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MORSE FUNCTIONS ON SOME ALGEBRAIC VARIETIES

BY KAZUO MASUDA

1. Introduction.

For any n-tuple of integers a—{alf •••, an) ( α ^ 2 ) Brieskorn variety Σ(#) is,
by definition, a real algebraic variety given by the following equations in z=

*i*iΛ +znzn=l,

Σ(α) is known to be the boundary of some parallelizable (2n—2)-manifold while,
if nΞ>4, any homotopy (2n—3)-sphere being the boundary of the parallelizable
manifold becomes diffeomorphic to some Brieskorn variety. Moreover, in case
where Σ(<z) is the homotopy sphere, E. Brieskorn [1] and H. Hirzebruch and
K. H. Mayer [3] have shown that the diffeomorphism type of Σ(#) can be com-
pletely classified in terms of a—{a1} •••) using the famous theory due to M. Ker-
vaire and J. Milnor [2]. In the present paper we shall show that two Brieskorn
varieties

Σ(α 2, as, •••, an) and

are cobordant and this cobordism is realized by a real algebraic variety W
defined by the following equations in (z, t)^Cnx[0, 1]:

(1) f(z)=zt1+-"+zin=09

(2) £(2,O=tei+(l-O*2=0,

(3) h(z)=\z\*-l=z1g1+ - +zn2n-l=0.

Besides, in many cases the real valued function t on W becomes a Morse func-
tion, hence the study of the function t gives us the information on the homotopy
type of W. More precisely, we shall prove the following theorem.

THEOREM. In case n ^ 3 and a2>alt W is a smooth (2n—A)-manιfold which
gives a cobordism between Σ i = Σ ( 0 2 , flβ, — » an) and Σ 2 = Σ ( f l i , as, •••, α n ). //

10'^a2>a1=2 or a2>a1>2, then t is a Morse function on W. The Morse index
at the critical point (z, t) is given by
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(n—2)—{the number of i's such as ι>2f aτ>2 and ^ = 0 }

and the number of critical points of index k is given by

where l—k—{the number of iJs such as ι>2 and at—2} and the summation is
taken over the subsets {an, •••, au} of {α3, •••, an} such as aXj>2 0 = 1 , 2, ••• , /).

COROLLARY. // n^5, a2>aι and Σi and Σ2 homotopy spheres, then we

have
H0(W)=H2n.5(W)=Z,

Hn-2(W)=a free abelian group of rank (a2—a1)Tl(ai—l),

Hi(W)=0 for iΦO, n-2, 2 n - 5 .

For the cases omitted in the statements of Theorem above, we shall obtain
the following facts.

In case aλ—2 and α2>10, if ai—aj=2 for some ιφj>2, then t has degenerate
critical points which form spheres, but we can modify t so as to be a Morse
function having two critical points near the sphere. In case ax—a2, if aλ and a2

are even, then W is diffeomorphic to ΣiX[0, 1] since t has no critical point,
while if ax and α2 are odd, W does not become even a topological manifold.

2. Proof of the theorem.

We shall first prove that W becomes a smooth manifold. It is well known
that W is a smooth manifold if the following matrix has the maximal rank
everywhere on W:

/ 1 1 0 0 0\ / / \

27

d(x,y,t)

2Smf
O CD n

2Jmg

\ h

-1 1 0 0 0

0 0 1 1 0

0 O-i i 0

\ 0 0 0 0 1/

d(z,2,t)

f

g

g

\hl

d(z, 2, t)
d(x,y,t) '

where z—x-^iy denotes a complex n-vector. Note that E does not attain the
maximal rank at (z, t) if there exists a non zero real vector v=(a, b, c, d, e) with

0=vxE

= (a—ib, a+ib, c—id, c+id, e) —

d(z, z, t) -(-af- af+ βg+ βg+ eh)

d{z, z, t)

oZ,ohΛd(z,Z,t)

d(z, z, t)
d(x, y, t) '

d(x,y,t) '
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where we put a= — a+ib and β=c—ιd. Assume that such a non zero vector υ
exists. Then substituting (1), (2) and (3) into this, we have the following equa-
tions :

(4)

(5)

(6) aaiz^-1=ezx, z=3, 4, •••, n ,

(7) SUβfa-z^O.

