
S. jttTOTUMATU
KODAI MATH. SEM. REP.
26 (1975), 176-186

COMPLEX ARITHMETIC THROUGH CORDIC

(Dedicated to Prof. Y. Komatu for his 60th birthday)

BY SIN HITOTUMATU

Abstract

A unified algorithm for elementary functions due to coordinate transfor-
mations, named CORDIC has been first introduced by Voider [1] and later
extensively investigated by Walther [2], Here the author mentions several
practical remarks for the application of the algorithm to complex arithmetic
including square root.

§ 1. The principle of CORDIC.

In order that the present paper may be self-contained, we first briefly sum-
marize the principle of the algorithm.

1.1. Generalized polar coordinates.

Let (x,y) be the planar orthogonal coordinates for a point P and introduce
a generalized polar coordinate system (R, A) by

f R=(x2+nιy2)1/2 f x=R cos (m1/2A)
(1)

I A=m~1/2 arctan (m1/2y/x), I y=Rm~1/2 sin (m1/2A).

Here m is a fixed constant whose value is one of 1,-1 or 0. We should impose
some interpretations when m=0 and m= — 1; precisely, we put

A=y/x for ra—0; ^4=arctanh(j>/x) for m— = 1.

For simplicity, we always assume x^O, and further x^\y\^0 for m— — 1.
It is easily seen that A=S/2R2, where S is the area of the domain surrounded
by x axis, the radius vector OP and the curve of constant radius R passing
through P.

Received June 4, 1973.

176

COMPLEX ARITHMETIC THROUGH CORDIC

y

177

Fig. 1.

1.2. Fundamental transformations.

Take a linear transformation from a point Pj=(Xj,yj) to Pj+1=(Xj+1,yj+1)
given by

(2)

where m is the parameter of the coordinate system (1) and δj is an arbitrary
constant. The transformation (2) gives

in the generalized polar coordinate system (1), where

aj=^m~1/2 arctan (m1/2δj)

Starting from Po^C Xo, yo), we iterate the transformations (2) under suitable
sequence of constants δ0, δlf •••, until we arrive at Pn—(Xn, yn) Then we have

Λn=A0-a

R — R v

where

(3)

Now we introduce third variable z and transform it as

n-l n-1

.7=0 }=0

178 SIN HITOTUMATU

(4) zJ+i=Zj+(Xj

simultaneously with (2). Then the final values are given by the followings

xn=Klx0 cos (mma)+yom-1/2 sin (m1/2α)]

yn=Kly<) cos (m1/2a)—x0m-1/2 sin (m1/2α)]

zn=z0+a

where a and K are given by (3).

1.3. The final values.

Let us iterate the above transformations (2) and (4) under suitable sequence
of constants {δj} in the following two w a y s :

Case I : A or y is forced to zero.
Case I I : z is forced to zero.

If this has been done after n steps, the final results will have the values as
in the following table 1, where

Noting that

(5) V(t+c)2-(t-c)2 =

exp ί=cosh ί+sinh t, -ψ- log — = a r c t a n h ._ ,

the table contains all elementary standard functions such as square root, log, exp,
sin, cos and arctan as well as multiplication and division. It is not difficult to
see that the iteration of case I for m=0 is essentially the non-restorting division
algorithm.

Table 1

Case

I

I

I

II

TT

m

1

0

- 1

1

0

0

0

0 Zo+arctanh (yo/xo)

Ci(*o cos zo—yo sin z0) Kx{y0 cos z o + x0 sin z0) 0

x0 J>o+*o2Ό 0

II —1 K- L(XQ cosh zo+yo sinh z0) K.x(y0 c o s h ^ 0 + ^ o S i n h z0) 0

COMPLEX ARITHMETIC THROUGH CORDIC 179

1.4. Actual procedure of CORDIC.

Since most of the recent computers use binary system, it is most convenient
to choose δj—±2~J (or ± 2 " 7" 1), j=0,1, 2, ••• up to necessary number of bits N.
When m= — l, slight modification is necessary for the convergence (see §3.1.).
We write

£j=z2->, βj=m-1/2 arctan (m1/22"0

dj=±.6j, aj = ±βj (with same signatures).

The constants β3 may be precalculated. For convenience, we give the values of
arctan 2~J in decimal and in octal form in the appendix of the present paperυ.
Now, we modify the transformations (2) and (4) in the following form:

for dj>0 for 3,<0

(6+) I yj+i=yj-2->x, (6.)

In Case I, we select (6+) if y ^ O , and (β_) otherwise; in Case II, we select (6+)
if Zj<0, and (6_) otherwise.

