ON $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-STRUCTURES

By U-Hang Ki, Jin Suk Pak and Hyun Bae Suh

§ 0. Introduction.

Yano and Okumura [6] have studied hypersurfaces of a manifold with (f, g, u, v, λ)-structure. These submanifolds admit under certain conditions what we call an ($f, g, u_{(k)}, \alpha_{(k)}$)-structure. In particular, a hypersurface of an evendimensional sphere carries an ($f, g, u_{(k)}, \alpha_{(k)}$)-structure (see also Blair, Ludden and Okumura [2]). Submanifolds of codimension 2 in an almost contact metric manifold also admit the same kind of structure (see Yano and Ishihara [5]).

The main purpose of the present paper is to study the ($f, g, u_{(k)}, \alpha_{(k)}$)structure and hypersurfaces of an even-dimensional sphere. In $\S 1$, we define and discuss $\left(f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure and ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure. In $\S 2$, we recall the definition of (f, g, u, v, λ)-structure and give examples of the manifold with ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure. In $\S 3$, we study non-invariant hypersurfaces of a manifold with normal (f, g, u, v, λ)-structure. In the last section, we study hypersurfaces of an even-dimensional sphere $S^{2 n}$ under certain conditions by using of the following theorem proved by Ishihara and one of the present authors [3]:

Theorem A. Let (M, g) be a complete and connected hypersurface immersed in a sphere $S^{m+1}(1)$ with induced metric $g_{j i}$ and assume that there is in (M, g) an almost product structure $P_{\imath}{ }^{h}$ of rank p such that $\nabla_{j} P_{\imath}{ }^{h}=0$. If the second fundamental tensor $H_{j i}$ of the hypersurface (M, g) has the form $H_{\imath \jmath}=a P_{j i}+b Q_{j i}$, a and b being non-zero constants, where $P_{j i}=P_{j}{ }^{t} g_{i t}$ and $Q_{j i}=g_{j i}-P_{j i}$, and, if $m-1 \geqq p \geqq 1$, then the hypersurface (M, g) is congruent to the hypersurface $S^{p}\left(r_{1}\right)$ $\times S^{m-p}\left(r_{2}\right)$ naturally embedded in $S^{m+1}(1)$, where $1 / r_{1}{ }^{2}=1+a^{2}$ and $1 / r_{2}{ }^{2}=1+b^{2}$.

§ 1. ($f, U_{(k)}, u_{(k)}, \alpha_{(k)}$-structure.

Let M be an m-dimensional differentiable manifold of class C^{∞}. We assume there exist on M a tensor field f type (1,1), vector fields U, V and $W, 1$-forms u, v and w, functions α, β and γ satisfying the conditions (1.1)~(1.7):

$$
\begin{equation*}
f^{2} X=-X+u(X) U+v(X) V+w(X) W \tag{1.1}
\end{equation*}
$$

for any vector field X,
Recerved June 4, 1973.

$$
\begin{align*}
& f U=-\gamma V+\beta W, \quad u \circ f=\gamma v-\beta w, \tag{1.2}\\
& f V=\gamma U+\alpha W, \quad v \circ f=-\gamma u-\alpha w, \tag{1.3}\\
& f W=-\beta U-\alpha V, \quad w \circ f=\beta u+\alpha v, \tag{1.4}
\end{align*}
$$

where 1 -forms $u \circ f, v \circ f$ and $w \circ f$ are respectively defined by

$$
(u \circ f)(X)=u(f X), \quad(v \circ f)(X)=v(f X), \quad(w \circ f)(X)=w(f X)
$$

for any vector field X, and

$$
\begin{align*}
& u(U)=1-\beta^{2}-\gamma^{2}, \quad u(V)=-\alpha \beta, \quad u(W)=-\alpha \gamma \tag{1.5}\\
& v(U)=-\alpha \beta, \quad v(V)=1-\alpha^{2}-\gamma^{2}, \quad v(W)=\beta \gamma \tag{1.6}\\
& w(U)=-\alpha \gamma, \quad w(V)=\beta \gamma, \quad w(W)=1-\alpha^{2}-\beta^{2} \tag{1.7}
\end{align*}
$$

