con-
vergence of (αn) to a on Δ, and the fact that \an\, | α | ^ l , we conclude that the
Fatou boundary function of an converges to that of a weakly in the sense of L2.
Consequently, the corresponding statement holds for the "restrictions" of the
boundary functions of an and a to E, the weak convergence being understood
i n t h e s e n s e of L2(E). S i n c e \an(z)\—l, Z(ΞE, n=l,2, ••• , a n d \a(z)\=l p . p . o n

E, on using the classical device of considering

(3.33) f \an-a\2dθ=2Ϊ [l-9
J E J E

we see that an-^a in the mean of order 2 on E. Since the boundary functions
of an and a are uniformly bounded and meas. E<-\-oo, we obtain the equivalent
conclusion that an—>a in measure on E.

To complete the proof, we note that for w satisfying | M / | = 1 we have
l/n(*, w)\=l, z<=E. By the first assertion of the Theorem and the convergence
of (fn) to / on Δx3, we see by the argument of the preceding paragraph that

(3.34) lim f \fn(z, w)-f(z, w)\*dθ=0 .

On representing fn(z, w) and f(z, w) explicitly with the aid of (2.14) and (2.15)
respectively and noting that \cn(z)w+l\, \c{z)wJ

Γl\S2 for almost all z e £ , we
conclude that

(3.35) lim f |P n ,« , (^)Γ^=0,

where

(3.36) Pn,v,(z) = lfn(z, W)-AZ, w)2ίcn(z)w + ΐ}ίc(z)w+ΐ2 .

On examining the expansion of PUfW(z) as a quadratic polynomial in w, we see
taking three distinct values of w, each of modulus 1, say wlt w2, w3, that bn{z)
—b{z) is a linear combination of the Pn,wk(z) with coefficients independent of z
and n. We conclude that

(3.37) limf \bn(z)-b(z)\2dθ=0.

Since

(3.38) cn{z)-c{z)=an(z)K5)-a{z)W)

=Zan(z)-a(z)lbJz~)+a(z)\:bn(z)-b(z)l
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holds p.p. on E and a and bn are bounded in modulus by 1, we conclude, using

the mean convergence of (αn) to a and (bn) to b on E, that

(3.39) limf \cn(z)-c(z)\*dθ=0.

The second assertion of the Theorem follows. The proof of the Theorem is

thereby completed.
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