MORSE FUNCTIONS ON SOME ALGEBRAIC VARIETIES

By Kazuo Masuda

1. Introduction.

For any n-tuple of integers $a=\left(a_{1}, \cdots, a_{n}\right)\left(a_{i} \geqq 2\right)$ Brieskorn variety $\Sigma(a)$ is, by definition, a real algebraic variety given by the following equations in $z=$ $\left(z_{1}, \cdots, z_{n}\right) \in \mathbf{C}^{n}$:

$$
\begin{aligned}
& z_{1}^{a_{1}}+\cdots+z_{n}^{a_{n}}=0, \\
& z_{1} \bar{z}_{1}+\cdots+z_{n} \bar{z}_{n}=1,
\end{aligned}
$$

$\Sigma(a)$ is known to be the boundary of some parallelizable ($2 n-2$)-manifold while, if $n \geqq 4$, any homotopy ($2 n-3$)-sphere being the boundary of the parallelizable manifold becomes diffeomorphic to some Brieskorn variety. Moreover, in case where $\Sigma(a)$ is the homotopy sphere, E. Brieskorn [1] and H. Hirzebruch and K. H. Mayer [3] have shown that the diffeomorphism type of $\Sigma(a)$ can be completely classified in terms of $a=\left(a_{1}, \cdots\right)$ using the famous theory due to M. Kervaire and J. Milnor [2]. In the present paper we shall show that two Brieskorn varieties

$$
\Sigma\left(a_{2}, a_{3}, \cdots, a_{n}\right) \quad \text { and } \quad \Sigma\left(a_{1}, a_{3}, \cdots, a_{n}\right) \quad(n \geqq 3)
$$

are cobordant and this cobordism is realized by a real algebraic variety W defined by the following equations in $(z, t) \in \mathbf{C}^{n} \times[0,1]$:

$$
\begin{align*}
& f(z)=z_{1}^{a_{1}}+\cdots+z_{n}^{a_{n}}=0, \tag{1}\\
& g(z, t)=t z_{1}+(1-t) z_{2}=0, \tag{2}\\
& h(z)=|z|^{2}-1=z_{1} \bar{z}_{1}+\cdots+z_{n} \bar{z}_{n}-1=0 . \tag{3}
\end{align*}
$$

Besides, in many cases the real valued function t on W becomes a Morse function, hence the study of the function t gives us the information on the homotopy type of W. More precisely, we shall prove the following theorem.

ThEOREM. In case $n \geqq 3$ and $a_{2}>a_{1}, W$ is a smooth ($2 n-4$)-manrfold which gives a cobordism between $\Sigma_{1}=\Sigma\left(a_{2}, a_{3}, \cdots, a_{n}\right)$ and $\Sigma_{2}=\Sigma\left(a_{1}, a_{3}, \cdots, a_{n}\right)$. If $10 \geqq a_{2}>a_{1}=2$ or $a_{2}>a_{1}>2$, then t is a Morse function on W. The Morse index at the critical point (z, t) is given by

Received July 24, 1973.

$$
(n-2)-\left\{\text { the number of } i \text { 's such as } \imath>2, a_{\imath}>2 \text { and } z_{i}=0\right\}
$$

and the number of critical points of index k is given by

$$
\left(a_{2}-a_{1}\right) \sum a_{\imath 1} a_{\imath 2} \cdots a_{\imath \imath}
$$

where $l=k-\left\{\right.$ the number of i 's such as $i>2$ and $\left.a_{i}=2\right\}$ and the summation is taken over the subsets $\left\{a_{21}, \cdots, a_{i l}\right\}$ of $\left\{a_{3}, \cdots, a_{n}\right\}$ such as $a_{i \jmath}>2(\jmath=1,2, \cdots, l)$.

Corollary. If $n \geqq 5, a_{2}>a_{1}$ and Σ_{1} and Σ_{2} are homotopy spheres, then we have

$$
\begin{aligned}
& H_{0}(W)=H_{2 n-5}(W)=\mathbf{Z}, \\
& H_{n-2}(W)=a \text { free abelian group of rank }\left(a_{2}-a_{1}\right) \prod_{i \geqq 3}\left(a_{i}-1\right), \\
& H_{i}(W)=0 \quad \text { for } \quad \neq 0, n-2,2 n-5 .
\end{aligned}
$$

For the cases omitted in the statements of Theorem above, we shall obtain the following facts.

In case $a_{1}=2$ and $a_{2}>10$, if $a_{i}=a_{j}=2$ for some $\imath \neq j>2$, then t has degenerate critical points which form spheres, but we can modify t so as to be a Morse function having two critical points near the sphere. In case $a_{1}=a_{2}$, if a_{1} and a_{2} are even, then W is diffeomorphic to $\Sigma_{1} \times[0,1]$ since t has no critical point, while if a_{1} and a_{2} are odd, W does not become even a topological manifold.

2. Proof of the theorem.

We shall first prove that W becomes a smooth manifold. It is well known that W is a smooth manifold if the following matrix has the maximal rank everywhere on W :

$$
E=\frac{\partial}{\partial(x, y, t)}\left(\begin{array}{c}
2 \mathscr{R e}_{e} \\
2 \mathscr{I}_{m} f \\
2 \mathscr{R e}_{e} g \\
2 \mathscr{I}_{m} g \\
h
\end{array}\right)=\left(\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 0 \\
-\imath & \imath & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0-\imath & \imath & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \frac{\partial}{\partial(z, \bar{z}, t)}\left(\begin{array}{l}
f \\
\bar{f} \\
g \\
\bar{g} \\
h
\end{array}\right) \frac{\partial(z, \bar{z}, t)}{\partial(x, y, t)},
$$

where $z=x+\imath y$ denotes a complex n-vector. Note that E does not attain the maximal rank at (z, t) if there exists a non zero real vector $v=(a, b, c, d, e)$ with

$$
\begin{aligned}
0 & =v \times E \\
& =(a-i b, a+i b, c-\imath d, c+\imath d, e) \frac{\partial}{\partial(z, \bar{z}, t)}^{t}(f, \bar{f}, g, \bar{g}, h) \frac{\partial(z, \bar{z}, t)}{\partial(x, y, t)} \\
& =\frac{\partial}{\partial(z, \bar{z}, t)}(-\alpha f-\overline{\alpha f}+\beta g+\overline{\beta g}+e h) \frac{\partial(z, \bar{z}, t)}{\partial(x, y, t)}
\end{aligned}
$$

where we put $\alpha=-a+i b$ and $\beta=c-\imath d$. Assume that such a non zero vector v exists. Then substituting (1), (2) and (3) into this, we have the following equations:

$$
\begin{align*}
& \alpha a_{1} z_{1}^{a_{1}-1}=e \bar{z}_{1}+\beta t \tag{4}\\
& \alpha a_{2} z_{2}^{a_{2}-1}=e \bar{z}_{2}+\beta(1-t), \tag{5}\\
& \alpha a_{i} z_{\imath}^{a_{2}-1}=e \bar{z}_{\imath}, \quad i=3,4, \cdots, n, \tag{6}\\
& \mathcal{R e}_{e} \beta\left(z_{1}-z_{2}\right)=0 \tag{7}
\end{align*}
$$