Note that vφQ means \a\ + \β\ + \e\ Φθ. It is easy to show that tΦO, 1. Then
it follows readily that eφO, (In fact, if e=0 then clearly a=0 does not occur.
Now by (6) zt=0 for i>2 so that by (1), (4), (5) and (2) we have

As tφl it follows from (2) and (3) that z^O. So we have β=0 and ^ = ^ = 0
from (4) and (5), which contradicts (3).) Hence we may assume without loss of
generality that e=l. Then we have

Note that JΣzizι/aι>0 and l/a1—l/a2>0. Thus we have

(8) βz,<0 and βz2>0,

which contradicts (7). Hence we have proved that W is a smooth manifold.
On the other hand, in case where fli=α2 and they are odd, the equations

(1), •••, (7) have solutions:

z=(-eiθ/V2,eiθ/V2,0, •••, 0), f=l/2, e=0, β=ie-iθ, a^βt/a.z^-1.

Hence the matrix £ does not attain the maximal rank at such point (zf t)&W.
Actually, in this case W does not become a manifold. This is proved as follows.

For sufficiently small e>0

z, ί )eC n X[0,

is homeomorphic to the quotient space of

{(*„ ..., zn)(ΞCn-2\zξ*+ ... +*2» is real, z,5,+ - + z n z n ^ ε } x [ 0 , 2τr]

with (^3, - , zn)Xθ and (β-ί27rα2/«3^3> ... f β-
ί2?rα2/«^n)X27r identified. The homeomor-

phism is given by

where i2=arg(2r2).
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Moreover the first component of this space is homeomorphic to a cone C on

β={(*8, •••, z n ) e C n - 2 | z ? 8 + ••• +z;« is real, zszs+ - +zn2n=ε} .

Hence we can consider Cx[#—δ, θ+δ'] as a neighbourhood of (z, t)—{—eiθ/y/2,
eιθ/ V2, 0, •••, 0, 1/2)e VK for some small <5>0, and this is homeomorphic to a cone
on the suspension of D. If n=3, then D consists of 2α3(^4) points so that W
cannot be locally homeomorphic to the Euclidean space at the point. In case
n>3, let

then F+ is diffeomorphic to F_ and Hn_3(F+)Φθ (see [4]) so that Hn

Hence W cannot be a manifold in either case.
Now we shall seek the critical point of the function t. Let (z, t) be a critical

point of ί. Then (2, ί) is characterized by the condition that the rank of the
matrix

is less than 6 (see [4]). By the argument similar to the above we have the
system of equations in z, t with parameters a, β, e, e/:

(*) ( l ) , - , ( 6 ) and

(7)/ SU β^-z^e',

where a, β are complex and e, ef real with | α | + \β\ + \e\ + \e'\ =£0. We proceed
to solve these equations. As in the above case, we may assume e=l and we
can also get the inequalities (8) in this case. We shall express the complex
numbers zu a and β by the polar coordinates:

z1——r1ωt z2—r2w, Zi—r^i ( ι = 3 , 4, •••, n), α = α ε , β=bω.

Since by (5) and (8)

aa2zξ*=aεa2rξ*ωa2=z2z2+β(l-t)z2>0,

we have

(9) ε ω α * = l .

The equality (6) is rewritten as

αeα ί rf*- 1 ωf ι " 1 =r i ω i ,

whence we have

(10) if rtΦO, then εω^=l and r^~2=(aaιy
l ( i=3, 4, - , n ) .

From (1), (9) and (10) we get
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whence the following equalities can be obtained:

(11) ωα2-αi = ( _ 1 ) α 1 + 1 >

(12) rfi=r?H \-r%*.

By (2) and (3) we have

(13) f^/fo+r,),

(14) r } + r | + . . . + r ; = i .

On the other hand, from (4) and (5) it follows

aεa2rξ2-1ω(l2'1=r2ω-\-bώ(l—t),

so that by (9) and (11) we have

Using (13), we can solve these equations with respect to a and b. We have then

(15) α=(rϊ+ri)/(-α 1r?i+fl ar?«),

(16) 6=r1r2(r1+r2)(fl1rfi-2+flar?»-2)/(-fl1rfi+flar?«).

In conclusion, the system of equations (*) can be reduced to the following one
in (rx, a):

(**) (10), (12), (14) and (15).

