REMARKS ON THE SCALAR CURVATURE OF IMMERSED MANIFOLDS

Dedicated to Prof. S. Ishihara on his 50-th birthday

By Seifchi Yamaguchi

§ 1. Introduction.

For surfaces in a $(2+N)$-dimensional Euclidean space E^{2+N}, T. Ōtsuki [11] has introduced some kinds of curvature and then B. Y. Chen [2] has proved the following theorem:

TheOrem A. Let $x: M^{2} \rightarrow E^{2+N}$ be an immersion of a closed surface M^{2} in a $(2+N)$-dimensional Euclidean space E^{2+N}. Then
(I) The last curvature $\lambda_{N} \geqq 0$ if and only if M^{2} is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N}, and
(II) The first curvature $\lambda_{1}=\alpha$ (constant) and the last curvature $\lambda_{N}=0(N \geqq 2)$ if and only if M^{2} is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} with radius $1 / \sqrt{\alpha}$.

On the other hand, B. Y. Chen has considered the notion of α-th scalar curvature: $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}$ and find the relationship between the scalar curvature R and them for an n-dimensional Riemannian manifold isometrically immersed in a Euclidean space E^{n+N}. And he has proved the following [3]:

Theorem B. Let $M^{n}(n \geqq 3)$ be an n-dimensional closed manifold in E^{n+N}. Then

$$
\int_{M^{n}}\left(\lambda_{1}\right)^{n / 2} d V=C_{n} \quad \text { and } \quad \lambda_{2}=\lambda_{3}=\cdots=\lambda_{N}=0
$$

if and only if M^{n} is imbedded as a hypersphere in an ($n+1$)-dimensional linear subspace of E^{n+N}, where $d V$ means the volume element of M^{n} and C_{n} the area of the unit spere.

The purpose of this note is to show the following:
Theorem. Let $x: M^{n} \rightarrow E^{n+N}$ be an immersion of a closed manifold with N-th
Received Sept. 6, 1973.
*) Manifolds, mappings, metrics, \cdots, etc. are assumed to be differentiable and of class C^{∞}.
scalar curvature $\lambda_{N} \geqq 0$ in an $(n+N)$-dimensıonal Euclidean space. Then we have

$$
\begin{equation*}
\int_{M n}(R / n(n-1))^{n / 2} d V \geqq C_{n} \tag{1}
\end{equation*}
$$

where R is the scalar curvature of M^{n}. The equality sign of (1) holds when and only when M^{n} is imbedded as a hyperesphere in an ($n+1$)-dimensional linear subspace of E^{n+N}, or, when and only when the dimension of M^{n} is 2 and M^{2} is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N}.

§ 2. Preliminaries.

Let M^{n} be an n-dimensional closed manifold with an immersion $x: M^{n} \rightarrow E^{n+N}$. Let $F\left(M^{n}\right)$ and $F\left(E^{n+N}\right)$ be the bundles of orthonormal frames of M^{n} and E^{n+N}, respectively. Let B be the set of elements $b=\left(p, e_{1}, e_{2}, \cdots, e_{n+N}\right)$ such that $\left(p, e_{1}, e_{2}, \cdots, e_{n}\right) \in F\left(M^{n}\right)$ and $\left(x(p), e_{1}, e_{2}, \cdots, e_{n+N}\right) \in F\left(E^{n+N}\right)$ whose orientation is coherent with the one of E^{n+N}, identifying e_{2} with $d x\left(e_{2}\right)(i, \jmath, k, \cdots=1,2, \cdots, n)$. Then $B \rightarrow M^{n}$ may be considered as a principal bundle with fibre $O(n) \times S O(N)$, and $\tilde{x}: B \rightarrow F\left(E^{n+N}\right)$ is naturally defined by $\tilde{x}(b)=\left(x(p), e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{n+N}\right)$. Let B_{ν} be the bundle of unit normal vector of $x\left(M^{n}\right)$ so that a point of B_{ν} is a pair (p, e) where e is a unit normal vector at $x(p)$.

The structure equations of E^{n+N} are given by

$$
\begin{align*}
& d x=\sum_{A} \theta_{A} e_{A}, \quad d e_{A}=\sum_{B} \theta_{A B} e_{B}, \quad \theta_{A B}+\theta_{B A}=0, \\
& d \theta_{A}=\sum_{B} \theta_{B} \wedge \theta_{B A}, \quad d \theta_{A B}=\sum_{C} \theta_{A C} \wedge \theta_{C B}, \tag{2}\\
& (A, B, C, \cdots=1,2, \cdots, n+N),
\end{align*}
$$

where θ_{A} and $\theta_{A B}$ are differential 1-forms on $F\left(E^{n+N}\right)$. Let ω_{A} and $\omega_{A B}$ be the induced 1 -forms on B respectively from θ_{A} and $\theta_{A B}$ by the mapping \tilde{x}. Then we have

$$
\begin{align*}
& \omega_{r}=0, \quad \omega_{r i}=\sum_{\jmath} A_{r i j} \omega_{\jmath}, \quad A_{r i j}=A_{r j i}, \tag{3}\\
& (i, j, \cdots=1,2, \cdots, n: r, s, t, \cdots=n+1, \cdots, n+N) .
\end{align*}
$$