Note that $v \neq 0$ means $|\alpha|+|\beta|+|e| \neq 0$. It is easy to show that $t \neq 0,1$. Then it follows readily that $e \neq 0$. (In fact, if $e=0$ then clearly $\alpha=0$ does not occur. Now by (6) $z_{i}=0$ for $i>2$ so that by (1), (4), (5) and (2) we have

$$
0=\alpha\left(z_{1}^{a_{1}}+z_{2}^{a_{2}}\right)=\beta t z_{1} / a_{1}+\beta(1-t) z_{2} / a_{2}=\beta t z_{1}\left(1 / a_{1}-1 / a_{2}\right) .
$$

As $t \neq 1$ it follows from (2) and (3) that $z_{1} \neq 0$. So we have $\beta=0$ and $z_{1}=z_{2}=0$ from (4) and (5), which contradicts (3).) Hence we may assume without loss of generality that $e=1$. Then we have

$$
\begin{aligned}
0 & =\alpha \Sigma z_{\imath}^{a_{2}}=\Sigma z_{i} \bar{z}_{\imath} / a_{i}+\beta t z_{1} / a_{1}+\beta(1-t) z_{2} / a_{2} \\
& =\Sigma z_{i} \bar{z}_{\imath} / a_{i}+\beta t z_{1}\left(1 / a_{1}-1 / a_{2}\right) .
\end{aligned}
$$

Note that $\sum z_{i} \bar{z}_{2} / a_{2}>0$ and $1 / a_{1}-1 / a_{2}>0$. Thus we have

$$
\begin{equation*}
\beta z_{1}<0 \quad \text { and } \quad \beta z_{2}>0, \tag{8}
\end{equation*}
$$

which contradicts (7). Hence we have proved that W is a smooth manifold.
On the other hand, in case where $a_{1}=a_{2}$ and they are odd, the equations (1), $\cdots,(7)$ have solutions:

$$
z=\left(-e^{i \theta} / \sqrt{2}, e^{i \theta} / \sqrt{2}, 0, \cdots, 0\right), t=1 / 2, e=0, \beta=i e^{-i \theta}, \alpha=\beta t / a_{1} z_{1}^{a_{1}-1} .
$$

Hence the matrix E does not attain the maximal rank at such point $(z, t) \in W$. Actually, in this case W does not become a manifold. This is proved as follows.

For sufficiently small $\varepsilon>0$

$$
W \cap\left\{(z, t) \in \mathbf{C}^{n} \times[0,1] \mid z_{3} \bar{z}_{3}+\cdots+z_{n} \bar{z}_{n} \leqq \varepsilon\right\}
$$

is homeomorphic to the quotient space of

$$
\left\{\left(z_{3}, \cdots, z_{n}\right) \in \mathbf{C}^{n-2} \mid z_{3}^{a_{3}}+\cdots+z_{n}^{a_{n}} \text { is real, } z_{3} \bar{z}_{3}+\cdots+z_{n} \bar{z}_{n} \leqq \varepsilon\right\} \times[0,2 \pi]
$$

with $\left(z_{3}, \cdots, z_{n}\right) \times 0$ and $\left(e^{-i 2 \pi a_{2} / a_{3}} z_{3}, \cdots, e^{-i 2 \pi a_{2} / a_{n}} z_{n}\right) \times 2 \pi$ identified. The homeomorphism is given by

$$
\left(z_{1}, \cdots, z_{n}, t\right) \longmapsto\left(e^{-2 a_{2} \theta_{2} / a_{3}} z_{3}, \cdots, e^{-2 a_{2} \theta_{2} / a_{n}} z_{n}\right)
$$

where $\theta_{2}=\arg \left(z_{2}\right)$.

Moreover the first component of this space is homeomorphic to a cone C on

$$
D=\left\{\left(z_{3}, \cdots, z_{n}\right) \in \mathbf{C}^{n-2} \mid z_{3}^{a_{3}}+\cdots+z_{n}^{a_{n}} \text { is real, } z_{3} \bar{z}_{3}+\cdots+z_{n} \bar{z}_{n}=\varepsilon\right\} .
$$

Hence we can consider $\mathbf{C} \times[\theta-\delta, \theta+\delta]$ as a neighbourhood of $(z, t)=\left(-e^{i \theta} / \sqrt{2}\right.$, $\left.e^{i \theta} / \sqrt{2}, 0, \cdots, 0,1 / 2\right) \in W$ for some small $\delta>0$, and this is homeomorphic to a cone on the suspension of D. If $n=3$, then D consists of $2 a_{3}(\geqq 4)$ points so that W cannot be locally homeomorphic to the Euclidean space at the point. In case $n>3$, let

$$
F_{ \pm}=D \cap\left\{\left(z_{3}, \cdots, z_{n}\right) \in \mathbf{C}^{n-2} \mid z_{3}^{a_{3}}+\cdots+z_{n}^{a_{n}} \gtreqless 0\right\},
$$

then F_{+}is diffeomorphic to F_{-}and $H_{n-3}\left(F_{+}\right) \neq 0$ (see [4]) so that $H_{n-3}(D) \neq 0$. Hence W cannot be a manifold in either case.