In fact, if r% and a are obtained, the other unknowns t and b are determined by
(13) and (16), while ω, ε and ωt are obtained from (11), (9) and (10), thus finally
e' from (7)'. To solve (**) we shall use the following lemma, the proof of which
will be given later.

LEMMA 1. In case n ^ 3 , if Iθ^a2>a1=2 or a2>a1>2, then we have neces-
sarily α>l/2. Hence if at=2 (f>2), then rt=0 by (10).

Let J(r%, a)={i\rt>0, ι=l, 2, •••, n). From (8) and Lemma 1 it follows im-
medicately that

(17) J(ru α)3l, 2 and at>2 for ie=J(rl9 α)-{l, 2} .

The condition (17), however, suffices to assure the existence of our solution.
Actually the following proposition holds.

PROPOSITION. Given a subset J of {1, 2, ~ , n} satisfying (17), then there
exists a unique solution (ru a) of (**) such that J=J(rlf a).
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Proof. It is sufficient to prove in case where at>2 for every z>2 and / =
{1, 2, - , n). From (15), (14) and (10) we have

where the summation (here and in the following) is taken over only the indices
ι>2. This equation, combined with (12), yields

Putting A for α"1, from (10) and the above equalities we can regard rt'$ as func-
tions of A. Note that every rτ (f>2) is an increasing function of A. Hence if
rx and r2 are proved to be also increasing functions, then the proposition follows
from (14). Differentiating rf2 and rfι~2 by A we have

so that we have

Suppose r'2(A)=0 for some A. Let Ao be the first zero of r'2(A). Then at Ao we
have

1+ Σ rKa1-aι)/(ai-2)= Σ r\{a,-a,),'(α,-2).

Since α2^2, we can get
1^ Σ r|(A0).

As rί(A)^0 in [0, Ao], it follows that rf+r|H Vr\ increases in [0, Ao] and is
greater than 1 at Ao by the above inequality. Hence there exists a unique
AI<Ξ[0, AO] such that the equality (14) holds there. On the other hand, if A^A0,
we have

r?+r |+ -. +?i > Σ rU Σ r|(A0)^l,

which completes the proof.

From (10) and (11), it follows that the solutions (z, t) of (*) corresponding
to (rt, a) are (α2—a1)Jlalj in number, where the index of a%J runs over all
ij&J(rτ, a)— {1, 2}. This proves the last part of the theorem.

Next we shall calculate the index of the function t at the critical point (z, t).

L E M M A 2. Putting Zi—Xi+ιyt1 we can take (x3, •••, xn, y3, •••, yn) as local

coordinates near the critical point (z, t).

Proof. Assume the contrary, then there exists a non zero real (2n+l)-vector
(0, 0, xz, -" , xn, ys, -" , yn, 0) which is a linear combination of the row vectors of
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the matrix E at (z, t). It follows that there exist complex numbers α, β and γι
(i=3, •••, ft) with Σ I Λ I ^ O and a real number e such that these satisfy (4), (5),
(7) and

(6)' aaiz^~1^eziΛ-γι i=3, 4, - , n.

Note that α, β and 0 should be understood to be irrelevant to those taken in (*).
It follows easily that eΦO. (In fact, if e=0, then clearly aφQ and βφQ. Hence
from (4) ann (5) we have

flΛβl/fl.^?a=tei/(l-O^.

Taking the absolute values of both sides we have

which contradicts (15).) Hence we may assume that e=l . As a^f1'1^—t)
— a2z%*~HΦ§, we can solve (4) and (5) with respect to a and β and obtain β=bώ
(which is equal to β in (*)). Hence we have 3U β(z1—z2)=—b(rι+ri)φ0, which
contradicts (7).

We shall take these coordinates. Next we replace (z, t) by (—ωzu ωz2, ωszB,
• , ωnzn, t), then the equality (1) is transformed into

and the critical point (z, t) is transformed into (rl9 r2, •••, rn, t). Moreover we put

z1—uexβ, z2=veiθ,
and for brevity, set

~ax~~W ι > ~^y~==Ui>' dx dy =U%i> a n ( i so on (i, 7>2).