The symmetric matrix $\left(A_{r i j}\right)$ is called the second fundamental form at $\left(p, e_{r}\right)$. We define the k-th mean curvature $K_{k}\left(p, e_{r}\right)$ at $\left(p, e_{r}\right) \in B_{\nu}$ by

$$
\operatorname{det}\left(\delta_{i \jmath}+t A_{r \jmath \jmath}\right)=1+\Sigma\binom{n}{k} K_{k}\left(p, e_{r}\right) t^{k}
$$

Using (2), we get

$$
\begin{align*}
& d \omega_{j}=\sum_{k} \omega_{k} \wedge \omega_{k j}, \\
& d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}+(1 / 2) \sum_{k, h} R_{\imath j k h} \omega_{k} \wedge \omega_{h}, \tag{4}
\end{align*}
$$

$$
R_{\imath j k h}=\sum_{r} A_{r i h} A_{r j k}-\sum_{r} A_{r i k} A_{r j h}
$$

The volume element of M^{n} can be written as $d V=\omega_{1} \wedge \cdots \wedge \omega_{n}$. The ($N-1$)-form $d \sigma_{N-1}=\omega_{n+N n+1} \wedge \cdots \wedge \omega_{n+N}{ }_{n+N-1}$ can be regard as an $(N-1)$-form on B_{ν}. The $(n+N-1)$-form $d \sigma_{N-1} \wedge d V$ can be regarded as the volume element of B_{ν}. The integral $K_{i}^{*}(p)=\int\left|K_{i}(p, e)\right|^{n / i} d \sigma_{N-1}$ over the sphere of unit normal vectors at $x(p)$ is called the i-th total absolute curvature of the immersion x at p, and the integral $\int_{M^{n}} K_{i}^{*}(p) d V$ is called the i-th total absolute curvature of M^{n}.

The following theorem is well known [6, 7]:
THEOREM C. Let $x: M^{n} \rightarrow E^{n+N}$ be an immersion of an n-dimensional closed manifold M^{n} into E^{n+N}. Then we have

$$
\begin{equation*}
\int_{M n} K_{i}^{*}(p) d V \geqq 2 C_{n+N-1}, \quad(i=1,2, \cdots, n) \tag{5}
\end{equation*}
$$

The equality sifn of (5) holds if and only of M^{n} is imbedded as a hypersphere in an $(n+1)$-dimensional linear subspace of E^{n+N} if $\imath<n$, and as a convex hypersurface in an ($n+1$)-dimensional linear subspace of E^{n+N} if $i=n$.

For each unit normal vector $e=\sum_{r=n+1}^{n+N} \cos \beta_{r} e_{r}$, the 2nd mean curvature $K_{2}(p, e)$ is given by

$$
\binom{n}{2} K_{2}(p, e)=\sum_{i \backslash \jmath}\left[\left(\sum_{r} \cos \beta_{r} A_{r i i}\right)\left(\sum_{s} \cos \beta_{s} A_{s \jmath \jmath}\right)-\left(\sum_{t} \cos \beta_{t} A_{t \imath \jmath}\right)^{2}\right]
$$

in which the right hand side is a quadratic form of $\cos \beta_{n+1}, \cdots, \cos \beta_{n+N}$. Hence, by choosing a suitable cross-section, we can write $K_{2}(p, e)$ as

$$
\begin{equation*}
K_{2}(p, e)=\sum_{r=n+1}^{n+N} \lambda_{r-n} \cos ^{2} \beta_{r}, \quad \lambda_{1} \geqq \cdots \geqq \lambda_{N} \tag{6}
\end{equation*}
$$

This local cross-section of $B \rightarrow F\left(E^{n+N}\right)$ is called a Frenet frame. $\lambda_{\alpha}(\alpha=1,2, \cdots, N)$ is called the α-th scalar curvature of M^{n} in E^{n+N} [3]. We know that the scalar curvature R of M^{n} satisfies

$$
\begin{equation*}
R / n(n-1)=\sum_{\alpha=1}^{N} \lambda_{\alpha} \tag{7}
\end{equation*}
$$

with respect to the Frenet frame.

§ 3. Lemma.

To prove the Theorem, we shall prove the following lemma:
LEMMA. Let a_{1}, \cdots, a_{N} be N non-negative constants and S^{N-1} be the unit hypersphere of E^{N} centered at the origin $0=(0, \cdots, 0)$. Let F be the function on
S^{N-1} defined by $F(x)=\sum_{i=1}^{N} a_{\imath} x_{\imath}^{2}$, where $x=\left(x_{1}, \cdots, x_{N}\right)$. For a positive integer $2 d$ we have

$$
\begin{equation*}
\left(\sum_{\imath=1}^{N} a_{\imath}\right)^{d} \geqq\left(C_{2 d} / 2 C_{N+2 d-1}\right) \int_{S_{N-1}}\left(\sum_{\imath=1}^{N} a_{\imath} x_{\imath}^{2}\right)^{d} d S^{N-1}, \tag{8}
\end{equation*}
$$

where $d S^{N-1}$ is the volume element of S^{N-1}. The equality sign of (8) holds when and only when we have either at least $N-1$ of a_{1}, \cdots, a_{N} are zero or $d=1$.

