M. KONISHI KODAI MATH. SEM. REP. 26 (1975), 194-200

ON MANIFOLDS WITH SASAKIAN 3-STRUCTURE OVER QUATERNION KAEHLER MANIFOLDS

Dedicated to Professor Yūsaku Komatu on his sixtieth birthday

By Mariko Konishi

§1. Introduction. Any complete Riemannian manifold admitting a regular K-contact 3-structure is a $S^{s}(1)$ or RP^{s} -principal bundle over an almost quaternion manifold, where $S^{s}(1)$ denotes a sphere of curvature 1 and $RP^{s}=S^{s}(1)/\{\pm I\}$ (See Tanno [7]). If the contact 3-structure is Sasakian, then the manifold is Einstein space and the base space becomes a quaternion Kaehler manifold with positive scalar curvature.

On the other hand, every quaternion Kaehler manifold M admits a principal bundle P over it, whose structure group is SO(3) (Sakamoto [6]). In this note, we construct in P, 3-structure which is canonically associated with a given quaternion Kaehler structure. That is, we shall prove Theorem 2 in §4, which is corresponding to the theorem for a compact Hodge manifold, i. e.,

THEOREM 1. Let M be a compact Hodge manifold. Then there exists a circle bundle over M, which admits a normal contact metric structure (Hatakeyama [1]).

§2. Sasakian 3-structure.

Let (\tilde{M}, \tilde{g}) be a Riemannian manifold and ξ be a unit Killing vector. Define a tensor field of type (1.1) by

$$\phi = \tilde{V} \hat{\xi}$$
,

where \tilde{V} denotes the Riemannian connection. Then we call ξ a K-contact structure if ϕ satisfies

$$(2.1) \qquad \qquad \phi^2 = -I + \alpha \otimes \xi ,$$

 α being a 1-form defined by $\alpha(\tilde{X}) = \tilde{g}(\xi, \tilde{X})$. Next we denote by N the Nijenhuis tensor of ϕ and by Φ the 2-form defined by $\Phi(\tilde{X}, \tilde{Y}) = \tilde{g}(\phi\tilde{X}, \tilde{Y})$. If the tensor

$$S=N+2\mathbf{\Phi}\otimes\mathbf{\xi}$$

Received July 12, 1973.

vanishes, we call ξ a Sasakian structure.

Next we consider a set of mutually othogonal unit Killing vectors $\{\xi, \eta, \zeta\}$ satisfying

(2.2)
$$[\xi, \eta] = 2\zeta, \quad [\eta, \zeta] = 2\xi, \quad [\zeta, \xi] = 2\eta,$$

which is called a triple of Killing vectors. We put

$$\phi = \tilde{V}\xi, \qquad \psi = \tilde{V}\eta, \qquad \theta = \tilde{V}\zeta$$

and

 $\alpha(\tilde{X}) = \tilde{g}(\xi, \tilde{X}), \qquad \beta(\tilde{X}) = \tilde{g}(\eta, \tilde{X}), \qquad \gamma(\tilde{X}) = g(\zeta, \tilde{X}).$

If each of ξ , η and ζ is a K-contact structure and satisfies

(2.3)
$$\begin{aligned} \psi\phi = \theta + \alpha \otimes \eta, \quad \theta\psi = \phi + \beta \otimes \zeta, \quad \phi\theta = \psi + \gamma \otimes \xi, \\ \phi\psi = -\theta + \beta \otimes \xi, \quad \psi\theta = -\phi + \gamma \otimes \eta, \quad \theta\phi = -\psi + \alpha \otimes \zeta, \end{aligned}$$

then $\{\xi, \eta, \zeta\}$ is called a *K*-contact 3-structure. For a *K*-contact 3-structure, if each of ξ , η and ζ is a Sasakian structure, then $\{\xi, \eta, \zeta\}$ is called a Sasakian 3-structure.

§3. Quaternion Kaehler manifold (See Ishihara [3]).

Let M be a differentiable manifold of dimension n(=4m). Assume that there is a 3-dimensional vector bundle V consisting of tensors of type (1, 1) over M satisfying the following condition.

a) In any coordinate neighborhood U of M, there is a local base $\{F, G, H\}$ of V such that

(3.1)
$$F^2 = -I, \quad G^2 = -I, \quad H^2 = -I, \\ HG = -GH = F, \quad FH = -HF = G, \quad GF = -FG = H,$$

I denoting the identity tensor field of type (1.1) in M. Then the bundle V is called an *almost quaternion structure* in M and (M, V) an *almost quaternion manifold*.