In this case, we say that the manifold M has an $\left(f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure. We first prove

Lemma 1.1. In a manifold with ($\left.f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure, the vectors U, V and W (or the covectors u, v and w) are linearly dependent if and only if

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=1
$$

Proof. If there are three numbers a, b and c such that

$$
a U+b V+c W=0
$$

then, using (1.5), (1.6) and (1.7), we obtain

$$
\begin{aligned}
& \left(1-\beta^{2}-\gamma^{2}\right) a-\alpha \beta b-\alpha \gamma c=0, \\
& -\alpha \beta a+\left(1-\alpha^{2}-\gamma^{2}\right) b+\beta \gamma c=0, \\
& -\alpha \gamma a+\beta \gamma b+\left(1-\alpha^{2}-\beta^{2}\right) c=0 .
\end{aligned}
$$

Since we obtain

$$
\operatorname{det}\left|\begin{array}{ccc}
1-\beta^{2}-\gamma^{2} & -\alpha \beta & -\alpha \gamma \tag{1.8}\\
-\alpha \beta & 1-\alpha^{2}-\gamma^{2} & \beta \gamma \\
-\alpha \gamma & \beta \gamma & 1-\alpha^{2}-\beta^{2}
\end{array}\right|=\left(1-\alpha^{2}-\beta^{2}-\gamma^{2}\right)^{2}
$$

we can immediately derive our result.
In the next place, we prove that a manifold with $\left(f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure is odd-dimensional. Let P be a point of M at which $\alpha^{2}+\beta^{2}+\gamma^{2} \neq 1$. Then the vectors U, V and W are linearly independent at this point P by virture of Lemma 1.1. Thus we can choose m linearly independent vectors $X_{1}=U, X_{2}=V$, $X_{3}=W, X_{4}, \cdots, X_{m}$ which span the tangent space $T_{p}(M)$ of M at P and such that $u\left(X_{i}\right)=0, v\left(X_{\imath}\right)=0$ and $w\left(X_{i}\right)=0$, for $i=4, \cdots, m$. Consequently, we have from (1.1)

$$
f^{2} X_{i}=-X_{i}, \quad i=4, \cdots, m
$$

which shows that f is an almost complex structure in the subspace V_{p} of $T_{p}(M)$ at P spanned by X_{4}, \cdots, X_{m} and that V_{p} is even-dimensional. Thus $T_{p}(M)$ is odd-dimensional.

Next, let P be a point of M at which $\alpha^{2}+\beta^{2}+\gamma^{2}=1$. Then u, v and w are linearly dependent at this point by virtue of Lemma 1.1. Let say,

$$
\begin{equation*}
u=a v+b w, \tag{1.9}
\end{equation*}
$$

where a and b are numbers. Then, from (1.2), (1.3), (1.4) and $u \circ f=a v \circ f+b w \circ f$, we have

$$
\gamma v-\beta w=-a \gamma(a v+b w)-a \alpha w+b \beta(a v+b w)+b \alpha v,
$$

or,

$$
\begin{equation*}
0=\left(-\gamma-a^{2} \gamma+a b \beta+b \alpha\right) v+\left(\beta-a b \gamma-a \alpha+b^{2} \beta\right) w . \tag{1.10}
\end{equation*}
$$

Moreover, from (1.9), we get $u(W)=a v(W)+b w(W)$, or, using (1.7),

$$
\begin{equation*}
-\alpha \gamma=a \beta \gamma+b \gamma^{2} \tag{1.11}
\end{equation*}
$$

by virtue of $\gamma^{2}=1-\alpha^{2}-\beta^{2}$.
If $\gamma(P) \neq 0$, then, from (1.10) and (1.11), we find

$$
0=-\left(1+a^{2}+b^{2}\right) \gamma v+\left(1+a^{2}+b^{2}\right) \beta w .
$$