Proof. For non-negative integer e, we get

$$
\begin{equation*}
\int_{S_{N-1}}\left|x_{\imath}\right|^{e} d S^{N-1}=\left[2 \Gamma((1+e) / 2) \Gamma(1 / 2)^{N-1}\right] / \Gamma((N+e) / 2) . \tag{9}
\end{equation*}
$$

Taking account of Minkowski's inequality and (9), we have

$$
\begin{aligned}
{\left[\int_{S^{N-1}}\left(\sum a_{\imath} x_{\imath}^{2}\right)^{d} d S^{N-1}\right]^{1 / d} } & \leqq \sum_{\imath=1}^{N} a_{i}\left(\int_{S^{N-1}}\left|x_{2}\right|^{2 d} d S^{N-1}\right)^{1 / d} \\
& =\sum a_{i}\left[\left(2 C_{N+2 d-1}\right) / C_{2 d}\right]^{1 / d}
\end{aligned}
$$

which means inequality (8). Moreover, by the property of Minkowski's inequality, we find that the sign of equality holds in (8) if and only if at least $N-1$ of a_{1}, \cdots, a_{N} are zero or $d=1$. This completes the proof of Lemma.

Remark. B. Y. Chen [4, 8] has proved this lemma, $2 d$ being positive even integer. When $2 d$ is positive odd integer, by virtue of this lemma and Schwarz's inequality, we have

$$
\left[\left(C_{N+4 d-3} C_{N+1}\right) / \pi C_{4 d-1}\right]^{1 / 2}\left(\Sigma a_{\imath}\right)^{d} \geqq \int_{S N-1}\left(\sum a_{\imath} x_{\imath}^{2}\right)^{d} d S^{N-1}
$$

The equality sign of this holds if and only if at least $N-1$ of a_{1}, \cdots, a_{N} are zero.

§4. The proof of Theorem.

Now, let us prove the Theorem stated in §1. By assumption $\lambda_{N} \geqq 0$, we may use the Lemma. Taking account of (7)~(9), we obtain

$$
\begin{aligned}
{[R / n(n-1)]^{n / 2} } & \geqq\left(C_{n} / 2 C_{n+N-1}\right) \int\left|K_{2}(p, e)\right|^{n / 2} d \sigma_{N-1} \\
& =\left(C_{n} / 2 C_{n+N-1}\right) K_{2}^{*}(p) .
\end{aligned}
$$

Accordingly, from Theorem C , we get the inequality (1). If the equality sign of (1) holds, then we see by Lemma that either at least $N-1$ of a_{1}, \cdots, a_{N} are rero or that $n=2$. If a_{1}, \cdots, a_{N} are all zero, then $K_{2}(p, e)=0$. But this case does not occur as a consequence of Theorem C. Therefore, making use of Theorem C, we can find that M^{n} is imbedded as a hypersphere in an ($n+1$)-dimensional
linear subspace of E^{n+N}, or that the dimension of M^{n} is 2 and M^{2} is imbedded as a convex surface in a 3 -dimensional linear subspace of E^{2+N}. The converse of this is trivial by virtue of Theorem A and B.

The author wishes to express his sincere thanks to Prof. S. Tachibana and Prof. Y. Ogawa who gave criticisms and advices.

Bibliography

[1] E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, 1965.
[2] B. Y. Chen, Surfaces of curvature $\lambda_{N}=0$ in E^{2+N}, Kōdai Math. Sem. Rep., 21 (1969), 331-334.
[3] B. Y. CHEN, On the scalar curvature of immersed manifolds, Math. J. Okayama Univ., 15 (1971), 7-14.
[4] B. Y. Chen, On the total curvature of immersed manifolds, I. Amer. J. Math., 93 (1971), 148-162.
[5] B. Y. Chen, On the total curvature of 1 mmersed manifolds, II, Amer. J. Math., 94 (1972), 799-809.
[6] B. Y. Chen, On a theorem of Fenchel-Borsuk-Willmore-Chern-Lashof, Math. Ann., 194 (1971), 19-26.
[7] B. Y. Chen, On an inequality of mean curvatures of higher degree, Bull. Amer. Math. Soc., 77 (1971), 157-159.
[8] B. Y. Chen, Geometry of submanifolds, Marcel-Dekker, New York, 1973.
[9] B. Y. Chen and K. Yano, Pseudo-umbilical submanifolds in a Riemannian manifold of constant curvature, Diff. Geom. in honor of K. Yano, Kinokuniya, Tokyo, 1972, 61-71.
[10] S.S. Chern and R.K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math., 79 (1957), 306-318; II, Michigan Math. J., 5 (1958), 5-12.
[11] T. Ötsuki, On the total curvature of surfaces in Euclidean spaces, Japanese J. Math., 35 (1966), 61-71.

Department of Mathematics, Science University of Tokyo, Tokyo, Japan.