Now we shall seek the critical point of the function t. Let (z, t) be a critical point of t. Then (z, t) is characterized by the condition that the rank of the matrix

$$
\frac{\partial}{\partial(x, y, t)}^{t}\left(2 \mathscr{R e}_{e} f, 2 \mathscr{I}_{m} f, 2 \mathfrak{R e}_{e} g, 2 \mathscr{I}_{m} g, h, t\right)
$$

is less than 6 (see [4]). By the argument similar to the above we have the system of equations in z, t with parameters $\alpha, \beta, e, e^{\prime}$:

$$
\begin{equation*}
(1), \cdots,(6) \quad \text { and } \tag{*}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}_{e} \beta\left(z_{1}-z_{2}\right)=e^{\prime}, \tag{7}
\end{equation*}
$$

where α, β are complex and e, e^{\prime} real with $|\alpha|+|\beta|+|e|+\left|e^{\prime}\right| \neq 0$. We proceed to solve these equations. As in the above case, we may assume $e=1$ and we can also get the inequalities (8) in this case. We shall express the complex numbers z_{\imath}, α and β by the polar coordinates:

$$
z_{1}=-r_{1} \omega, z_{2}=r_{2} w, z_{i}=r_{i} \omega_{i}(\imath=3,4, \cdots, n), \alpha=a \varepsilon, \beta=b \bar{\omega} .
$$

Since by (5) and (8)

$$
\alpha a_{2} z_{2}^{a_{2}}=a \varepsilon a_{2} r_{2}^{a_{2}} \omega^{a_{2}}=z_{2} \bar{z}_{2}+\beta(1-t) z_{2}>0,
$$

we have

$$
\begin{equation*}
\varepsilon \omega^{a_{2}}=1 \tag{9}
\end{equation*}
$$

The equality (6) is rewritten as

$$
a \varepsilon a_{i} r_{2}^{a_{2}-1} \omega_{i}^{a_{2}-1}=r_{i} \bar{\omega}_{i},
$$

whence we have

$$
\begin{equation*}
\text { if } r_{i} \neq 0 \text {, then } \varepsilon \omega_{i}^{a_{2}}=1 \text { and } r_{2}^{a_{2}-2}=\left(a a_{\imath}\right)^{-1}(i=3,4, \cdots, n) . \tag{10}
\end{equation*}
$$

From (1), (9) and (10) we get

$$
(-1)^{a_{1}} \omega^{a_{1}-a_{2}} r_{1}^{a_{1}}+r_{2}^{a_{2}}+\cdots+r_{n}^{a_{n}}=0,
$$

whence the following equalities can be obtained:

$$
\begin{align*}
& \omega^{a_{2}-a_{1}}=(-1)^{a_{1}+1}, \tag{11}\\
& r_{1}^{a_{1}}=r_{2}^{a_{2}}+\cdots+r_{n}^{a_{n}} . \tag{12}
\end{align*}
$$

By (2) and (3) we have

$$
\begin{align*}
& t=r_{2} /\left(r_{1}+r_{2}\right), \tag{13}\\
& r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2}=1 . \tag{14}
\end{align*}
$$

On the other hand, from (4) and (5) it follows

$$
\begin{aligned}
& a \varepsilon a_{1}(-1)^{a_{1}-1} r_{1}^{a_{1}-1} \omega^{a_{1}-1}=-r_{1} \bar{\omega}+b \bar{\omega} t, \\
& a \varepsilon a_{2} r_{2}^{a_{2}-1} \omega^{a_{2}-1}=r_{2} \bar{\omega}+b \bar{\omega}(1-t),
\end{aligned}
$$

so that by (9) and (11) we have

$$
\begin{aligned}
& a a_{1} r_{1}^{a_{1}-1}=-r_{1}+b t, \\
& a a_{2} r_{2}^{a_{2}-1}=r_{2}+b(1-t) .
\end{aligned}
$$

Using (13), we can solve these equations with respect to a and b. We have then

$$
\begin{align*}
& a=\left(r_{1}^{2}+r_{2}^{2}\right) /\left(-a_{1} r_{2}^{a_{1}}+a_{2} r_{2}^{a_{2}}\right), \tag{15}\\
& b=r_{1} r_{2}\left(r_{1}+r_{2}\right)\left(a_{1} r_{1}^{a_{1}-2}+a_{2} r_{2}^{a_{2}-2}\right) /\left(-a_{1} r_{1}^{a_{1}}+a_{2} r_{2}^{a_{2}}\right) . \tag{16}
\end{align*}
$$

In conclusion, the system of equations $\left(^{*}\right)$ can be reduced to the following one in (r_{r}, a):
(**)
(10), (12), (14) and (15).

In fact, if r_{2} and a are obtained, the other unknowns t and b are determined by (13) and (16), while ω, ε and ω_{i} are obtained from (11), (9) and (10), thus finally e^{\prime} from (7)'. To solve (**) we shall use the following lemma, the proof of which will be given later.

Lemma 1. In case $n \geqq 3$, if $10 \geqq a_{2}>a_{1}=2$ or $a_{2}>a_{1}>2$, then we have necessarily $a>1 / 2$. Hence if $a_{\imath}=2(i>2)$, then $r_{i}=0$ by (10).

Let $J\left(r_{2}, a\right)=\left\{i \mid r_{2}>0, \imath=1,2, \cdots, n\right\}$. From (8) and Lemma 1 it follows immedicately that

$$
\begin{equation*}
J\left(r_{\imath}, a\right) \ni 1,2 \text { and } a_{\imath}>2 \text { for } i \in J\left(r_{\imath}, a\right)-\{1,2\} \tag{17}
\end{equation*}
$$

The condition (17), however, suffices to assure the existence of our solution. Actually the following proposition holds.

Proposition. Given a subset J of $\{1,2, \cdots, n\}$ satisfying (17), then there exists a unique solution (r_{2}, a) of $\left({ }^{* *}\right)$ such that $J=J\left(r_{\imath}, a\right)$.