This means that any two of covectors u, v and w are also linearly dependent at this point. Since $w \neq 0$ at P, we can choose m linearly independent covectors $w_{1}=w, w_{2}, w_{3}, \cdots, w_{m}$ which span the cotangent space ${ }^{c} T_{p}(M)$ of M at P. We denote the dual basis by $\left(X_{1}, \cdots, X_{m}\right)$. Then we have

$$
f^{2} X_{i}=-X_{i}, \quad i=2,3, \cdots, m,
$$

which shows that f is an almost complex structure in the subspace V_{p} of $T_{p}(M)$ which is spanned by X_{2}, \cdots, X_{m} and that $\operatorname{dim} V_{p}=$ even, and consequently $T_{p}(M)$ is of odd-dimensional.

If $\gamma(P)=0$, then $\beta(P) \neq 0$ because of $\alpha^{2}=-a \alpha \beta-b \alpha \gamma$ and $\alpha^{2}+\beta^{2}+\gamma^{2}=1$. Moreover, from $-\alpha \beta=a \beta^{2}+b \beta \gamma$ and (1.10), we have $0=(a b \beta+b \alpha) v+\left(1+a^{2}+b^{2}\right) \beta w$.

On the other hand, two covectors u and v are not zero at the same time. Thus we can get the same result as above in this case.

The cases left to examine are in which

$$
v=a_{1} u+b_{1} w, \quad w=a_{2} u+b_{2} v,
$$

where a_{i} 's and b_{i} 's $(i=1,2)$ are numbers. But, in these cases, we can also prove the same results as above by the similar method. Thus we have

THEOREM 1.2. A differentiable manifold with ($\left.f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure is odd-dimensional.

Suppose that ($2 n-1$)-dimensional manifold M has an ($\left.f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure. Now, we consider the product manifold $M \times R^{3}, R^{3}$ being a 3 -dimensional Euclidean space. We define in $M \times R^{3}$ a tensor field F of type (1,1) with local components $F_{B}{ }^{A}$ given by

$$
\left(F_{B}^{A}\right)=\left[\begin{array}{cccc}
f_{c}^{b} & U^{a} & V^{a} & W^{a} \tag{1.12}\\
-u_{c} & 0 & -\gamma & \beta \\
-v_{c} & \gamma & 0 & \alpha \\
-w_{c} & -\beta & -\alpha & 0
\end{array}\right]
$$

in $\left\{N \times R^{3}, x^{4}\right\},\left\{N, x^{a}\right\}$ being a coordiante neighborhood of M and $x^{1}, x^{\frac{1}{2}}, x^{\overline{3}}$ Cartesian coordiantes in R^{3}, where $f_{c}^{a}, U^{a}, V^{a}, W^{a}, u_{c}, v_{c}$ and w_{c} are respectively local components of f, U, V, W, u, v and w in $\left\{N, x^{a}\right\}$. (The indices A, B, C, \cdots run over the range $\{1,2, \cdots, 2 n+2\}$ and a, b, c, d, e run over the range $\{1,2, \cdots$, $2 n-1\}$. We denote $2 n, 2 n+1,2 n+2$ by $\overline{1}, \overline{2}$ and $\overline{3}$ respectively.) Then, taking account of (1.1) $\sim(1.7)$, we can easily check that $F^{2}=-I$ holds in $M \times R^{3}$. Thus we have

Proposition 1.3. If there is given an $\left(f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure in M, then the tensor field F defined by (1.12) is an almost complex structure in $M \times R^{3}$.

Denoting $\partial / \partial x^{A}$ by ∂_{A}, then Nijenhuis tensor $[F, F]$ of F has local components

$$
\begin{equation*}
S_{C B}^{A}=F_{C}^{E} \partial_{E} F_{B}^{A}-F_{B}^{E} \partial_{E} F_{C}^{A}-\left(\partial_{C} F_{B}^{E}-\partial_{B} F_{C}^{E}\right) F_{E}^{A} \tag{1.13}
\end{equation*}
$$

in $M \times R^{3}$. Thus, using (1.12), we can write down $S_{C B}{ }^{4}$ as follows;