In an almost quaternion manifold (M, V), we take two intersecting coordinate neighborhoods U, U', and local bases $\{F_U, G_U, H_U\}$, $\{F_{U'}, G_{U'}, H_{U'}\}$ satisfying (3.1) in U, U', respectively. Then they have relations in $U \cap U'$ as

(3.2)
$$F_{U'} = s_{11}F_U + s_{12}G_U + s_{13}H_U$$
$$G_{U'} = s_{21}F_U + s_{22}G_U + s_{23}H_U$$
$$H_{U'} = s_{31}F_U + s_{32}G_U + s_{33}H_U$$

where s_{ji} (j, i=1, 2, 3) form an element $s_{UU'}=(s_{ji})$ of the special orthogonal group SO(3) of dimension 3.

Let P be the associated principal bundle of V. That is, P is the bundle whose transition functions and structure group are the same as V, but whose

MARIKO KONISHI

fibre is SO(3) (=the real projective space RP^3 of dimension 3). Then the Lie algebra $\mathfrak{so}(3)$ of the structure group of P admits a base $\{e_1, e_2, e_3\}$ such that

$$e_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}, \quad e_{3} = \begin{pmatrix} 0 & -2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and hence they satisfy

(3.3)
$$[e_1, e_2] = 2e_3, \quad [e_2, e_3] = 2e_1, \quad [e_3, e_1] = 2e_2.$$

In any almost quaternion manifold (M, V), there is a Riemannian metric such that

$$g(F_UX, Y)+g(X, F_UY)=0$$
, $g(G_UX, Y)+g(X, G_UY)=0$,
 $g(H_UX, Y)+g(X, H_UY)=0$

hold for any local base $\{F_U, G_U, H_U\}$ and any vector fields X, Y. Assume that the Riemannian connection V of (M, g) satisfies for any local base $\{F_U, G_U, H_U\}$

where p_U , q_U and r_U are certain 1-forms defined in U. Then (M, g, V) is called a quaternion Kaehler manifold and (g, V) a quaternion Kaehler structure.

For each neighborhood U in a quaternion Kaehler manifold (M, V), we define a $\mathfrak{so}(3)$ -valued 1-form on U by

$$\omega_U = p_U e_1 + q_U e_2 + r_U e_3.$$

Then, by virtue of (3.2) and (3.3), in the intersection of neighborhoods U and U', we find

$$\boldsymbol{\omega}_{U'}(X) = ad(s_{UU'}^{-1}) \cdot \boldsymbol{\omega}_{U}(X) + (s_{UU'}) \cdot (X) \cdot s_{UU'}^{-1}$$

for every vector field X on P, where ad denotes the adjoint representation of SO(3) in $\mathfrak{so}(3)$, and $(s_{UU'})_*$ denotes the differential of the mapping $s_{UU'}: U \cap U' \to SO(3)$. Hence there exists a connection form ω on P such that

$$\tau^* \omega = \omega_U$$

where τ is a certain local cross-section of P over U (for detail, see p. 66 in Kobayashi-Nomizu [4]).

We denote by \mathcal{Q} the curvature form defined by the connection ω . Then \mathcal{Q} is the $\mathfrak{so}(3)$ -valued 2-form expressed by

$$\Omega(\tilde{X}, \tilde{Y}) = d\omega(\tilde{X}, \tilde{Y}) + \frac{1}{2} [\omega(\tilde{X}), \omega(\tilde{Y})]$$

196

where \hat{X} , \tilde{Y} are vector fields in P and [,] denotes the bracket operation in $\mathfrak{so}(3)$. Then we have

(3.6)
$$\tau^* \Omega = (dp_U + q_U \wedge r_U)e_1 + (dq_U + r_U \wedge p_U)e_2 + (dr_U + p_U \wedge q_U)e_3$$

for each cross section $\tau: U \rightarrow P$ and 1-forms p_U , q_U , r_U on U.

On the other hand, since any quaternion Kaehler manifold is an Einstein space (See Theorem 3.3 in Ishihara [3]), we have following relations

$$(3.7) dp_U + q_U \wedge r_U = cA_U, dq_U + r_U \wedge p_U = cB_U, dr + p_U \wedge q_U = cC_U,$$

where 4m(m+2)c is a constant equal to the scalar curvature of (M, g), and $A_U(X, Y) = g(F_UX, Y)$, $B_U(X, Y) = g(G_UX, Y)$, $C_U(X, Y) = g(H_UX, Y)$.

§4. Construction of Sasakian 3-structure.

Let (M, g) be a quaternion Kaehler manifold of dimension n=4m, and P be the associated RP^3 -principal bundle over M. We denote by $\omega = \sum_{i=1}^{3} \omega_i e_i$ the infinitesimal connection in P defined in the previous section. We define a pseudo-Riemannian metric g in P by

(4.1)
$$\tilde{g} = c\pi_*g + \sum_{i=1}^3 \omega_i \otimes \omega_i$$

where c is the constant appearing in (3.6). If the scalar curvature of M is positive, then g is a Riemannian metric and if negative, g is a pseudo-Riemannian metric of signature (3, n). In both cases, (M, g) is necessarily irreducible (Ishihara [3]).

