ON MANIFOLDS WITH SASAKIAN 3-STRUCTURE OVER QUATERNION KAEHLER MANIFOLDS

Dedicated to Professor Yūsaku Komatu on his sixtieth birthday

By Mariko Konishi

§ 1. Introduction. Any complete Riemannian manifold admitting a regular K-contact 3 -structure is a $S^{3}(1)$ or $R P^{3}$-principal bundle over an almost quaternion manifold, where $S^{3}(1)$ denotes a sphere of curvature 1 and $R P^{3}=S^{3}(1) /\{ \pm I\}$ (See Tanno [7]). If the contact 3 -structure is Sasakian, then the manifold is Einstein space and the base space becomes a quaternion Kaehler manifold with positive scalar curvature.

On the other hand, every quaternion Kaehler manifold M admits a principal bundle P over it, whose structure group is $S O(3)$ (Sakamoto [6]). In this note, we construct in P, 3 -structure which is canonically associated with a given quaternion Kaehler structure. That is, we shall prove Theorem 2 in $\S 4$, which is corresponding to the theorem for a compact Hodge manifold, i. e.,

Theorem 1. Let M be a compact Hodge manifold. Then there exists a circle bundle over M, which admits a normal contact metruc structure (Hatakeyama [1]).

§ 2. Sasakian 3-structure.

Let (\tilde{M}, \tilde{g}) be a Riemannian manifold and ξ be a unit Killing vector. Define a tensor field of type (1.1) by

$$
\phi=\tilde{\nabla} \xi,
$$

where \tilde{V} denotes the Riemannian connection. Then we call ξ a K-contact structure if ϕ satisfies

$$
\begin{equation*}
\phi^{2}=-I+\alpha \otimes \xi, \tag{2.1}
\end{equation*}
$$

α being a 1 -form defined by $\alpha(\tilde{X})=\tilde{g}(\xi, \tilde{X})$. Next we denote by N the Nijenhuis tensor of ϕ and by Φ the 2 -form defined by $\Phi(\tilde{X}, \tilde{Y})=\tilde{g}(\phi \tilde{X}, \tilde{Y})$. If the tensor

$$
S=N+2 \Phi \otimes \xi
$$

Received July 12, 1973.
vanishes, we call ξ a Sasakian structure.
Next we consider a set of mutually othogonal unit Killing vectors $\{\xi, \eta, \zeta\}$ satisfying

$$
\begin{equation*}
[\xi, \eta]=2 \zeta, \quad[\eta, \zeta]=2 \xi, \quad[\zeta, \xi]=2 \eta, \tag{2.2}
\end{equation*}
$$

which is called a triple of Killing vectors. We put

$$
\phi=\tilde{\nabla} \xi, \quad \psi=\tilde{\nabla} \eta, \quad \theta=\tilde{\nabla} \zeta
$$

and

$$
\alpha(\tilde{X})=\tilde{g}(\xi, \tilde{X}), \quad \beta(\tilde{X})=\tilde{g}(\eta, \tilde{X}), \quad \gamma(\tilde{X})=g(\zeta, \tilde{X}) .
$$

If each of ξ, η and ζ is a K-contact structure and satisfies

$$
\begin{align*}
\phi \phi=\theta+\alpha \otimes \eta, & \theta \psi=\phi+\beta \otimes \zeta, & \phi \theta=\psi+\gamma \otimes \xi \\
\phi \psi=-\theta+\beta \otimes \xi, & \psi \theta=-\phi+\gamma \otimes \eta, & \theta \phi=-\psi+\alpha \otimes \zeta \tag{2.3}
\end{align*}
$$

then $\{\xi, \eta, \zeta\}$ is called a K-contact 3 -structure. For a K-contact 3 -structure, if each of ξ, η and ζ is a Sasakian structure, then $\{\xi, \eta, \zeta\}$ is called a Sasakıan 3 -structure.
§ 3. Quaternion Kaehler manifold (See Ishihara [3]).
Let M be a differentiable manifold of dimension $n(=4 m)$. Assume that there is a 3 -dimensional vector bundle V consisting of tensors of type $(1,1)$ over M satisfying the following condition.
a) In any coordinate neighborhood U of M, there is a local base $\{F, G, H\}$ of V such that

$$
\begin{gather*}
F^{2}=-I, \quad G^{2}=-I, \quad H^{2}=-I, \\
H G=-G H=F, \quad F H=-H F=G, \quad G F=-F G=H, \tag{3.1}
\end{gather*}
$$

I denoting the identity tensor field of type (1.1) in M. Then the bundle V is called an almost quaternion structure in M and (M, V) an almost quaternion manufold.