$$
\begin{align*}
S_{c b}^{a}= & f_{c}^{e} \partial_{e} f_{b}^{a}-f_{b}^{e} \partial_{e} f_{c}^{a}-\left(\partial_{c} f_{b}^{e}-\partial_{b} f_{c}^{e}\right) f_{e}^{a} \tag{1.14}\\
& +\left(\partial_{c} u_{b}-\partial_{b} u_{c}\right) U^{a}+\left(\partial_{c} v_{b}-\partial_{b} v_{c}\right) V^{a} \\
& +\left(\partial_{c} w_{b}-\partial_{b} w_{c}\right) W^{a}, \\
S_{c b}{ }^{\overline{1}}= & -f_{c}^{e} \partial_{e} u_{b}+f_{b}^{e} \partial_{e} u_{c}+u_{e}\left(\partial_{c} f_{b}^{e}-\partial_{b} f_{c}^{e}\right) \tag{1.15}\\
& -\gamma\left(\partial_{c} v_{b}-\partial_{b} v_{c}\right)+\beta\left(\partial_{c} w_{b}-\partial_{b} w_{c}\right), \\
S_{c b}^{\overline{5}}= & -f_{c}^{e} \partial_{e} v_{b}+f_{b}^{e} \partial_{e} v_{c}+v_{e}\left(\partial_{c} f_{b}^{e}-\partial_{b} f_{c}^{e}\right) \tag{1.16}\\
& +\gamma\left(\partial_{c} u_{b}-\partial_{b} u_{c}\right)+\alpha\left(\partial_{c} w_{b}-\partial_{b} w_{c}\right), \\
S_{c b}{ }^{\overline{3}}= & -f_{c}^{e} \partial_{e} w_{b}+f_{b}^{e} \partial_{e} w_{c}+w_{e}\left(\partial_{c} f_{b}^{e}-\partial_{b} f_{c}^{e}\right) \tag{1.17}\\
& -\beta\left(\partial_{c} u_{b}-\partial_{b} u_{c}\right)-\alpha\left(\partial_{c} v_{b}-\partial_{b} v_{c}\right), \\
S_{c i}^{a}= & f_{c}^{e} \partial_{e} U^{a}-U^{e} \partial_{e} f_{c}^{a}-\left(\partial_{c} U^{e}\right) f_{e}^{a}-\left(\partial_{c} \gamma\right) V^{a} \tag{1.18}\\
& +\left(\partial_{c} \beta\right) W^{a},
\end{align*}
$$

$$
\begin{align*}
S_{c 2}^{a}= & f_{c}^{e} \partial_{\epsilon} V^{a}-V^{e} \partial_{e} f_{c}^{a}-\left(\partial_{c} V^{e}\right) f_{e}^{a}+\left(\partial_{c} \gamma\right) U^{a} \tag{1.19}\\
& +\left(\partial_{c} \alpha\right) W^{a}, \\
S_{c \overline{3}}^{a}= & f_{c}^{e} \partial_{e} W^{a}-W^{e} \partial_{e} f_{c}^{a}-\left(\partial_{c} W^{e}\right) f_{e}^{a}-\left(\partial_{c} \beta\right) U^{a} \tag{1.20}\\
& -\left(\partial_{c} \alpha\right) V^{a}, \\
& \cdots .
\end{align*}
$$

Specially, if $S_{c b}{ }^{a}=0$, then we say that the ($\left.f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure is normal. We assume that, in M with ($\left.f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure, there exists a positive definite Riemannian metric g such that

$$
\begin{equation*}
g(U, X)=u(X), \quad g(V, X)=v(X), \quad g(W, X)=w(X) \tag{1.21}
\end{equation*}
$$

and

$$
\begin{equation*}
g(f X, f Y)=g(X, Y)-u(X) u(Y)-v(X) v(Y)-w(X) w(Y) \tag{1.22}
\end{equation*}
$$

for any vector fields X and Y of M. We call such a structure a metric ($f, U_{(k)}$, $\left.u_{(k)}, \alpha_{(k)}\right)$-structure and denote it by ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$.