Proof. It is sufficient to prove in case where $a_{\imath}>2$ for every $i>2$ and $J=$ $\{1,2, \cdots, n\}$. From (15), (14) and (10) we have

$$
-a_{1} r_{1}^{a_{1}}+a_{2} r_{2}^{a_{2}}=a^{-1}\left(1-\Sigma r_{2}^{2}\right)=a^{-1}-\Sigma a_{i} r_{2}^{a_{2}}
$$

where the summation (here and in the following) is taken over only the indices $\imath>2$. This equation, combined with (12), yields

$$
\begin{aligned}
& r_{1}^{a_{1}}=\left(a_{2}-a_{1}\right)^{-1}\left(a^{-1}+\Sigma\left(a_{2}-a_{\imath}\right) r_{2}^{a_{i}}\right), \\
& r_{2}^{a_{2}}=\left(a_{2}-a_{1}\right)^{-1}\left(a^{-1}+\Sigma\left(a_{1}-a_{\imath}\right) r_{2}^{a_{i}}\right) .
\end{aligned}
$$

Putting h for a^{-1}, from (10) and the above equalities we can regard r_{2} 's as functions of h. Note that every $r_{2}(i>2)$ is an increasing function of h. Hence if r_{1} and r_{2} are proved to be also increasing functions, then the proposition follows from (14). Differentiating $r_{2}^{a_{2}}$ and $r_{2}^{a_{2}-2}$ by h we have

$$
\begin{aligned}
& a_{2} r_{2}^{a_{2}-1} r_{2}^{\prime}=\left(a_{2}-a_{1}\right)^{-1}\left(1+\Sigma\left(a_{1}-a_{\imath}\right) a_{i} r_{\imath}^{a_{2}-1} r_{2}^{\prime}\right), \\
& \left(a_{i}-2\right) r_{2}^{a_{2}-3} r_{i}^{\prime}=a_{2}^{-1},
\end{aligned}
$$

so that we have

$$
a_{2} r_{2}^{a_{2}-1} r_{2}^{\prime}=\left(a_{2}-a_{1}\right)^{-1}\left(1+\sum r_{i}^{2}\left(a_{1}-a_{\imath}\right) /\left(a_{i}-2\right)\right) .
$$

Suppose $r_{2}^{\prime}(h)=0$ for some h. Let h_{0} be the first zero of $r_{2}^{\prime}(h)$. Then at h_{0} we have

$$
1+\sum_{a_{i} \leqq a_{1}} r_{i}^{2}\left(a_{1}-a_{i}\right) /\left(a_{i}-2\right)=\sum_{a_{i}>a_{1}} r_{i}^{2}\left(a_{i}-a_{1}\right) /\left(a_{i}-2\right)
$$

Since $a_{1} \geqq 2$, we can get

$$
1 \leqq \sum_{a_{i}>a_{1}} r_{i}^{2}\left(h_{0}\right) .
$$

As $r_{1}^{\prime}(h) \geqq 0$ in $\left[0, h_{0}\right]$, it follows that $r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2}$ increases in $\left[0, h_{0}\right]$ and is greater than 1 at h_{0} by the above inequality. Hence there exists a unique $h_{1} \in\left[0, h_{0}\right]$ such that the equality (14) holds there. On the other hand, if $h \geqq h_{0}$, we have

$$
r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2}>\sum_{a_{i}>a_{1}} r_{i}^{2} \geqq \sum_{a_{i}>a_{1}} r_{i}^{2}\left(h_{0}\right) \geqq 1,
$$

which completes the proof.
From (10) and (11), it follows that the solutions (z, t) of (*) corresponding to (r_{\imath}, a) are $\left(a_{2}-a_{1}\right) \Pi a_{\imath}$ in number, where the index of a_{\imath}, runs over all $\imath_{j} \in J\left(r_{2}, a\right)-\{1,2\}$. This proves the last part of the theorem.

Next we shall calculate the index of the function t at the critical point (z, t).
Lemma 2. Putting $z_{i}=x_{i}+\imath y_{i}$, we can take ($x_{3}, \cdots, x_{n}, y_{3}, \cdots, y_{n}$) as local coordinates near the critucal point (z, t).

Proof. Assume the contrary, then there exists a non zero real ($2 n+1$)-vector $\left(0,0, x_{3}, \cdots, x_{n}, y_{3}, \cdots, y_{n}, 0\right)$ which is a linear combination of the row vectors of
the matrix E at (z, t). It follows that there exist complex numbers α, β and γ_{i} ($i=3, \cdots, n$) with $\Sigma\left|\gamma_{\imath}\right| \neq 0$ and a real number e such that these satisfy (4), (5), (7) and

$$
\begin{equation*}
\alpha a_{i} z_{\imath}^{a_{\imath}-1}=e \bar{z}_{i}+\gamma_{2} \quad \imath=3,4, \cdots, n \tag{6}
\end{equation*}
$$

Note that α, β and e should be understood to be irrelevant to those taken in $\left(^{*}\right)$. It follows easily that $e \neq 0$. (In fact, if $e=0$, then clearly $\alpha \neq 0$ and $\beta \neq 0$. Hence from (4) ann (5) we have

$$
a_{1} z_{1}^{a_{1}} / a_{2} z_{2}^{a_{2}}=t z_{1} /(1-t) z_{2}
$$

Taking the absolute values of both sides we have

$$
a_{1} r_{1}^{a_{1}} / a_{2} r_{2}^{a_{2}}=1,
$$

which contradicts (15).) Hence we may assume that $e=1$. As $a_{1} z_{1}^{a_{1}-1}(1-t)$ $-a_{2} z_{2}^{a_{2}-1} t \neq 0$, we can solve (4) and (5) with respect to α and β and obtain $\beta=b \bar{\omega}$ (which is equal to β in (*)). Hence we have $R_{e} \beta\left(z_{1}-z_{2}\right)=-b\left(r_{1}+r_{2}\right) \neq 0$, which contradicts (7).