In an almost quaternion manifold (M, V), we take two intersecting coordinate neighborhoods U, U^{\prime}, and local bases $\left\{F_{U}, G_{U}, H_{U}\right\},\left\{F_{U^{\prime}}, G_{U^{\prime}}, H_{U^{\prime}}\right\}$ satisfying (3.1) in U, U^{\prime}, respectively. Then they have relations in $U \cap U^{\prime}$ as

$$
\begin{align*}
& F_{U^{\prime}}=s_{11} F_{U}+s_{12} G_{U}+s_{13} H_{U} \\
& G_{U^{\prime}}=s_{21} F_{U}+s_{22} G_{U}+s_{23} H_{U} \tag{3.2}\\
& H_{U^{\prime}}=s_{31} F_{U}+s_{32} G_{U}+s_{33} H_{U}
\end{align*}
$$

where $s_{j i}(j, i=1,2,3)$ form an element $s_{U U^{\prime}}=\left(s_{j i}\right)$ of the special orthogonal group $S O(3)$ of dimension 3 .

Let P be the associated principal bundle of V. That is, P is the bundle whose transition functions and structure group are the same as V, but whose
fibre is $S O(3)$ (=the real projective space $R P^{3}$ of dimension 3). Then the Lie algebra $\mathrm{Sol}_{0}(3)$ of the structure group of P admits a base $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
e_{1}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 2 \\
0 & -2 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{rrr}
0 & 0 & -2 \\
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{rrr}
0 & -2 & 0 \\
2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and hence they satisfy

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=2 e_{3}, \quad\left[e_{2}, e_{3}\right]=2 e_{1}, \quad\left[e_{3}, e_{1}\right]=2 e_{2} . \tag{3.3}
\end{equation*}
$$

In any almost quaternion manifold (M, V), there is a Riemannian metric such that

$$
\begin{gathered}
g\left(F_{U} X, Y\right)+g\left(X, F_{U} Y\right)=0, \quad g\left(G_{U} X, Y\right)+g\left(X, G_{U} Y\right)=0, \\
g\left(H_{U} X, Y\right)+g\left(X, H_{U} Y\right)=0
\end{gathered}
$$

hold for any local base $\left\{F_{U}, G_{U}, H_{U}\right\}$ and any vector fields X, Y. Assume that the Riemannian connection $\bar{\nabla}$ of (M, g) satisfies for any local base $\left\{F_{U}, G_{U}, H_{U}\right\}$

$$
\begin{align*}
& \nabla_{X} F_{U}=-2 r_{U}(X) G_{U}-2 q_{U}(X) H_{U} \\
& \nabla_{X} G_{U}=2 r_{U}(X) F_{U}+2 p_{U}(X) H_{U} \tag{3.4}\\
& \nabla_{X} H_{U}=2 q_{U}(X) F_{U}-2 p_{U}(X) G_{U}
\end{align*}
$$

where p_{U}, q_{U} and r_{U} are certain 1-forms defined in U. Then (M, g, V) is called a quaternion Kaehler manifold and (g, V) a quaternıon Kaehler structure.

For each neighborhood U in a quaternion Kaehler manifold (M, V), we define a ${ }^{5} 0(3)$-valued 1 -form on U by

$$
\omega_{U}=p_{U} e_{1}+q_{U} e_{2}+r_{U} e_{3} .
$$

Then, by virtue of (3.2) and (3.3), in the intersection of neighborhoods U and U^{\prime}, we find

$$
\omega_{U}(X)=a d\left(s_{U U^{\prime}}{ }^{-1}\right) \cdot \omega_{U}(X)+\left(s_{U U}\right)_{*}(X) \cdot s_{U U^{\prime}}{ }^{-1}
$$

for every vector field X on P, where $a d$ denotes the adjoint representation of $S O(3)$ in $30(3)$, and $\left(s_{U U^{\prime}}\right)_{*}$ denotes the differential of the mapping $s_{U U^{\prime}}: U \cap U^{\prime}$ $\rightarrow S O$ (3). Hence there exists a connection form ω on P such that

$$
\begin{equation*}
\tau^{*} \omega=\omega_{U} \tag{3.5}
\end{equation*}
$$

where τ is a certain local cross-section of P over U (for detail, see p. 66 in Kobayashi-Nomizu [4]).