Finally, we define a tensor field of type (0,2) of M by

$$
\begin{equation*}
\theta(X, Y)=g(f X, Y) \tag{1.23}
\end{equation*}
$$

for any vector fields X and Y of M. Then we can easily verify that

$$
\begin{equation*}
\theta(X, Y)=-\theta(Y, X) \tag{1.24}
\end{equation*}
$$

because of (1.1) $\sim(1.4)$ and (1.21) $\sim(1.23)$.

§ 2. Examples.

Let \tilde{M} be a $2 n$-dimensional differentiable manifold with (f, g, u, v, λ)-structure, that is, a Riemannian manifold admitting a tensor field $f_{2}{ }^{h}$ of type (1, 1), Riemannian metric $g_{j i}$, two 1 -forms u_{\imath} and v_{i} (or two vector fields $u^{h}=u_{i} g^{i h}$ and $v^{h}=v_{\imath} g^{i h}$) and a function λ which satisfy

$$
\left\{\begin{array}{l}
f_{t}^{h} f_{j}^{t}=-\delta_{j}^{h}+u_{j} u^{h}+v_{j} v^{h}, \tag{2.1}\\
f_{j}^{t} f_{t}^{s} g_{t s}=g_{j i}-u_{j} u_{i}-v_{j} v_{i}, \\
f_{j}^{t} u_{t}=\lambda v_{j}, \quad f_{j}^{t} v_{t}=-\lambda u_{j} \\
u^{t} f_{t}^{h}=-\lambda v^{h}, \quad v^{t} f_{t}^{h}=\lambda u^{h}, \\
u_{t} u^{t}=v_{t} v^{t}=1-\lambda^{2}, \quad u_{t} v^{t}=0,
\end{array}\right.
$$

where $\left(g^{j i}\right)=\left(g_{j i}\right)^{-1}$, here and in the sequel the indices h, j, i, \cdots running over the range $\{1,2, \cdots, 2 n\}$.

If we put $f_{j i}=f_{j}{ }^{t} g_{t \imath}$, we can easily see that $f_{j i}$ is skew-symmetric.
($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-STRUCTURES
We put

$$
\begin{equation*}
S_{j i}{ }^{h}=[f, f]_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{\jmath}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{\jmath}\right) v^{h}, \tag{2.2}
\end{equation*}
$$

$[f, f]_{j i}{ }^{h}$ denoting the Nijenhuis tensor formed with $f_{2}{ }^{h}$ and ∇_{2} the operator of covariant differentiation with respect to the Christoffel symbols $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ formed with $g_{j i}$. If $S_{j i}{ }^{h}$ vanishes, it is said that the (f, g, u, v, λ)-structure is normal ([7]).

The following theorem is well known (cf. [4], [8]) :
THEOREM 2.1. Let \tilde{M} be a manifold with normal (f, g, u, v, λ)-structure satisfying $\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}$ (or equivalently $\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda g_{j i}$). If the function $\lambda\left(1-\lambda^{2}\right)$ does not vanish almost everywhere, then we have

$$
\begin{align*}
& \nabla_{j} f_{\imath}{ }^{h}=g_{j i}\left(\phi u^{h}-v^{h}\right)-\delta_{\jmath}{ }^{h}\left(\phi u_{i}-v_{2}\right), \tag{2.3}\\
& \nabla_{j} u_{\imath}=-\lambda g_{j i}-\phi f_{j i}, \quad \nabla_{j} v_{i}=-\phi \lambda g_{j i}+f_{j i}, \tag{2.4}\\
& \nabla_{j} \lambda=u_{\jmath}+\phi v_{\jmath}, \tag{2.5}
\end{align*}
$$

ϕ being constant. Moreover, if \tilde{M} is complete and $\operatorname{dim} \tilde{M}>2$, then \tilde{M} is isometric with an even-dimensional sphere.

An even-dimensional sphere $S^{2 n}$ induces a normal (f, g, u, v, λ)-structure and satisfies differential equations (2.3) $\sim(2.5)$ with $\phi=0$ (cf. [1]).