It is remarkable that the transformation (6+) or (β_) is possible only by
addition, subtraction, shifting and read out of constants, but needs no multi-
plication. Thus, the algorithm is quite suitable for micro-computers without
hardwares for multiplication and division, or for multiple precision arithmetic.

We also remark that the constants β3 are necessary only for j up to N/3t

where N is the necessary number of bits, since

may be replaced by εJf if ε/ and higher terms are negligible.

§2. CORDIC for m—\ and its application to complex arithmetic.

2.1. General remarks.

Using CORDIC for m = l , we can easily change orthogonal coordinates into
polar coordinates and vice versa.

As Walther [2] has indicated, the convergence condition of CORDIC is given

by

(7) βj- Σ 1 βk^βn-i O = 0 , l , 2 , . 0 .

1) The author is much grateful for Mr. S. Yamashita (Fujitsu Co.) who has kindly
computed the necessary constants.

180 SIN HITOTUMATU

When m=l, it is easy to verify (7) for /3; =arctan 2~\ since arctan x is convex
in x^O. Thus the procedure always converges, when the initial argument z0 is
in absolute value less than

Σ arctan 2" 7=1.74 ••• >π/2,
.7=0

which surely covers the closed right half plane. According this fact, it will be
more convenient to normalize the argument of a complex number p+iq in the
inverval [—ττ/2, +π/2], and to permit negative modulus; i.e., when p<0, we
denote in the polar form

p+iq=reiθ, r=-VF+?~<0, -π/2<θ<π/2.

2.2. Multiplication.

The product of two complex numbers a+ib and />+z# is obtained by the
following algorithm.

Algorithm 1. 1. Transformation into polar coordinates.

(i) Take initial values as

*o=l0l, 3Ό=± Q (+ if ί^O, and - if p<ΰ), zo=0.

(i i) Operate CORDIC of Case I for m= + l. Then we have

x=Kx Vί2+<72, y=0, >ε=arctan (<?/ί) (principal value).

(iii) Replace x by — x if
(iv) In order to modify the absolute value, we multiply to x a constant

ifΓ2=0.3687561270769...

(v) We shall refer by r and θ the final values of x and z respectively.

2. Rotation.

(vi) Put

o , y o , zo=θ.

(vii) Operate CORDIC of Case II for m= + l. Then the final values give

x=K1Kγ2KlΛ/f+f'(a cos 0-6 sin θ)=ap-bq
(8)

y=K1Kγ2K1 Vp2+q2 (a sin 0+£ cos θ)=aq+bp

which are the real and the imaginary parts of the product.
Usual method due to the right-most hands of (8) needs four real multipli-

cations to obtain (a+ib)X(p+iq). By the Algorithm 1, we need 1 multiplication
and 1 CORDIC operation in the first step, and 2 multiplications and 1 CORDIC

COMPLEX ARITHMETIC THROUGH CORDIC 181

operation in the second step. Therefore the algorithm is less efficient than usual
method for single multiplication, even when the real multiplication is .computed
by CORDIC for m=0. However, this may be useful at least in the following
cases. First is the case when the multiplier p+iq is previously given by its
polar form, e. g. as in the complex Fourier transform. Second is the case when
we repeat multiplications with same multiplier as in the Horner's scheme for the
computation of a polynomial.

2.3. Division.

To obtain the quotient (a+ib)/(p+ιq), it is enough to modify Algorithm 1
as follows. Omit step (iv) and replace step (y) by

(vθ r=l/x, θ=-z.

For a single division, however, it will be better to omit step (iv) and to replace
step (vi) by

(viO xo=a/r, yo=b/r, zo=-θ.

The final values are

x=K1(a cos θΛ-b sin Θ)/Kx Vp2+q2 = (ap+bq)/(p2+q2)
(9)

y=K1(b cos θ-a sin θ)IKλ Vp2+q2 =(bp-aq)/(p2+q2).

Remark that no modification in modulus is necessary, since the constant Kx

cancels out as seen in (9).
Usual method of division due to the right-most hand of (9) requires 6 multi-

plications and 2 divisions, while the above algorithm needs only 2 CORDIC
operations, 1 division and 2 multiplications (or 2 divisions). Thus, this is much
more efficient than usual method, if multiplications and divisions are carried out
by CORDIC for m=0.

In practice, it will be more convenient to make some scalings of the initial
values in order to guarantee the accuracy, especially for very large or very
small data. However, we emphasize that the above algorithms always converge
and need no adjustment of arguments. Even when r=0 in division, the overflow
error will be detected at the stage of real divisions 1/r or a/r, b/r, for which
we need not pay attention here.

§3. CORDIC for m= — 1 and its application to square root.

