S. YAMAGUCHI KODAI MATH. SEM. REP 26 (1975), 240-244

REMARKS ON THE SCALAR CURVATURE OF IMMERSED MANIFOLDS

Dedicated to Prof. S. Ishihara on his 50-th birthday

By Seiichi Yamaguchi

§1. Introduction.

For surfaces in a (2+N)-dimensional Euclidean space E^{2+N} , T. Otsuki [11] has introduced some kinds of curvature and then B. Y. Chen [2] has proved the following theorem:

THEOREM A. Let $x: M^2 \rightarrow E^{2+N}$ be an immersion of a closed surface M^2 in a (2+N)-dimensional Euclidean space E^{2+N} . Then

(I) The last curvature $\lambda_N \ge 0$ if and only if M^2 is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N} , and

(II) The first curvature $\lambda_1 = \alpha$ (constant) and the last curvature $\lambda_N = 0$ (N ≥ 2) if and only if M^2 is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} with radius $1/\sqrt{\alpha}$.

On the other hand, B. Y. Chen has considered the notion of α -th scalar curvature: $\lambda_1, \lambda_2, \dots, \lambda_N$ and find the relationship between the scalar curvature R and them for an *n*-dimensional Riemannian manifold isometrically immersed in a Euclidean space E^{n+N} . And he has proved the following [3]:

THEOREM B. Let M^n $(n \ge 3)$ be an n-dimensional closed manifold in E^{n+N} . Then

$$\int_{M^n} (\lambda_1)^{n/2} dV = C_n \quad and \quad \lambda_2 = \lambda_3 = \cdots = \lambda_N = 0$$

if and only if M^n is imbedded as a hypersphere in an (n+1)-dimensional linear subspace of E^{n+N} , where dV means the volume element of M^n and C_n the area of the unit spere.

The purpose of this note is to show the following:

THEOREM. Let $x: M^n \rightarrow E^{n+N}$ be an immersion of a closed manifold with N-th

Received Sept. 6, 1973.

^{*)} Manifolds, mappings, metrics,..., etc. are assumed to be differentiable and of class C^{∞} .

scalar curvature $\lambda_N \geq 0$ in an (n+N)-dimensional Euclidean space. Then we have

(1)
$$\int_{\mathcal{M}^n} (R/n(n-1))^{n/2} dV \ge C_n$$

where R is the scalar curvature of M^n . The equality sign of (1) holds when and only when M^n is imbedded as a hyperesphere in an (n+1)-dimensional linear subspace of E^{n+N} , or, when and only when the dimension of M^n is 2 and M^2 is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N} .

§2. Preliminaries.

Let M^n be an *n*-dimensional closed manifold with an immersion $x: M^n \to E^{n+N}$. Let $F(M^n)$ and $F(E^{n+N})$ be the bundles of orthonormal frames of M^n and E^{n+N} , respectively. Let *B* be the set of elements $b=(p, e_1, e_2, \cdots, e_{n+N})$ such that $(p, e_1, e_2, \cdots, e_n) \in F(M^n)$ and $(x(p), e_1, e_2, \cdots, e_{n+N}) \in F(E^{n+N})$ whose orientation is coherent with the one of E^{n+N} , identifying e_i with $dx(e_i)$ $(i, j, k, \cdots = 1, 2, \cdots, n)$. Then $B \to M^n$ may be considered as a principal bundle with fibre $O(n) \times SO(N)$, and $\tilde{x}: B \to F(E^{n+N})$ is naturally defined by $\tilde{x}(b) = (x(p), e_1, \cdots, e_n, e_{n+1}, \cdots, e_{n+N})$. Let B_{ν} be the bundle of unit normal vector of $x(M^n)$ so that a point of B_{ν} is a pair (p, e) where *e* is a unit normal vector at x(p).

The structure equations of E^{n+N} are given by

(2)
$$dx = \sum_{A} \theta_{A} e_{A}, \qquad de_{A} = \sum_{B} \theta_{AB} e_{B}, \qquad \theta_{AB} + \theta_{BA} = 0$$
$$d\theta_{A} = \sum_{B} \theta_{B} \wedge \theta_{BA}, \qquad d\theta_{AB} = \sum_{C} \theta_{AC} \wedge \theta_{CB},$$
$$(A, B, C, \dots = 1, 2, \dots, n+N),$$

where θ_A and θ_{AB} are differential 1-forms on $F(E^{n+N})$. Let ω_A and ω_{AB} be the induced 1-forms on B respectively from θ_A and θ_{AB} by the mapping \tilde{x} . Then we have