We put

 $\omega_1 = \alpha$, $\omega_2 = \beta$, $\omega_3 = \gamma$,

then α , β and γ are 1-forms in *P*. Let ξ , η , ζ be fundamental vector fields corresponding to e_1 , e_2 , e_3 , respectively. Then we have from (3.3)

$$\begin{bmatrix} \xi, \eta \end{bmatrix} = 2\zeta, \qquad [\eta, \zeta] = 2\xi, \qquad [\zeta, \xi] = 2\eta,$$

$$\alpha(\xi) = 1, \qquad \alpha(\eta) = 0, \qquad \alpha(\zeta) = 0,$$

$$\beta(\xi) = 0, \qquad \beta(\eta) = 1, \qquad \beta(\zeta) = 0,$$

$$\gamma(\xi) = 0, \qquad \gamma(\eta) = 0, \qquad \gamma(\zeta) = 1.$$

Hence we have

PROPOSITION 1. In the associated principal bundle P over a quaternion Kaehler manifold, there exists a triple of Killing vectors $\{\xi, \eta, \zeta\}$ with respect to

and

MARIKO KONISHI

the metric defined by (4.1), i.e. ξ , η and ζ are mutually orthogonal unit Killing vectors satisfying

(4.2)
$$[\xi, \eta] = 2\zeta, \quad [\eta, \zeta] = 2\xi, \quad [\zeta, \xi] = 2\eta,$$

Proof. It remains to prove that ξ , η , ζ are all Killing vectors with respect to \tilde{g} in (4.1). This is clear from the fact that $\sum_{i=1}^{3} \omega_i \otimes \omega_i$ is invariant under the action of SO(3).

PROPOSITION 2. The triple of Killing vectors $\{\xi, \eta, \zeta\}$ defined in proposition 1 is a K-contact 3-structure, if c > 0.

Proof. We define

(4.3)
$$\phi = \tilde{V}\xi, \quad \psi = \tilde{V}\eta, \quad \theta = \tilde{V}\zeta,$$

 $ilde{\mathcal{V}}$ being Riemannian connection formed with $ilde{g}$. Then we have

(4.3)
$$\begin{aligned} \phi \xi = 0, \quad \psi \eta = 0, \quad \theta \zeta = 0, \\ \theta \eta = -\psi \zeta = \xi, \quad \phi \zeta = -\theta \xi = \eta, \quad \psi \xi = -\phi \eta = \zeta \end{aligned}$$

since $\hat{\xi}$, η and ζ are mutually orthogonal unit vectors. Denoting by $T_{\tilde{p}}{}^{r}(P)$ the the tangent space of a fibre at $\tilde{p} \in P$ and by $T_{\tilde{p}}{}^{H}(P)$ its orthogonal complemented space in $T_{\tilde{p}}(P)$, we see from (4.4) that $T_{\tilde{p}}{}^{r}(P)$ and $T_{\tilde{p}}{}^{H}(P)$ are invariant under the actions of the linear endomorphisms ϕ , ψ acd θ of $T_{\tilde{p}}(P)$. Hence we can put

$$egin{aligned} \phi = \phi^{H} + \gamma \otimes \eta - eta \otimes \zeta \,, & \phi = \phi^{H} + lpha \otimes \zeta - \gamma \otimes \xi \,, \ & heta = \theta^{H} + eta \otimes \xi - lpha \otimes \eta \,, \end{aligned}$$

where ϕ^{H} , ψ^{H} and θ^{H} denote the restricted actions of ϕ , ψ and θ on $T_{\tilde{p}}^{H}(P)$ for each \tilde{p} .

On the other hand, taking account of $(3.5)\sim(3.7)$, for each neighborhood U in M and a local cross section $\tau: U \rightarrow P$, we have

$$(d\alpha - \beta \wedge \gamma)(\tau_* X, \tau_* Y) = cA_U(X, Y),$$

$$(d\beta - \gamma \wedge \alpha)(\tau_* X, \tau_* Y) = cB_U(X, Y),$$

$$(d\gamma - \alpha \wedge \beta)(\tau_* X, \tau_* Y) = cC_U(X, Y),$$

 τ_* denoting the differential of τ . Since the curvature form is horizontal, we have

$$\begin{split} (\phi - \gamma \otimes \eta + \beta \otimes \zeta)(\tau_* X) &= (\tau_* F_U X)^H, \\ (\phi - \alpha \otimes \zeta + \gamma \otimes \xi)(\tau_* X) &= (\tau_* G_U X)^H, \\ (\theta - \beta \otimes \xi + \alpha \otimes \eta)(\tau_* X) &= (\tau_* H_U X)^H, \end{split}$$

i. e.