3.1. Convergence for ra= —1.

When m= —1, the sequence /3; =arctanh 2~3 0 = 1 , 2, •••) does not satisfy the
convergence condition (7), since arctanh x is concave in x^O. However, we have
following relation:

182 SIN HITOTUMATU

(10) βj-(^+iβk)-βsj+i<βn-i for j8,=arctanh2-' O ' έ l) .

As there is no proof in Walther [2], we shall give here a brief proof to (10).
Since

ΛfZ ΛL-5

arctanh x—xΛ—g-+-c—1~ **'» \χ\ < 1

and since the linear term satisfies (7) with equality, we have

βj- " Σ βk- βn-i=4r(2~Sj-
k=j+ι o

o

-^2-'+-f 2-'+

which proves (10).
As βj decreases with j , the convergence condition (7) will be satisfied if we

repeat the iteration once more with same j at

7-4,13,40,121,....

The general formula of the above sequence is given by the recurrence formula

7n=37«-i+l, .7o = l .

Usually we need accuracy within 10 decimals, so that the repetition is necessary
only at ; = 4 and 13. Repetition at i=40 is necessary only for multiple precision
up to 120 bits (about 36 decimals), and hence the repetition is not serious in the
actual programming of CORDIC.

3.2. Convergence region.

Here we are mainly concern with Case I to obtain square root by (5).
Contrary to the case of m = l , we must remark carefully the convergence region
for m = —1. The process converges if and only if the initial values (x0, y0) satisfy
the condition

(11) I arctanh (;yo/*o) | < C = (f l + Σ) arctanh 2"'=1.118 •••.

Even when (11) is not satisfied, the process itself stops after finite number of
steps, but non-convergence means that the value of y does not approach 0, and
hence the final values x and z have no meanings.

If we start from

o + , yo = t—C

(11) gives the restriction

COMPLEX ARITHMETIC THROUGH CORDIC 183

Q'x<t/c<Q , Q=e2C=9.35 - , Q"1=0.1068 - .

When we compute the square root of a real number, it will be convenient to
take the constant c such that

c=co=l/4A"_?=O.364512292144
where

U = (Π X Π)(l-2-2')=0.685847927146 ,

rather than to take c=l/4 as is indicated in [2]. Then the process converges
for

(12)

which surely covers the interval

1/4^ t^l or

Outside the interval (12), we need scaling.
If we operate CORDIC of Case I for m— — 1, we have simultaneously

as a byproduct. If this value is unnecessary, it will be better to omit the trans-
formations of z from (6+) and (6_), by which the values of

j8,=arctanh 2'3

are no longer necessary for the operations.

3.3. Complex squre root.

The square root of a complex number p-\-iq=reιθ is given by

where we take rΞ>0 as usual.
To compute the square roots of p+iq through CORDIC, we apply the follow-

ing algorithm.

Algorithm 2. (i) and (ii) are same as in Algorithm 1.

(iii) Put
z/2 if P^O

0=j z/2-π/2 if p<0, z>0

z/2+π/2 if p<0, z^O.

(iv) In order to guarantee the convergence, we make the following scaling.
If x—0f then jump directly to (viii). Otherwise, we put

184 SIN HITOTUMATU

x=tx4ι~1, 1/16^^1, / being an integer0.
(v) Put

xQ=t+c, yo=t—c
where

w^O.32649838486-.

The meaning of the constant cx will be discussed later.
(vi) Operate CORDIC of Case I for m = - l .
(vii) Normalize x by multiplying 2ι. This operation is done by shifting or

adjustment of the exponent part.
(viii) Put

xo=x (as given above), ^o^O, zQ=θ.

(ix) Operate CORDIC of Case II for m= + l.

The final value x+iy gives one of the square roots of p+iq. Another one
is —x—iy.

Let us explain the meaning of the constant cλ. Since the modulus of the
final value through Algorithm 2 is

it seems to be suitable to choose c such that

(13) 2VΏf-i/r1

8 / 8=

However, the value of c determined by (13) is

(14) c

which is too small to include the interval [1/4, 1] in its convergence region.
Hence, we take c~cx to be 4 times of the constant in (14), which is the above
value of c1% Thus the convergence region is given by

L85 , r=\p+iq\ ,

which surely contains 1/lβ^r^l. This also explains the above scalings.
Usual method for square roots of a complex number p+iq is due to the

formula

±V(p+\P+ιq\)/2 ±iV(-p+\p+ιq\)/2 ,

where the signatures are same if #Ξ>0 and opposite if q<0. This requires 2
multiplications (in order to compute absolute value) and 3 square roots (or 2
square roots and 1 division), while Algorithm 2 needs only 3 CORDIC operations
with a slight process of scaling. Hence Algorithm 2 will be much more efficient
than usual method, especially when multiplications and divisions are carried out
by CORDIC for m=0 and square root is computed by usual Newton's iteration.