We consider a ($2 n-1$)-dimensional manifold M covered by a system of coordinate neighborhoods $\left\{U ; x^{a}\right\}$, where here and throughout the paper the indices a, b, c, d, e, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$. We assume that the manifold M is immersed in \tilde{M} by the immersion $\imath: M \rightarrow \tilde{M}$ as a hypersurface $i(M)$ of \tilde{M} and that the equations of $i(M)$ in \tilde{M} are

$$
y^{h}=y^{h}\left(x^{b}\right) .
$$

If we put $B_{b}{ }^{h}=\partial_{b} y^{h}\left(\partial_{b}=\partial / \partial x^{b}\right)$, then the Riemannian metric induced on $i(M)$ from that of \tilde{M} is given by $g_{c b}=g_{j i} B_{c}{ }^{3} B_{b}{ }^{2}$. We identify $i(M)$ with M itself.

Moreover, if we choose a unit vector N^{h} of \tilde{M} normal to M in such a way that $2 n$ vectors $B_{b}{ }^{h}, N^{h}$ give the positive orientation of \tilde{M}, then the transforms $f_{2}{ }^{h} B_{b}{ }^{2}$ of $B_{b}{ }^{2}$ by $f_{2}{ }^{h}$ can be expressed as linear combinations of $B_{e}{ }^{h}$ and N^{h}, that is,

$$
\begin{equation*}
f_{\imath}{ }^{h} B_{b}{ }^{2}=f_{b}^{e} B_{e}{ }^{h}+w_{b} N^{h}, \tag{2.6}
\end{equation*}
$$

where $f_{b}{ }^{e}$ is a tensor field of type $(1,1)$ and w_{b} is a 1 -form on M. Similarly, the transform $f_{2}{ }^{h} N^{\imath}$ of N^{\imath} by $f_{i}{ }^{h}$ and vectors u^{h}, v^{h} can be written as

$$
\begin{align*}
& f_{\imath}^{h} N^{i}=-w^{e} B_{e}{ }^{h}, \tag{2.7}\\
& u^{h}=u^{e} B_{e}{ }^{h}+\beta N^{h}, \tag{2.8}\\
& v^{h}=v^{e} B_{e}{ }^{h}+\alpha N^{h}, \tag{2.9}
\end{align*}
$$

where $w^{e}=w_{a} g^{a e}, u^{e}$ and v^{e} are vectors, α and β are functions on M.
Transvecting (2.6) with $f_{h}{ }^{j}$ and taking account of (2.1), (2.6) itself and (2.7), we find

$$
\left(-\delta_{i}{ }^{j}+u_{i} u^{j}+v_{i} v^{j}\right) B_{b}{ }^{2}=f_{b}{ }^{e}\left(f_{e}{ }^{a} B_{a}{ }^{j}+w_{e} N^{j}\right)+w_{b}\left(-w^{a} B_{a}{ }^{j}\right),
$$

or, using (2.8) and (2.9),

$$
\begin{gathered}
-B_{b}{ }^{j}+u_{b}\left(u^{a} B_{a}{ }^{j}+\beta N^{j}\right)+v_{b}\left(v^{a} B_{a}{ }^{j}+\alpha N^{j}\right) \\
=f_{b}{ }^{e}\left(f_{e}{ }^{a} B_{a}{ }^{j}+w_{e} N^{j}\right)+w_{b}\left(-w^{a} B_{a}{ }^{j}\right),
\end{gathered}
$$

from which,

$$
\begin{gather*}
f_{b}^{e} f_{e}^{a}=-\delta_{b}{ }^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a}, \tag{2.10}\\
f_{b}^{e} w_{e}=\beta u_{b}+\alpha v_{b} . \tag{2.11}
\end{gather*}
$$

Transvecting (2.7) with $f_{h}{ }^{3}$ and making use of (2.1), (2.6), (2.8) and (2.9), we have

$$
\begin{equation*}
w_{e} w^{e}=1-\alpha^{2}-\beta^{2} . \tag{2.12}
\end{equation*}
$$