MANIFOLDS WITH SASAKIAN 3-STRUCTURE

$$\begin{split} \phi(\tau_*X) &= (\tau_*F_UX)^H + \gamma(\tau_*X)\eta - \beta(\tau_*X)\zeta ,\\ \phi(\tau_*X) &= (\tau_*G_UX)^H + \alpha(\tau_*X)\zeta - \gamma(\tau_*X)\xi ,\\ \theta(\tau_*X) &= (\tau_*H_UX)^H + \beta(\tau_*X)\xi - \alpha(\tau_*X)\eta , \end{split}$$

where $(\tau_*F_UX)^H$ denotes the projection of τ_*F_UX to $T_{\tau(p)}{}^H(P)$. Next we show that ϕ , ϕ and θ satisfy (2.1) and (2.3). From (4.4) and (4.5) we have

$$\begin{split} \phi^{2}(\tau_{*}X) &= \phi((\tau_{*}F_{U}X)^{H} + \gamma(\tau_{*}X)\eta - \beta(\tau_{*}X)\zeta) \\ &= (\tau_{*}F_{U}^{2}X)^{H} - \gamma(\tau_{*}X)\zeta - \beta(\tau_{*}X)\eta \\ &= -(\tau_{*}X)^{H} - \beta(\tau_{*}X)\eta - \gamma(\tau_{*}X)\zeta \\ &= -\tau_{*}X + \alpha(\tau_{*}X)\xi \,. \end{split}$$

and

$$\begin{split} \phi(\psi(\tau_*X)) &= \phi((\tau_*G_UX)^H + \alpha(\tau_*X)\zeta - \gamma(\tau_*X)\xi) \\ &= (\tau_*F_UG_UX)^H + \alpha(\tau_*X)\eta \\ &= -(\tau_*H_UX)^H + \alpha(\tau_*X)\eta \\ &= -\theta(\tau_*X) + \beta(\tau_*X)\xi , \\ \psi(\phi(\tau_*X)) &= \psi((\tau_*F_UX)^H + \gamma(\tau_*X)\eta - \beta(\tau_*X)\zeta) \\ &= (\tau_*G_UF_UX)^H + \beta(\tau_*X)\xi \\ &= (\tau_*H_UX)^H + \beta(\tau_*X)\xi \\ &= \theta(\tau_*X) + \alpha(\tau_*X)\eta \end{split}$$

because of (3.1). Similarly we obtain the other relations in (2.3). That is, $\{\xi, \eta, \zeta\}$ defines a K-contact 3-structure.

Going through the process of having induced quaternion (Kaehler) structure from regular K-contact (Sasakian) 3-structure (cf. Ishihara [2] and Konishi [5]), our construction of K-contact 3-structure $\{\xi, \eta, \zeta\}$ is quite natural. That is to say, we have obtained a fibred Riemannian space (P, \tilde{g}) with K-contact 3-structure $\{\xi, \eta, \zeta\}$ which induces the given quaternion Kaehler structure in the base space. As shown in [5], such a K-contact 3-structure is necessarily a Sasakian 3-structure. Thus we have

THEOREM 2. Let M be a quaternion Kaehler manifold of dimension n=4m. Then there exists a canonically associated RP^{3} -principal bundle P over M. If the scalar curvature of M is positive, P admits a Sasakian 3-structure and if negative, the induced metric by (4.1) has signature (3, n).

199

MARIKO KONISHI

BIBLIOGRAPHY

- Y. HATAKEYAMA, Some notes on differentiable manifolds with almost contact structures, Tôhoku Math. J., 15 (1963), 176-181.
- [2] S. ISHIHARA, Quaternion Kaehler manifolds and fibred Riemannian spaces with Sasakian 3-structure, Kodai Math. Sem. Rep., 25 (1973), 321-329.
- [3] S. ISHIHARA, Quaternion Kaehler manifold, J. Diff. Geom., 9 (1974), 483-500.
- [4] S. KOBAYASHI AND K. NOMIZU, Foundations of differential Geometry, vol. I, Interscience tract No. 15, (1963).
- [5] M. KONISHI, Note on regular K-contact structures, Ochanomizu Nat. Sci. Rep., 24 (1973), 1-5.
- [6] K. SAKAMOTO, On the topology of quaternionic Kaehler manifolds, Tôhoku Math. J., 26 (1974), 389-406.
- [.7] S. TANNO, Killing vectors on contact Riemannian manifolds and fiberings related to the Hopf fibrations, Tôhoku Math. J., 23 (1971), 313-334.

DEPARTMENT OF MATHEMATICS, Tokyo Institute of Technology.