(3)
$$\omega_r = 0, \qquad \omega_{ri} = \sum_j A_{rij} \omega_j, \qquad A_{rij} = A_{rji},$$
$$(i, j, \dots = 1, 2, \dots, n : r, s, t, \dots = n+1, \dots, n+N)$$

The symmetric matrix (A_{rij}) is called the second fundamental form at (p, e_r) . We define the k-th mean curvature $K_k(p, e_r)$ at $(p, e_r) \in B_{\nu}$ by

$$\det \left(\delta_{ij} + t A_{rij} \right) = 1 + \sum {n \choose k} K_k(p, e_r) t^k.$$

Using (2), we get

(4)
$$d\omega_{j} = \sum_{k} \omega_{k} \wedge \omega_{kj},$$
$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} + (1/2) \sum_{k,h} R_{ijkh} \omega_{k} \wedge \omega_{h},$$

SEIICHI YAMAGUCHI

$$R_{ijkh} = \sum_{r} A_{rih} A_{rjk} - \sum_{r} A_{rik} A_{rjh} \, .$$

The volume element of M^n can be written as $dV = \omega_1 \wedge \cdots \wedge \omega_n$. The (N-1)-form $d\sigma_{N-1} = \omega_{n+N} {}_{n+1} \wedge \cdots \wedge \omega_{n+N} {}_{n+N-1}$ can be regard as an (N-1)-form on B_{ν} . The (n+N-1)-form $d\sigma_{N-1} \wedge dV$ can be regarded as the volume element of B_{ν} . The integral $K_i^*(p) = \int |K_i(p, e)|^{n/i} d\sigma_{N-1}$ over the sphere of unit normal vectors at x(p) is called the *i*-th total absolute curvature of the immersion x at p, and the integral $\int_{u_n} K_i^*(p) dV$ is called the *i*-th total absolute curvature of M^n .

The following theorem is well known [6, 7]:

THEOREM C. Let $x: M^n \rightarrow E^{n+N}$ be an immersion of an n-dimensional closed manifold M^n into E^{n+N} . Then we have

(5)
$$\int_{M^n} K_i^*(p) dV \ge 2C_{n+N-1}, \quad (i=1, 2, \cdots, n)$$

The equality sifn of (5) holds if and only if M^n is imbedded as a hypersphere in an (n+1)-dimensional linear subspace of E^{n+N} if i < n, and as a convex hypersurface in an (n+1)-dimensional linear subspace of E^{n+N} if i=n.

For each unit normal vector $e = \sum_{r=n+1}^{n+N} \cos \beta_r e_r$, the 2nd mean curvature $K_2(p, e)$ is given by

$$\binom{n}{2}K_2(p, e) = \sum_{t \sim j} \left[(\sum_r \cos \beta_r A_{rii}) (\sum_s \cos \beta_s A_{sjj}) - (\sum_t \cos \beta_t A_{tij})^2 \right],$$

in which the right hand side is a quadratic form of $\cos \beta_{n+1}, \cdots, \cos \beta_{n+N}$. Hence, by choosing a suitable cross-section, we can write $K_2(p, e)$ as

(6)
$$K_2(p, e) = \sum_{r=n+1}^{n+N} \lambda_{r-n} \cos^2 \beta_r, \quad \lambda_1 \ge \cdots \ge \lambda_N$$

This local cross-section of $B \rightarrow F(E^{n+N})$ is called a Frenet frame. $\lambda_{\alpha} (\alpha=1, 2, \dots, N)$ is called the α -th scalar curvature of M^n in E^{n+N} [3]. We know that the scalar curvature R of M^n satisfies

(7)
$$R/n(n-1) = \sum_{\alpha=1}^{N} \lambda_{\alpha}$$

with respect to the Frenet frame.

§3. Lemma.

To prove the Theorem, we shall prove the following lemma:

LEMMA. Let a_1, \dots, a_N be N non-negative constants and S^{N-1} be the unit hypersphere of E^N centered at the origin $0=(0, \dots, 0)$. Let F be the function on

242

 S^{N-1} defined by $F(x) = \sum_{i=1}^{N} a_i x_i^2$, where $x = (x_1, \dots, x_N)$. For a positive integer 2d we have

(8)
$$(\sum_{i=1}^{N} a_i)^d \ge (C_{2d}/2C_{N+2d-1}) \int_{S^{N-1}} (\sum_{i=1}^{N} a_i x_i^2)^d dS^{N-1},$$

where dS^{N-1} is the volume element of S^{N-1} . The equality sign of (8) holds when and only when we have either at least N-1 of a_1, \dots, a_N are zero or d=1.