We denote by Ω the curvature form defined by the connection ω. Then Ω is the $\bar{\xi}_{0}(3)$-valued 2 -form expressed by

$$
\Omega(\tilde{X}, \tilde{Y})=d \omega(\tilde{X}, \tilde{Y})+\frac{1}{2}[\omega(\tilde{X}), \omega(\tilde{Y})]
$$

where \hat{X}, \tilde{Y} are vector fields in P and [,] denotes the bracket operation in $\mathfrak{g n o}_{0}(3)$. Then we have

$$
\begin{align*}
\tau^{*} \Omega=\left(d p_{U}+q_{U} \wedge r_{U}\right) e_{1} & +\left(d q_{U}+r_{U} \wedge p_{U}\right) e_{2} \tag{3.6}\\
& +\left(d r_{U}+p_{U} \wedge q_{U}\right) e_{3}
\end{align*}
$$

for each cross section $\tau: U \rightarrow P$ and 1 -forms p_{U}, q_{U}, r_{U} on U.
On the other hand, since any quaternion Kaehler manifold is an Einstein space (See Theorem 3.3 in Ishihara [3]), we have following relations

$$
\begin{gather*}
d p_{U}+q_{U} \wedge r_{U}=c A_{U}, \quad d q_{U}+r_{U} \wedge p_{U}=c B_{U}, \tag{3.7}\\
d r+p_{U} \wedge q_{U}=c C_{U},
\end{gather*}
$$

where $4 m(m+2) c$ is a constant equal to the scalar curvature of (M, g), and $A_{U}(X, Y)=g\left(F_{U} X, Y\right), B_{U}(X, Y)=g\left(G_{U} X, Y\right), C_{U}(X, Y)=g\left(H_{U} X, Y\right)$.

§4. Construction of Sasakian 3 -structure.

Let (M, g) be a quaternion Kaehler manifold of dimension $n=4 m$, and P be the associated $R P^{3}$-principal bundle over M. We denote by $\omega=\sum_{\imath=1}^{3} \omega_{i} e_{\imath}$ the infinitesimal connection in P defined in the previous section. We define a pseudoRiemannian metric g in P by

$$
\begin{equation*}
\tilde{g}=c \pi_{*} g+\sum_{i=1}^{3} \omega_{i} \otimes \omega_{i} \tag{4.1}
\end{equation*}
$$

where c is the constant appearing in (3.6). If the scalar curvature of M is positive, then g is a Riemannian metric and if negative, g is a pseudo-Riemannian metric of signature ($3, n$). In both cases, (M, g) is necessarily irreducible (Ishihara [3]).

We put

$$
\omega_{1}=\alpha, \quad \omega_{2}=\beta, \quad \omega_{3}=\gamma,
$$

then α, β and γ are 1 -forms in P. Let ξ, η, ζ be fundamental vector fields corresponding to e_{1}, e_{2}, e_{3}, respectively. Then we have from (3.3)

$$
[\xi, \eta]=2 \zeta, \quad[\eta, \zeta]=2 \xi, \quad[\zeta, \xi]=2 \eta,
$$

and

$$
\begin{array}{lll}
\alpha(\xi)=1, & \alpha(\eta)=0, & \alpha(\zeta)=0, \\
\beta(\xi)=0, & \beta(\eta)=1, & \beta(\zeta)=0, \\
\gamma(\xi)=0, & \gamma(\eta)=0, & \gamma(\zeta)=1 .
\end{array}
$$

Hence we have
Proposition 1. In the associated principal bundle P over a quaternion Kaehler manifold, there exists a triple of Killing vectors $\{\xi, \eta, \zeta\}$ with respect to
the metric defined by (4.1), i.e. ξ, η and ζ are mutually orthogonal unit Killing vectors satisfying

$$
\begin{equation*}
[\xi, \eta]=2 \zeta, \quad[\eta, \zeta]=2 \xi, \quad[\zeta, \xi]=2 \eta, \tag{4.2}
\end{equation*}
$$

Proof. It remains to prove that ξ, η, ζ are all Killing vectors with respect to \tilde{g} in (4.1). This is clear from the fact that $\sum_{i=1}^{3} \omega_{\imath} \otimes \omega_{i}$ is invariant under the action of $S O(3)$.