We shall take these coordinates. Next we replace (z, t) by $\left(-\omega z_{1}, \omega z_{2}, \omega_{3} z_{3}\right.$, $\cdots, \omega_{n} z_{n}, t$), then the equality (1) is transformed into

$$
\begin{equation*}
-z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n}^{a_{n}}=0 \tag{1}
\end{equation*}
$$

and the critical point (z, t) is transformed into $\left(r_{1}, r_{2}, \cdots, r_{n}, t\right)$. Moreover we put

$$
z_{1}=u e^{\imath \theta}, \quad z_{2}=v e^{i \theta},
$$

and for brevity, set

$$
\begin{gathered}
a_{1}=p, \quad a_{2}=q, \quad r_{1}=r, \quad r_{2}=s, \\
\frac{\partial u}{\partial x_{\imath}}=u_{\imath}, \quad \frac{\partial u}{\partial y_{\imath}}=u_{i^{\prime}}, \quad \frac{\partial^{2} u}{\partial x_{i} \partial y_{j}}=u_{\imath j^{\prime}} \quad \text { and so on }(i, j>2) .
\end{gathered}
$$

Then from (1)' and (14) we have

$$
\begin{aligned}
& -u^{p} \cos p \theta+v^{q} \cos q \theta=-\mathscr{R}_{e} \Sigma z_{\imath}^{a_{2}}, \\
& -u^{p} \sin p \theta+v^{q} \sin q \theta=-g_{m} \Sigma z_{\imath}^{a_{2}}, \\
& u^{2}+v^{2}=1-\Sigma\left(x_{i}^{2}+y_{i}^{2}\right),
\end{aligned}
$$

where the summation is taken over the indices $i>2$. Differentiating these equalities we have

$$
-p u^{p-1} \cos p \theta u_{i}+p u^{p} \sin p \theta \theta_{i}+q v^{q-1} \cos q \theta v_{i}-q v^{q} \sin q \theta \theta_{\imath}
$$

$$
\begin{align*}
= & -\operatorname{Re}_{e} a_{i} z_{\imath}^{a_{2}-1}, \\
& -p u^{p-1} \cos p \theta u_{i^{\prime}}+p u^{p} \sin p \theta \theta_{i^{\prime}}+v q^{q-1} \cos q \theta v_{i^{\prime}}-q v^{q} \sin q \theta \theta_{i^{\prime}} \\
= & -\operatorname{Re}_{e} a_{i} z_{\imath}^{a_{\imath}-1} i, \\
& -p u^{p-1} \sin p \theta u_{i}-p u^{p} \cos p \theta \theta_{i}+q v^{q-1} \sin q \theta v_{i}+q v^{q} \cos q \theta \theta_{\imath} \tag{17}
\end{align*}
$$

$$
\begin{aligned}
= & -g_{m} a_{i} z_{\imath}^{a_{\imath}-1}, \\
& -p u^{p-1} \sin p \theta u_{i^{\prime}}-p u^{p} \cos p \theta \theta_{i^{\prime}}+q v^{q-1} \sin q \theta v_{i^{\prime}}+q v^{q} \cos q \theta \theta_{i^{\prime}} \\
= & -\mathcal{I}_{m} a_{i} z_{\imath}^{a_{\imath}-1} i, \\
& u u_{i}+v v_{i}=-x_{\imath}, \\
& u u_{i^{\prime}}+v v_{i^{\prime}}=-y_{i} .
\end{aligned}
$$

At the critical point we have

$$
\begin{aligned}
& -p u^{p-1} u_{\imath}+q v^{q-1} v_{i}=-a_{i} r_{2}^{a_{2}-1}, \\
& -p u^{p-1} u_{i^{\prime}}+q v^{q-1} v_{i^{\prime}}=0, \\
& -p u^{p} \theta_{i}+q v^{q} \theta_{i}=0, \\
& -p u^{p} \theta_{i^{\prime}}+q v^{q} \theta_{i^{\prime}}=-a_{i} r_{2}^{a_{2}-1}, \\
& r u_{i}+s v_{i}=-r_{2}, \\
& r u_{i^{\prime}}+s v_{i^{\prime}}=0 .
\end{aligned}
$$

From these equations we have at the critical point

$$
\begin{aligned}
& u_{i}=-r_{i}\left(-a_{i} r_{2}^{a_{2}-2}+q s^{q-2}\right) / r\left(p r^{p-2}+q s^{q-2}\right), \\
& v_{i}=-r_{i}\left(a_{i} r_{2}^{a_{2}-2}+p r^{p-2}\right) / s\left(p r^{p-2}+q s^{q-2}\right), \\
& u_{i^{\prime}}=0, \\
& v_{i^{\prime}}=0, \\
& \theta_{i}=0, \\
& \theta_{i^{\prime}}=-a_{i} r_{2}^{a_{2}-1} /\left(-p r^{p}+q s^{q}\right) .
\end{aligned}
$$

By (10) and (15) we have

$$
\begin{align*}
& u_{i}=-r r_{2} /\left(r^{2}+s^{2}\right), \\
& v_{i}=-s r_{2} /\left(r^{2}+s^{2}\right), \tag{18}\\
& \theta_{i}=-r_{2} /\left(r^{2}+s^{2}\right) .
\end{align*}
$$

Differentiating equalities (17) at the critical point, we have

$$
\begin{aligned}
& -p(p-1) r^{p-2} u_{i} u_{j}-p r^{p-1} u_{\imath j}+q(q-1) s^{q-2} v_{i} v_{\jmath}+q s^{q-1} v_{i j} \\
= & -a_{i}\left(a_{i}-1\right) r_{\imath}^{a_{\imath}-2} \delta_{i j}, \\
& -p r^{p-1} u_{j^{\prime}}+q s^{q-1} v_{i j^{\prime}}=0, \\
& -p r^{p-1} u_{i^{\prime}}, u_{j^{\prime}}+p r^{p} \theta_{i^{\prime}} \theta_{j^{\prime}}+q s^{q-1} v_{i^{\prime}}, v_{j^{\prime}}-q s^{q-1} \theta_{i^{\prime}} \theta_{j^{\prime}} \\
= & a_{i}\left(a_{i}-1\right) r_{\imath}^{a_{2}-2} \delta_{i j},
\end{aligned}
$$

$$
\begin{aligned}
& u_{i} u_{j}+r u_{\imath j}+v_{i} v_{\jmath}+s v_{\imath j}=-\delta_{i j}, \\
& r u_{\imath j^{\prime}}+s v_{\imath j^{\prime}}=0, \\
& r u_{i^{\prime} j^{\prime}}+s v_{i^{\prime} j^{\prime}}=-\delta_{i j} .
\end{aligned}
$$