Several examples show quite satisfactory results both in accuracy and in
efficiency. However, we must remark that Algorithm 2 usually gives small real

2) Though this condition gives two values of t and /, each of them gives the same
final results. In practice, we may select / such that /—I is even, or that |/| is smaller.

COMPLEX ARITHMETIC THROUGH CORDIC 185

part in the result if p+iq is real negative (i.e., q—0, p<0), because of the error
in the numerical value of cos(π/2) by CORDIC.

Appendix Table 2

Decimal representations of arctan 2~3

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.46364

0.24497

0.12435

0.06241

0.03123

0.01562

0.00781

0.00390

0.00195

0.00097

0.00048

0.00024

0.00012

0.00006

0. 00003

0. 00001

0.00000

0,00000

0." 00000

0.00000

76090

86631

49945

88099

98334

37286

23410

62301

31225

65621

82812

41406

20703

10351

05175

52587

76293

38146

19073

09536

00806

26864

46761

95957

30268

20476

60101

31966

16478

89559

11194

20149

11893

56174

78115

89061

94531

97265

48632

74316

11621

15417

43503

34847

27625

83080

11129

97182

81868

31943

89827

36176

67020

20877

52609

31576

10197

60649

81018

40596

42562

20824

13548

39791

37117

28015

64633

76286

51214

04034

54692

40167

42390

50216

68618

21072

02633

62829

70353

08794

31461

81211

49163

12985

44892

21256

91842

65311

82625

30199

39625

22943

58646

62569

25953

31935

88482

23075

65369

20670

21440

27581

87102

50511

49097

57031

19928

42438

07671

71729

64484

25965

11795

17382

43853

81269

34010

61637

30591

68992

20285

09141

55731

36062

70324

89111

16212

71403

39316

08516

86661

99862

63009

91537

60197

78851

50905

29937

72441

31123

37054

44098

70191

73887

95663

14139

22811

57490

10746

34197

92361

12417

30829

85143

50949

37429

86350

22805

68714

90019

28612

38118

76980

79749

72540

80090

72501

11520

77723

01581

13313

79097

40901

53683

67511

23814

74391

25730

34216

63412

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.35530

0.17533

0.07752

0.03775

0.01777

0.00777

0. 00377

0.00177

0.00077

0.00037

0.00017

0.00007

0. 00003

0.00001

0.00000

0. 00000

0. 00000

0. 00000

0. 00000

0. 00000

Octal representations

63405

35374

67246

25566

52533

75252

77525

77752

77775

77777

77777

77777

77777

77777

77777

37777

17777

07777

03777

01777

30335

45440

52605

71317

56513

67355

25567

52533

25252

52525

75252

77525

77752

77775

77777

77777

77777

77777

77777

77777

51732

15654

73334

67516

54222

62465

35227

56733

67356

25567

52533

25252

52525

25252

52525

75252

77525

77752

77775

77777

12677

25333

31310

15545

50235

33574

13200

45135

72456

35667

56735

67356

25567

52533

25252

52525

25252

52525

25252

52525

of arctan 2~
3

44213

43636

45714

44744

71656

74305

30432

42253

24653

12271

65134

73556

35673

56735

67356

25567

52533

25252

52525

25252

66274

75373

23717

55601

73335

31000

43756

73326

36526

32003

51354

24562

52271

67334

73567

35673

56735

67356

25567

52533

16506

64205

50421

61340

52143

53735

76301

66517

01045

17674

22542

46533

22713

51345

24562

56671

67356

73567

35673

56735

40333

76265

67570

65211

04116

40220

27507

37413

07164

72457

22501

65335

20032

13542

45624

22712

51345

35562

56735

67356

41202

23772

54712

43160

00332

20357

32053

17406

36220

46466

17160

74736

00304

25422

65336

27132

13451

45624

22712

73345

186 SIN HITOTUMATU

Added in Proof: In Algorithm 2, modulus converges quadratically, so that
we may stop after N/2 steps to evaluate real square root (see e. g. [3], § 3-8).
Such remarks will be published separately.

REFERENCES

[1] J. E. VOLDER, Binary computation algorithms for coordinate rotation and func-
tion generation, Convair Report IAR-1 148 Aeroelectronics Group, 1956.

[2] J.S. WALTHER, A unified algorithm for elementary functions, Spring Joint
Comp. Conference 1971, p. 379-385.

[3] S. HITOTUMATU, "Numerical Computation of elementary functions", in Japa-
nese, Kyoiku Shuppan, Tokyo, 1974.

RESEARCH INSTITUTE FOR
MATHEMATICAL SCIENCES
KYOTO UNIVERSITY.