Proposition 2. The triple of Killing vectors $\{\xi, \eta, \zeta\}$ defined in proposition 1 is a K-contact 3 -structure, if $c>0$.

Proof. We define

$$
\begin{equation*}
\phi=\tilde{\nabla} \xi, \quad \phi=\tilde{\nabla} \eta, \quad \theta=\tilde{\nabla} \zeta, \tag{4.3}
\end{equation*}
$$

$\tilde{\nabla}$ being Riemannian connection formed with \tilde{g}. Then we have

$$
\begin{gather*}
\phi \xi=0, \quad \phi \eta=0, \quad \theta \zeta=0 \tag{4.3}\\
\theta \eta=-\phi \zeta=\xi, \quad \phi \zeta=-\theta \xi=\eta, \quad \phi \xi=-\phi \eta=\zeta,
\end{gather*}
$$

since ξ, η and ζ are mutually orthogonal unit vectors. Denoting by $T_{\tilde{p}}{ }^{\eta}(P)$ the the tangent space of a fibre at $\tilde{p} \in P$ and by $T_{\tilde{p}}{ }^{H}(P)$ its orthogonal complemented space in $T_{\tilde{p}}(P)$, we see from (4.4) that $T_{\tilde{p}}{ }^{V}(P)$ and $T_{\tilde{p}}{ }^{H}(P)$ are invariant under the actions of the linear endomorphisms ϕ, ψ acd θ of $T_{\tilde{p}}(P)$. Hence we can put

$$
\begin{gathered}
\phi=\phi^{H}+\gamma \otimes \eta-\beta \otimes \zeta, \quad \psi=\phi^{H}+\alpha \otimes \zeta-r \otimes \xi, \\
\theta=\theta^{H}+\beta \otimes \xi-\alpha \otimes \eta,
\end{gathered}
$$

where ϕ^{H}, ψ^{H} and θ^{H} denote the restricted actions of ϕ, ψ and θ on $T_{\tilde{p}^{H}}{ }^{H}(P)$ for each \tilde{p}.

On the other hand, taking account of (3.5)~(3.7), for each neighborhood U in M and a local cross section $\tau: U \rightarrow P$, we have

$$
\begin{aligned}
& (d \alpha-\beta \wedge \gamma)\left(\tau_{*} X, \tau_{*} Y\right)=c A_{U}(X, Y), \\
& (d \beta-\gamma \wedge \alpha)\left(\tau_{*} X, \tau_{*} Y\right)=c B_{U}(X, Y), \\
& (d \gamma-\alpha \wedge \beta)\left(\tau_{*} X, \tau_{*} Y\right)=c C_{U}(X, Y),
\end{aligned}
$$

τ_{*} denoting the differential of τ. Since the curvature form is horizontal, we have

$$
\begin{aligned}
& (\phi-\gamma \otimes \eta+\beta \otimes \zeta)\left(\tau_{*} X\right)=\left(\tau_{*} F_{U} X\right)^{H}, \\
& (\psi-\alpha \otimes \zeta+\gamma \otimes \xi)\left(\tau_{*} X\right)=\left(\tau_{*} G_{U} X\right)^{H}, \\
& (\theta-\beta \otimes \xi+\alpha \otimes \eta)\left(\tau_{*} X\right)=\left(\tau_{*} H_{U} X\right)^{H},
\end{aligned}
$$

i. e.

$$
\begin{aligned}
& \phi\left(\tau_{*} X\right)=\left(\tau_{*} F_{U} X\right)^{H}+\gamma\left(\tau_{*} X\right) \eta-\beta\left(\tau_{*} X\right) \zeta, \\
& \phi\left(\tau_{*} X\right)=\left(\tau_{*} G_{U} X\right)^{H}+\alpha\left(\tau_{*} X\right) \zeta-\gamma\left(\tau_{*} X\right) \xi, \\
& \theta\left(\tau_{*} X\right)=\left(\tau_{*} H_{U} X\right)^{H}+\beta\left(\tau_{*} X\right) \xi-\alpha\left(\tau_{*} X\right) \eta,
\end{aligned}
$$

where $\left(\tau_{*} F_{U} X\right)^{H}$ denotes the projection of $\tau_{*} F_{U} X$ to $T_{\tau(p)}{ }^{H}(P)$. Next we show that ϕ, ψ and θ satisfy (2.1) and (2.3). From (4.4) and (4.5) we have