Then we have

$$
\begin{align*}
& u_{\imath j}=\left(-A_{\imath \jmath}+B_{\imath j} q s^{q-2}\right) / r\left(p r^{p-2}+q s^{q-2}\right), \\
& v_{\imath j}=\left(A_{\imath j}-B_{i j} p r^{p-2}\right) / s\left(p r^{p-2}+q s^{q-2}\right), \\
& u_{\imath j^{\prime}}=0, \tag{19}\\
& v_{\imath j^{\prime}}=0, \\
& u_{i^{\prime} j^{\prime}}=\left(-A_{\imath \jmath}^{\prime}+B_{i \jmath}^{\prime} q s^{q-2}\right) / r\left(p r^{p-2}+q s^{q-2}\right), \\
& v_{i^{\prime} \jmath^{\prime}}=\left(A_{\imath j}^{\prime}-B_{i \jmath}^{\prime} p r^{p-2}\right) / s\left(p r^{p-2}+q s^{q-2}\right),
\end{align*}
$$

where

$$
\begin{aligned}
A_{\imath \jmath} & =-a_{i}\left(a_{i}-1\right) r_{2}^{a_{2}-2} \delta_{i j}+p(p-1) r^{p-2} u_{i} u_{j}-q(q-1) s^{q-2} v_{i} v_{\jmath} \\
& =-a_{i}\left(a_{i}-1\right) r_{2}^{a_{2}-2} \delta_{i \jmath}+\left(p(p-1) r^{p}-q(q-1) s^{q}\right) r_{i} r_{j} /\left(r^{2}+s^{2}\right)^{2}, \\
B_{\imath j} & =\delta_{i \jmath}+u_{i} u_{\jmath}+v_{i} v_{j}=\delta_{i j}+r_{i} r_{j} /\left(r^{2}+s^{2}\right), \\
A_{\imath j}^{\prime} & =a_{i}\left(a_{i}-1\right) r_{2}^{a_{\imath}-2} \delta_{i \jmath}+\left(-p^{2} r^{p}+q^{2} s^{q}\right) \theta_{i^{\prime}} \theta_{j^{\prime}} \\
& =a_{i}\left(a_{i}-1\right) r_{\imath}^{a_{\imath}-2} \delta_{i \jmath}+\left(-p^{2} r^{2}+q^{2} s^{q}\right) r_{i} r_{j} /\left(r^{2}+s^{2}\right)^{2}, \\
B_{i j}^{\prime} & =\delta_{i \jmath} .
\end{aligned}
$$

Here we have used (18).
Now from $t(u+v)=v$ we have at the critical point

$$
t_{\imath j}=\left(-s u_{\imath \jmath}+r v_{\imath j}\right) /\left(r^{2}+s^{2}\right) .
$$

Substituting (19) into this, we have

$$
t_{i j}=\left(A_{i j}\left(r^{2}+s^{2}\right)+B_{i j}\left(-p r^{p}+q s^{q}\right)\right) / r s(r+s)^{2}\left(p r^{p-2}+q s^{q-2}\right) .
$$

Hence for any real numbers $c_{3}, c_{4}, \cdots, c_{n}$ we have

$$
\begin{aligned}
& \Sigma c_{i} t_{2 j} c_{\jmath} \times r s(r+s)^{2}\left(p r^{p-2}+q s^{q-2}\right) \\
& =\Sigma\left(-a_{i}\left(a_{i}-1\right) r_{2}^{a_{2}-2}\left(r^{2}+s^{2}\right)+\left(-p r^{p}+q s^{q}\right)\right) c_{\imath}^{2} \\
& \quad+\left(\left(p(p-1) r^{p}-q(q-1) s^{q}\right)+\left(-p r^{p}+q s^{q}\right)\right)\left(r^{2}+s^{2}\right)^{-1}\left(\Sigma r_{i} c_{\imath}\right)^{2} .
\end{aligned}
$$

If $r_{2}>0$, then from (10) and (15) we have

$$
\begin{aligned}
& -a_{i}\left(a_{i}-1\right) r_{\imath}^{a_{2}-2}\left(r^{2}+s^{2}\right)+\left(-p r^{p}+q s^{q}\right) \\
= & -\left(a_{i}-1\right) a^{-1}\left(r^{2}+s^{2}\right)+\left(-p r^{p}+q s^{q}\right) \\
= & -\left(a_{i}-2\right)\left(-p r^{p}+q s^{q}\right) .
\end{aligned}
$$

Hence the above Hessian form is equal to

$$
\begin{aligned}
& -\left(2\left(r^{2}+s^{2}\right)-\left(-p r^{p}+q s^{q}\right)\right) \Sigma_{1} c_{2}^{2}+\left(-p r^{p}+q s^{q}\right) \Sigma_{2} c_{2}^{2} \\
& -\left(-p r^{p}+q s^{q}\right) \sum_{3}\left(a_{i}-2\right) c_{2}^{2}-\left(-p(p-2) r^{p}+q(q-2) s^{q}\right)\left(r^{2}+s^{2}\right)^{-1}\left(\sum_{3} r_{i} c_{2}\right)^{2},
\end{aligned}
$$

where the summation Σ_{1} takes over the indices i 's such as $a_{i}=2, \Sigma_{2} i$'s such as $a_{\imath}>2$ and $r_{i}=0, \Sigma_{3} i$'s such as $a_{\imath}>2$ and $r_{\imath}>0$. Smilarly we have

$$
\begin{aligned}
& \quad t_{i j^{\prime}}=0, \\
& \sum c_{i} t_{i^{\prime} j^{\prime}} c, \times r s(r+s)^{2}\left(p r^{p-2}+q s^{q-2}\right) \\
& =\left(2\left(r^{2}+s^{2}\right)+\left(-p r^{p}+q s^{q}\right)\right) \sum_{1} c_{2}^{2}+\left(-p r^{p}+q s^{q}\right) \sum_{2} c_{\imath}^{2} \\
& +\left(-p r^{p}+q s^{q}\right) \sum_{3} a_{i} c_{2}^{2}+\left(-p^{2} r^{p}+q^{2} s^{q}\right)\left(r^{2}+s^{2}\right)^{-1}\left(\sum_{3} r_{i} c_{2}\right)^{2} .
\end{aligned}
$$

Now from (15) and Lemma 1, it follows that

$$
-p r^{p}+q s^{q}>0, \quad 2\left(r^{2}+s^{2}\right)-\left(-p r^{p}+q s^{q}\right)>0,
$$

moreover as $p<q$ we have

$$
-p(p-2) r^{p}+q(q-2) s^{q}>0, \quad-p^{2} r^{p}+q^{2} s^{q}>0 .
$$

Hence the function t is a Morse function and the index is as mentioned in Theorem. This completes the proof of Theorem.