Transvecting (2.8) and (2.9) with $f_{h}{ }^{j}$ and using (2.1), (2.6) and (2.7), we get

$$
\begin{align*}
f_{e}^{a} u^{e} & =-\lambda v^{a}+\beta w^{a}, \tag{2.13}\\
f_{e}^{a} v^{e} & =\lambda u^{a}+\alpha w^{a}, \tag{2.14}
\end{align*}
$$

$$
\begin{equation*}
u_{e} w^{e}=-\alpha \lambda, \quad v_{e} w^{e}=\beta \lambda . \tag{2.15}
\end{equation*}
$$

Similarly, transvecting (2.8) and (2.9) with u^{h} and v^{h}, we obtain

$$
\begin{equation*}
u_{e} u^{e}=1-\beta^{2}-\lambda^{2}, \quad v_{e} \nu^{e}=1-\alpha^{2}-\lambda^{2}, \quad u_{e} \nu^{e}=-\alpha \beta . \tag{2.16}
\end{equation*}
$$

On the other hand we find, from the second equation of (2.1) and (2.6),

$$
\begin{equation*}
g_{e a} f_{c}^{e} f_{b}^{a}=g_{c b}-u_{c} u_{b}-v_{c} v_{b}-w_{c} w_{b} . \tag{2.17}
\end{equation*}
$$

Therefore, equations (2.10) $\sim(2.17)$ mean that M admits an ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$ structure. If we put $f_{c b}=f_{c}{ }_{c} g_{e b}$, then $f_{c b}$ is skew-symmetric because $f_{j i}$ is skewsymmetric.

Next, we assume that \bar{M} be a ($2 n+1$)-dimensional almost contact metric manifold covered by a system of coordinate neighborhoods $\left\{\bar{U} ; y^{\kappa}\right\}$, i. e.,

$$
\begin{align*}
& f_{\mu}{ }^{\kappa} f_{\lambda}{ }^{\prime}=-\delta_{\lambda}{ }^{\kappa}+v_{\lambda} v^{\kappa}, \tag{2.18}\\
& f_{\lambda}{ }^{\kappa} v^{\lambda}=0, \quad v_{\lambda} v^{\lambda}=1, \tag{2.19}\\
& g_{\kappa \nu} f_{\mu}{ }^{\kappa} f_{\lambda}{ }^{\nu}=g_{\mu \lambda}-v_{\mu} v_{\lambda}, \tag{2.20}
\end{align*}
$$

where $f_{\mu}{ }^{\kappa}$ is a tensor field of type (1, 1), $g_{\mu \lambda}$ is the Riemannian metric of \bar{M}, v_{λ} is a 1 -form and $v^{\kappa}=v_{\lambda} g^{\lambda \kappa}$, the indices $\lambda, \mu, \nu, \cdots$ running over the range $\{1,2, \cdots$, $2 n+1\}$ in this section.

Let M be a ($2 n-1$)-dimensional manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{b}\right\}$, which is differentiably immersed in \bar{M} as a submanifold of codimension 2 by the equations $y^{\kappa}=y^{\kappa}\left(x^{b}\right)$. If we put $B_{b}{ }^{\kappa}=\partial_{b} y^{\kappa}, \partial_{b}=\partial / \partial x^{b}$, then $B_{0}{ }^{\kappa}$ are $2 n-1$ linearly independent local vector fields of \bar{M} tangent to M, and the Riemannian metric induced on M from that of \bar{M} is given by $g_{c b}=$ $g_{\mu \nu} B_{c}{ }^{\mu} B_{b}{ }^{\nu}$. If we choose two unit vectors C^{κ} and D^{κ} of \bar{M} normal to M in such a way that $2 n+1$ vectors $B_{b}{ }^{\kappa}, C^{\kappa}, D^{\kappa}$ give the positive orientation of \bar{M}, then we can write equations of the form