Then from (I)7 and (14) we have

— u 9 cos pθ-\-vq cos qθ— —

1 sinqθ= —

where the summation is taken over the indices i>2. Differentiating these equ-
alities we have

-pu*-1 cos ί ί Wi+ίwp sin pθ θt+qv*-1 cos ^^ v * - ^ sin qθ dx

^-SUdiZ**'1,

-puv'x cos pθ Ui +puP sin £0 βf+vq*-1 cos #0 vv-qvq sin $0 0*.

(17) -ίw^' 1 sin pθ Ui-pup cos ^0 θi+qv*-1 sin 00 Vi+tfv* cos qθ θt
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-pu*-1 sin pθ Ui,-pup cos pθ θi +qv*'1 sin qθ vv+qvq cos qθ θv

uui-{-vvi= — xι,

uui.+vvv=—yi.

At the critical point we have

rui+svi=—rlf

From these equations we have at the critical point

By (10) and (15) we have

Ui=-rr%/(r*+s*),

(18) 1;,=- sr,/(r2+s2),

θi>=-rj(r*+s*).

Differentiating equalities (17) at the critical point, we have

-prp-1
prp-1ui.ur+prpθi.θj.+qsq-1vi.vr--qsq-1θi,θj.



224 KAZUO MASUDA

rutj.+sviJ.=0,

rui,r+svi.J.——δi).

Then we have

(19) «^ .=0,

ι/,,.=0,

where

Here we have used (18).
Now from t(u+v)=v we have at the critical point

Substituting (19) into this, we have

Hence for any real numbers c8, c4, •••, cn we have

Σ CitυCj x rs(r+ s)2(/>rί'

If r t >0, then from (10) and (15) we have

= -(ai-2)(-prp+qs«).
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Hence the above Hessian form is equal to

where the summation Σi takes over the indices x's such as flϊ=2, Σ2 i'& such
as aτ>2 and rt=0, Σ 3 ι's such as at>2 and r t>0. Smilarly we have

Now from (15) and Lemma 1, it follows that

-prp+qs*>0, 2(r2+s2)-(-prp+qs«)>0,

moreover as p<q we have

-p(p-2)r*+q(q-2)s*>0, -p2rp+q2sq>0.

Hence the function t is a Morse function and the index is as mentioned in
Theorem. This completes the proof of Theorem.

3. Proofs of the corollary and the lemma.

We shall first consider the case where 10^a2>a1=2 or a2>a1>2. Then by
Theorem the function t is a Morse function with indices ^n—2, so that W/Σ2
has the homotopy type of a (n—2)-CW complex. Hence Hn-2(W, Σ 2 )=^-2(^/Σ2)
is a free abelian group and H^W, Σ2)=#t(W7Σ2)=0 for ι>n-2. From the
exact sequence of the pair (W, Σ2) it follows that Hi(W)=Hi(Σi) for i>n—2
and Hi(W)=Hi(W, Σ 2) for iφO, 2n—5, 2n-4, which proves the corollary for
i^n—2 except for the calculation of the rank of Hn-2(W). Next we shall use
the Morse function 1—t. As the indices of l—t^n—2, W has the homotopy
type of what is constructed by adjoining cells of dimension ^n—2 to Σi, so
that the map ^ ( Σ i ) - ^ ^ ) is surjective for ι<n—2. It follows that W is (n—3)-
connected, which proves the corollary for i<n—2. To calculate the rank of
Hn-2(W) we shall use the Morse equality which means that

where
#*=the rank of Hk(W, Σ2) and
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Cfe—the number of critical points of index k.

In our case
l?Λ=the rank of Hn.2(W) k=n-2,

=0 otherwise,

It is easy to get the rank of Hn^{W) as mentioned in the corollary. Before
considering the case where ax—2 and a2>10, we shall prove Lemma 1.

r\—x, rl=y,

Proof of Lemma 1. Put

Moreover, we set

Έr\=A9

where the subscript i runs over such ΐ's with flι=2, while the subscript j such
/s with dj>2. Suppose the contrary, so that we assume α^l/2. Then from (12),
(14) and (15), we can get

(20)

(21)

(22)

(20) and (21) yield

xι+x+y+B=yn+C+l

which, combined with (22), leads to the following inequalities:

(24) ymUl-B+C)/(m-l)+xι(l-l)/(rn-l)=f2(x),

Also, we need a supplementary inequality

(25)

being obtained from (21).
Now it is clear that the graphs y—f^x) and y=fs(x) inrersect at a unique

point (*i, 30 and the graphs x—xx and^— f2(x) at a unique point (xlf y2). Acutu-
ally we have

X m-l ) > yi~~ι ΰ Xl> y2~\ m-l

Since there exists a point (x, y) which satisfies (23), (24) and (25) we can easily
conclude that y^y2. Hence we have
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1-B+C1-B>( 1-B+rnC V" + (
— \ m—l ) V m—l

so that

Thus we have arrived the inequality

l^(m-/)- 1 / z +(m-/)- 1 / m =/(/, m).

The condition of the lemma means that / and m are half integers such that

l or

In both cases, the inequality above, however, is impossible. In fact, /(/, m) is
increasing in / when ra>/Ξ>l and by estimating the first and second derivatives,
we can show that the behaviour of the curves /(I, m) and /(3/2, m) are described
as follows:

m

Ah m)

m

/(3/2, m)

1

oo

3/2

OO

\

\

5 . 1 -

1 \

44....

1.0004-

1 3 . -

0.9093- /

37 .

Z1 1.0036-

oo

1

\

oo

1

This completes the proof of the lemma.

Now we return to the proof of the corollary in case where aλ—2 and α2>10.
In this case, (**) has solutions (rt, a) such as α^l/2. For such a solution, we
have that fj—O if α,>2. (In fact, if r,>0 for some α ;>2, then it is easy to see
that

and using this inequality, we have

l-B

which contradicts (26).)
If we put α=l/2, then we have a set of solutions of (**):

(27) rl=y=(tn-iyl/m, r\=x=(m/(m-l)-y)/2,

r}=A=x-l/(m-ΐ), r,=0, α=l/2,

where we used the same notations as in the proof of the lemma. Note that

r !>i4=(l-( l/(m-l)+(m-l)- 1 ^))/2=(l-/( l > m))/2>0.

Hence the solutions above exist if and only if there exists some z>2 such as
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fl<=2. Next we assume α<l/2, then from (10) we have that 7^=0 if α<=2. So
the proposition applies to the case where /={1, 2} and for this solution we have
acutually α<l/2. Because, from (12) and (14) it follows that

/(I, m)=2/(α2-

so that rf>2/(α2—2). Hence we have

fl=(rf+rl)/(-2rϊ+fl2rf*)=l/(α2-2)rϊ<l/2.

Now the critical points corresponding to the solutions (27) form (A/"—1)-spheres
which are (a2—aλ) in number (where N denotes the number of z's such as z>2
and fli=2). At these points the Hessian form of t is given by

Hence ί is not a Morse function if N^2. We can, however, modify t near each
critical sphere so as to have only two nondegenerate critical points of index 1
and N respectively. To see this, note first that we can take local coordinates
(*3, •••, xn, j>3, •••, yn) in some small neighbourhood of the sphere. Next we take
new coordinates (Θ, R, Yl9 •••, YM), where (Θ, R) are polar coordinates of the
Λf-plane containing the sphere and (F) are coordinates of the orthogonal
(2n—4—iV)-plane. Then for any fixed Θ, t is a Morse function of (R, Y) and
the Hessian from at the critical point (i?0, 0) is given by

where we denote # = F 0 and a, b, c and d are positive constants and dj(θ) is a
function of θ. Hence we can take new coordinates (θ, R', Y') such that
t(θ, i? /,y)=-(/? /-i?o) 2+Fί 2+ + F3. Let (Zί, ~;X'N) be orthogonal coordinates
corresponding to the polar coordinates (Θ, i?0» then it is easy to see that
t(X', FO+^(|XΊ 2-^o)^(l F/Γ)Z( has the desired property for a suitable function
φ having its support in a small neibourhood of 0. Now the index of the critical
point corresponding to the solution of (**) such as J(rτ, α)={l, 2} is equal to 0
since α<l/2. Note that in the first case of the proof, the index of such critical
point is equal to N and that the contribution of three critical points of index 0,
1 and N respectively to the right hand side of the Morse equality is equal to
one of a critical point of index N. Hence using the modified Morse function,
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we obtain the same rank of Hn.2(W) as in the first case. This completes the
proof of the corollary.
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