3. Proofs of the corollary and the lemma.

We shall first consider the case where $10 \geqq a_{2}>a_{1}=2$ or $a_{2}>a_{1}>2$. Then by Theorem the function t is a Morse function with indices $\leqq n-2$, so that W / Σ_{2} has the homotopy type of a ($n-2$)-CW complex. Hence $H_{n-2}\left(W, \Sigma_{2}\right)=H_{n-2}\left(W / \Sigma_{2}\right)$ is a free abelian group and $H_{i}\left(W, \Sigma_{2}\right)=H_{i}\left(W / \Sigma_{2}\right)=0$ for $\imath>n-2$. From the exact sequence of the pair $\left(W, \Sigma_{2}\right)$ it follows that $H_{i}(W)=H_{i}\left(\Sigma_{2}\right)$ for $i>n-2$ and $H_{i}(W)=H_{i}\left(W, \Sigma_{2}\right)$ for $\imath \neq 0,2 n-5,2 n-4$, which proves the corollary for $i \geqq n-2$ except for the calculation of the rank of $H_{n-2}(W)$. Next we shall use the Morse function $1-t$. As the indices of $1-t \geqq n-2, W$ has the homotopy type of what is constructed by adjoining cells of dimension $\geqq n-2$ to Σ_{1}, so that the map $\pi_{i}\left(\Sigma_{1}\right) \rightarrow \pi_{i}(W)$ is surjective for $\imath<n-2$. It follows that W is $(n-3)$ connected, which proves the corollary for $i<n-2$. To calculate the rank of $H_{n-2}(W)$ we shall use the Morse equality which means that

$$
\Sigma(-1)^{k} R_{k}=\Sigma(-1)^{k} C_{k}
$$

where

$$
R_{k}=\text { the rank of } H_{k}\left(W, \Sigma_{2}\right) \text { and }
$$

$$
C_{k}=\text { the number of critical points of index } k .
$$

In our case

$$
\begin{array}{rlrl}
R_{k} & =\text { the rank of } H_{n-2}(W) & & k=n-2, \\
& =0 & & \text { otherwise }, \\
C_{k} & =\left(a_{2}-a_{1}\right) \sum a_{21} \cdots a_{i l} . &
\end{array}
$$

It is easy to get the rank of $H_{n-2}(W)$ as mentioned in the corollary. Before considering the case where $a_{1}=2$ and $a_{2}>10$, we shall prove Lemma 1 .

Proof of Lemma 1. Put

$$
r_{1}^{2}=x, \quad r_{2}^{2}=y, \quad a_{1}=2 l, \quad a_{2}=2 m .
$$

Moreover, we set

$$
\Sigma r_{i}^{2}=A, \quad \Sigma r_{j}^{2}=B, \quad \Sigma r_{j}^{a_{j}}=C,
$$

where the subscript i runs over such i 's with $a_{i}=2$, while the subscript j such j 's with $a_{j}>2$. Suppose the contrary, so that we assume $a \leqq 1 / 2$. Then from (12), (14) and (15), we can get

$$
\begin{align*}
& x^{l}=y^{m}+A+C \tag{20}\\
& x+y+A+B=1 \tag{21}\\
& -l x^{l}+m y^{m} \geqq x+y \tag{22}
\end{align*}
$$

(20) and (21) yield

$$
x^{l}+x+y+B=y^{m}+C+1
$$

which, combined with (22), leads to the following inequalities:

$$
\begin{align*}
& y \geqq m(1-B+C) /(m-1)-x-x^{l}(m-l) /(m-1)=f_{1}(x), \tag{23}\\
& y^{m} \geqq(1-B+C) /(m-1)+x^{l}(l-1) /(m-1)=f_{2}(x), \tag{24}
\end{align*}
$$

Also, we need a supplementary inequality

$$
\begin{equation*}
y \leqq 1-B-x=f_{3}(x), \tag{25}
\end{equation*}
$$

being obtained from (21).
Now it is clear that the graphs $y=f_{1}(x)$ and $y=f_{3}(x)$ inrersect at a unique point (x_{1}, y_{1}) and the graphs $x=x_{1}$ and $y=f_{2}(x)$ at a unique point (x_{1}, y_{2}). Acutually we have

$$
x_{1}=\left(\frac{1-B+m C}{m-l}\right)^{1 / l}, \quad y_{1}=1-B-x_{1}, \quad y_{2}=\left(\frac{1-B+C}{m-l}\right)^{1 / m} .
$$

Since there exists a point (x, y) which satisfies (23), (24) and (25) we can easily conclude that $y_{1} \geqq y_{2}$. Hence we have

$$
1-B \geqq\left(\frac{1-B+m C}{m-l}\right)^{1 / l}+\left(\frac{1-B+C}{m-l}\right)^{1 / m}
$$

so that

$$
\begin{equation*}
1-B \geqq\left(\frac{1-B}{m-l}\right)^{1 / l}+\left(\frac{1-B}{m-l}\right)^{1 / m} \tag{26}
\end{equation*}
$$

Thus we have arrived the inequality

$$
1 \geqq(m-l)^{-1 / l}+(m-l)^{-1 / m}=f(l, m) .
$$

The condition of the lemma means that l and m are half integers such that

$$
5 \geqq m>l=1 \quad \text { or } \quad m>l \geqq 3 / 2 .
$$

In both cases, the inequality above, however, is impossible. In fact, $f(l, m)$ is increasing in l when $m>l \geqq 1$ and by estimating the first and second derivatives, we can show that the behaviour of the curves $f(1, m)$ and $f(3 / 2, m)$ are described as follows:

This completes the proof of the lemma.
Now we return to the proof of the corollary in case where $a_{1}=2$ and $a_{2}>10$. In this case, ${ }^{(* *)}$ has solutions $\left(r_{2}, a\right)$ such as $a \leqq 1 / 2$. For such a solution, we have that $r_{j}=0$ if $a_{j}>2$. (In fact, if $r_{\rho}>0$ for some $a_{\rho}>2$, then it is easy to see that

$$
B \geqq r_{j}^{2}=\left(a a_{j}\right)^{-2 /\left(a_{j}-2\right)} \geqq(1 / 2 \cdot 3)^{-2 /(3-2)}=4 / 9,
$$

and using this inequality, we have

$$
1-B<\left(\frac{1-B}{m-1}\right)^{1 / m}
$$

which contradicts (26).)
If we put $a=1 / 2$, then we have a set of solutions of (${ }^{* *}$):

$$
\begin{align*}
& r_{2}^{2}=y=(m-1)^{-1 / m}, \quad r_{1}^{2}=x=(m /(m-1)-y) / 2, \tag{27}\\
& r_{i}^{2}=A=x-1 /(m-1), \quad r_{j}=0, \quad a=1 / 2,
\end{align*}
$$

where we used the same notations as in the proof of the lemma. Note that

$$
r_{1}^{2}>A=\left(1-\left(1 /(m-1)+(m-1)^{-1 / m}\right)\right) / 2=(1-f(1, m)) / 2>0 .
$$