Proof. For non-negative integer e, we get

(9)
$$\int_{S^{N-1}} |x_i|^e dS^{N-1} = [2\Gamma((1+e)/2)\Gamma(1/2)^{N-1}]/\Gamma((N+e)/2).$$

Taking account of Minkowski's inequality and (9), we have

$$\begin{bmatrix} \int_{S^{N-1}} (\sum a_i x_i^2)^d dS^{N-1} \end{bmatrix}^{1/d} \leq \sum_{i=1}^N a_i \left(\int_{S^{N-1}} |x_i|^{2d} dS^{N-1} \right)^{1/d}$$
$$= \sum a_i [(2C_{N+2d-1})/C_{2d}]^{1/d},$$

which means inequality (8). Moreover, by the property of Minkowski's inequality, we find that the sign of equality holds in (8) if and only if at least N-1 of a_1, \dots, a_N are zero or d=1. This completes the proof of Lemma.

Remark. B. Y. Chen [4, 8] has proved this lemma, 2d being positive even integer. When 2d is positive odd integer, by virtue of this lemma and Schwarz's inequality, we have

$$\left[(C_{N+4d-3}C_{N+1})/\pi C_{4d-1} \right]^{1/2} (\sum a_i)^d \ge \int_{S^{N-1}} (\sum a_i x_i^2)^d dS^{N-1} \, .$$

The equality sign of this holds if and only if at least N-1 of a_1, \dots, a_N are zero.

§4. The proof of Theorem.

Now, let us prove the Theorem stated in §1. By assumption $\lambda_N \ge 0$, we may use the Lemma. Taking account of $(7)\sim(9)$, we obtain

$$[R/n(n-1)]^{n/2} \ge (C_n/2C_{n+N-1}) \int |K_2(p, e)|^{n/2} d\sigma_{N-1}$$
$$= (C_n/2C_{n+N-1}) K_2^*(p) .$$

Accordingly, from Theorem C, we get the inequality (1). If the equality sign of (1) holds, then we see by Lemma that either at least N-1 of a_1, \dots, a_N are rero or that n=2. If a_1, \dots, a_N are all zero, then $K_2(p, e)=0$. But this case does not occur as a consequence of Theorem C. Therefore, making use of Theorem C, we can find that M^n is imbedded as a hypersphere in an (n+1)-dimensional

SEIICHI YAMAGUCHI

linear subspace of E^{n+N} , or that the dimension of M^n is 2 and M^2 is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N} . The converse of this is trivial by virtue of Theorem A and B.

The author wishes to express his sincere thanks to Prof. S. Tachibana and Prof. Y. Ogawa who gave criticisms and advices.

BIBLIOGRAPHY

- [1] E.F. BECKENBACH AND R. BELLMAN, Inequalities, Springer-Verlag, 1965.
- [2] B.Y. CHEN, Surfaces of curvature $\lambda_N = 0$ in E^{2+N} , Kōdai Math. Sem. Rep., 21 (1969), 331-334.
- [3] B.Y. CHEN, On the scalar curvature of immersed manifolds, Math. J. Okayama Univ., 15 (1971), 7-14.
- [4] B.Y. CHEN, On the total curvature of immersed manifolds, I. Amer. J. Math., 93 (1971), 148-162.
- [5] B.Y. CHEN, On the total curvature of immersed manifolds, II, Amer. J. Math., 94 (1972), 799-809.
- [6] B.Y. CHEN, On a theorem of Fenchel-Borsuk-Willmore-Chern-Lashof, Math. Ann., 194 (1971), 19-26.
- B.Y. CHEN, On an inequality of mean curvatures of higher degree, Bull. Amer. Math. Soc., 77 (1971), 157-159.
- [8] B.Y. CHEN, Geometry of submanifolds, Marcel-Dekker, New York, 1973.
- [9] B.Y. CHEN AND K. YANO, Pseudo-umbilical submanifolds in a Riemannian manifold of constant curvature, Diff. Geom. in honor of K. Yano, Kinokuniya, Tokyo, 1972, 61-71.
- [10] S.S. CHERN AND R.K. LASHOF, On the total curvature of immersed manifolds, Amer. J. Math., 79 (1957), 306-318; II, Michigan Math. J., 5 (1958), 5-12.
- T. OTSUKI, On the total curvature of surfaces in Euclidean spaces, Japanese J. Math., 35 (1966), 61-71.

DEPARTMENT OF MATHEMATICS, SCIENCE UNIVERSITY OF TOKYO, TOKYO, JAPAN.