$$
\begin{aligned}
\phi^{2}\left(\tau_{*} X\right) & =\phi\left(\left(\tau_{*} F_{U} X\right)^{H}+\gamma\left(\tau_{*} X\right) \eta-\beta\left(\tau_{*} X\right) \zeta\right) \\
& =\left(\tau_{*} F_{U}{ }^{2} X\right)^{H}-\gamma\left(\tau_{*} X\right) \zeta-\beta\left(\tau_{*} X\right) \eta \\
& =-\left(\tau_{*} X\right)^{H}-\beta\left(\tau_{*} X\right) \eta-\gamma\left(\tau_{*} X\right) \zeta \\
& =-\tau_{*} X+\alpha\left(\tau_{*} X\right) \xi .
\end{aligned}
$$

and

$$
\begin{aligned}
\phi\left(\phi\left(\tau_{*} X\right)\right) & =\phi\left(\left(\tau_{*} G_{U} X\right)^{H}+\alpha\left(\tau_{*} X\right) \zeta-\gamma\left(\tau_{*} X\right) \xi\right) \\
& =\left(\tau_{*} F_{U} G_{U} X\right)^{H}+\alpha\left(\tau_{*} X\right) \eta \\
& =-\left(\tau_{*} H_{U} X\right)^{H}+\alpha\left(\tau_{*} X\right) \eta \\
& =-\theta\left(\tau_{*} X\right)+\beta\left(\tau_{*} X\right) \xi, \\
\phi\left(\phi\left(\tau_{*} X\right)\right) & =\phi\left(\left(\tau_{*} F_{U} X\right)^{H}+\gamma\left(\tau_{*} X\right) \eta-\beta\left(\tau_{*} X\right) \zeta\right) \\
& =\left(\tau_{*} G_{U} F_{U} X\right)^{H}+\beta\left(\tau_{*} X\right) \xi \\
& =\left(\tau_{*} H_{U} X\right)^{H}+\beta\left(\tau_{*} X\right) \xi \\
& =\theta\left(\tau_{*} X\right)+\alpha\left(\tau_{*} X\right) \eta
\end{aligned}
$$

because of (3.1). Similarly we obtain the other relations in (2.3). That is, $\{\xi, \eta$, $\zeta\}$ defines a K-contact 3 -structure.

Going through the process of having induced quaternion (Kaehler) structure from regular K-contact (Sasakian) 3 -structure (cf. Ishihara [2] and Konishi [5]), our construction of K-contact 3 -structure $\{\xi, \eta, \zeta\}$ is quite natural. That is to say, we have obtained a fibred Riemannian space (P, \tilde{g}) with K-contact 3 -structure $\{\xi, \eta, \zeta\}$ which induces the given quaternion Kaehler structure in the base space. As shown in [5], such a K-contact 3 -structure is necessarily a Sasakian 3 -structure. Thus we have

Theorem 2. Let M be a quaternion Kaehler manıfold of dimension $n=4 m$. Then there exists a canonically associated $R P^{3}$-principal bundle P over M. If the scalar curvature of M is positive, P admits a Sasakıan 3-structure and if negative, the induced metric by (4.1) has signature ($3, n$).

Bibliography

[1] Y. Hatakeyama, Some notes on differentiable manıfolds with almost contact structures, Tôhoku Math. J., 15 (1963), 176-181.
[2] S. Ishihara, Quaternion Kaehler manifolds and fibred Riemannian spaces with Sasakian 3-structure, Kōdai Math. Sem. Rep., 25 (1973), 321-329.
[3] S. Ishihara, Quaternion Kaehler manifold, J. Diff. Geom., 9 (1974), 483-500.
[4] S. Kobayashi and K. Nomizu, Foundations of differential Geometry, vol. I, Interscience tract No. 15, (1963).
[:5:] M. Konishi, Note on regular K-contact structures, Ochanomizu Nat. Sci. Rep., 24 (1973), 1-5.
[6] K. Sakamoto, On the topology of quaternionic Kaehler manifolds, Tôhoku Math. J., 26 (1974), 389-406.
[.7] S. Tanno, Killing vectors on contact Riemannian manifolds and fiberings related to the Hopf fibrations, Tôhoku Math. J., 23 (1971), 313-334.

Department of Mathematics,
Tokyo Institute of Technology.