Hence the solutions above exist if and only if there exists some $i>2$ such as
$a_{i}=2$. Next we assume $a<1 / 2$, then from (10) we have that $r_{i}=0$ if $a_{i}=2$. So the proposition applies to the case where $J=\{1,2\}$ and for this solution we have acutually $a<1 / 2$. Because, from (12) and (14) it follows that

$$
f(1, m)=2 /\left(a_{2}-2\right)+\left(2 /\left(a_{2}-2\right)\right)^{2 / a_{2}}<1=r_{1}^{2}+r_{2}^{2}=r_{1}^{2}+\left(r_{1}^{2}\right)^{2 / a_{2}},
$$

so that $r_{1}^{2}>2 /\left(a_{2}-2\right)$. Hence we have

$$
a=\left(r_{1}^{2}+r_{2}^{2}\right) /\left(-2 r_{1}^{2}+a_{2} r_{2}^{a_{2}}\right)=1 /\left(a_{2}-2\right) r_{1}^{2}<1 / 2 .
$$

Now the critical points corresponding to the solutions (27) form ($N-1$)-spheres which are ($a_{2}-a_{1}$) in number (where N denotes the number of i 's such as $\imath>2$ and $a_{i}=2$). At these points the Hessian form of t is given by

$$
\begin{aligned}
& \Sigma c_{i} t_{i} c_{\jmath} \times r s(r+s)^{2}\left(p r^{p-2}+q s^{q-2}\right) \\
= & -\left(p(p-2) r^{p}+q(q-2) s^{q}\right)\left(r^{2}+s^{2}\right)^{-1}\left(\Sigma_{1} r_{i} c_{\imath}\right)^{2}+\left(-p r^{p}+q s^{q}\right) \Sigma_{2} c_{\imath}^{2}, \\
& t_{2 j^{\prime}}=0, \\
& \Sigma c_{i} t_{i^{\prime} j^{\prime}} c, \times r s(r+s)^{2}\left(p r^{p-2}+q s^{q-2}\right) \\
= & \left(2\left(r^{2}+s^{2}\right)+\left(-p r^{p}+q s^{q}\right)\right) \Sigma_{1} c_{i}^{2} \\
& +\left(-p^{2} r^{p}+q^{2} s^{q}\right)\left(r^{2}+s^{2}\right)^{-1}\left(\sum_{1} r_{i} c_{\imath}\right)^{2}+\left(-p r^{p}+q s^{q}\right) \Sigma_{2} c_{\imath}^{2} .
\end{aligned}
$$

Hence t is not a Morse function if $N \geqq 2$. We can, however, modify t near each critical sphere so as to have only two nondegenerate critical points of index 1 and N respectively. To see this, note first that we can take local coordinates $\left(x_{3}, \cdots, x_{n}, y_{3}, \cdots, y_{n}\right)$ in some small neighbourhood of the sphere. Next we take new coordinates $\left(\Theta, R, Y_{1}, \cdots, Y_{M}\right)$, where (Θ, R) are polar coordinates of the N-plane containing the sphere and (Y) are coordinates of the orthogonal $(2 n-4-N)$-plane. Then for any fixed Θ, t is a Morse function of (R, Y) and the Hessian from at the critical point ($R_{0}, 0$) is given by

$$
\Sigma c_{i} t_{2 j} c_{j}=-a c_{0}^{2}+b \Sigma c_{\imath}^{2}+c \Sigma c_{\imath}^{2}+d\left(\Sigma c_{j} d_{j}(\Theta)\right)^{2},
$$

where we denote $R=Y_{0}$ and a, b, c and d are positive constants and $d_{j}(\Theta)$ is a function of Θ. Hence we can take new coordinates ($\Theta, R^{\prime}, Y^{\prime}$) such that $t\left(\Theta, R^{\prime}, y^{\prime}\right)=-\left(R^{\prime}-R_{0}\right)^{2}+Y_{1}^{\prime 2}+\cdots+Y_{M}^{\prime 2}$. Let $\left(X_{1}^{\prime}, \cdots, X_{N}^{\prime}\right)$ be orthogonal coordinates corresponding to the polar coordinates $\left(\Theta, R^{\prime}\right)$, then it is easy to see that $t\left(X^{\prime}, Y^{\prime}\right)+\varphi\left(\left|X^{\prime}\right|^{2}-R_{0}^{2}\right) \varphi\left(\left|Y^{\prime}\right|^{2}\right) X_{1}^{\prime}$ has the desired property for a suitable function φ having its support in a small neibourhood of 0 . Now the index of the critical point corresponding to the solution of $\left({ }^{* *}\right)$ such as $J\left(r_{2}, a\right)=\{1,2\}$ is equal to 0 since $a<1 / 2$. Note that in the first case of the proof, the index of such critical point is equal to N and that the contribution of three critical points of index 0 , 1 and N respectively to the right hand side of the Morse equality is equal to one of a critical point of index N. Hence using the modified Morse function,
we obtain the same rank of $H_{n-2}(W)$ as in the first case. This completes the proof of the corollary.

Bibliography

[1] E. Brieskorn, Beıspiele zur Differentialtopologie von Singularitäten, Inventiones Math., 2 (1967), 1-14.
[2] M. Kervaire and J. Milnor, Groups of homotopy spheres I, Ann. of Math., 77 (1963), 504-537.
[3] F. Hirzebruch and K. H. Mayer, $O(n)$-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Springer Lecture Notes in Mathematics, 57 (1968).
[4] J. Milnor, Singular points of Complex hypersurfaces, Annals Study, 61, Princeton 1968.

Tokyo Institute of Technology.