$$
\begin{gather*}
f_{\lambda}{ }_{\lambda}^{\kappa} B_{b}{ }^{\lambda}=f_{b}{ }^{e} B_{e}{ }^{\kappa}+w_{b} C^{\kappa}+u_{b} D^{\kappa}, \tag{2.21}\\
f_{\lambda}{ }^{\kappa} C^{\lambda}=-w^{e} B_{e}{ }^{\kappa}+\beta D^{\kappa}, \quad f_{\lambda}{ }^{\kappa} D^{\lambda}=-u^{e} B_{e}{ }^{\kappa}-\beta C^{\kappa}, \tag{2.22}
\end{gather*}
$$

where $u^{e}=u_{a} g^{a e}, w^{e}=w_{a} g^{a e}, f_{b}{ }^{a}$ is a global tensor field of type (1, 1), u_{a} and w_{a} are 1 -forms and β is a function in M. We can easily see that β is independent of the choice of C and D. The vector field v^{k} has the form

$$
\begin{equation*}
v^{\kappa}=v^{e} B_{e}{ }^{\kappa}+\alpha C^{\kappa}+\gamma D^{\kappa}, \tag{2.23}
\end{equation*}
$$

where v^{e} defines vector field in M and α, γ are functions of M.
In this case, we also verify that a submanifold M of codimension 2 in an almost contact metric manifold admits an ($f, g, u_{(k)}, \alpha_{(k)}$)-structure (cf. [4]).

\S 3. Hypersurfaces of a manifold with normal (f, g, u, v, λ)-structure.

Let \tilde{M} be a manifold with normal (f, g, u, v, λ)-structure such that the function $\lambda\left(1-\lambda^{2}\right)$ is non-zero almost everywhere and satisfies $\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}$ (or equivalently $\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda g_{j i}$). In this section we consider a differentiable manifold M which is a hypersurface immersed in such a manifold \tilde{M}.

Denoting by ∇_{c} the operator of covariant differentiation with respect to the Christoffel symbols $\left\{\begin{array}{cc}a & { }_{c}\end{array}\right\}$ formed with $g_{c b}$, then the equations of Gauss and Weingarten for M are given by

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{h}=h_{c b} N^{h}, \quad \nabla_{c} N^{h}=-h_{c}{ }^{e} B_{e}{ }^{h}, \tag{3.1}
\end{equation*}
$$

where $\left.h_{c}{ }^{a}=h_{c e} g^{e a}, \nabla_{c} B_{b}{ }^{h}=\partial_{c} B_{b}{ }^{h}+\left\{\begin{array}{c}h^{h} \\ j\end{array}\right\} i_{c}{ }^{j} B_{b}{ }^{2}-\left\{\begin{array}{c}a \\ c\end{array}\right\}{ }^{6}\right\} B_{a}{ }^{h}$ is the so-called van der Waerden-Borbtolotti covariant derivative of $B_{b}{ }^{h}$ and $h_{c b}$ the second fundamental tensor.

Differentiating (2.6) covariantly along M and using (2.3) and (3.1), we find

$$
\begin{aligned}
& \left\{g_{j i}\left(\phi u^{h}-v^{h}\right)-\delta_{\jmath}{ }^{h}\left(\phi u_{i}-v_{\imath}\right)\right\} B_{c}{ }^{j} B_{b}{ }^{2}+\left(f_{\imath}{ }^{h} N^{i}\right) h_{c b} \\
& =\left(\nabla_{c} f_{b}^{e}\right) B_{e}{ }^{h}+\left(h_{c e} f_{b}\right) N^{h}+\left(\nabla_{c} w_{b}\right) N^{h}-w_{b} h_{c}{ }^{e} B_{e}{ }^{h},
\end{aligned}
$$

form which,

$$
\begin{gathered}
g_{c b}\left(\phi u^{e} B_{e}{ }^{h}+\phi \beta N^{h}-v^{e} B_{e}{ }^{h}-\alpha N^{h}\right)-\delta_{c}^{e}\left(\phi u_{b}-v_{b}\right) B_{e}{ }^{h}-h_{c b} w^{e} B_{e}{ }^{h} \\
=\left(\nabla_{c} f_{b}^{e}-w_{b} h_{c}^{e}\right) B_{e}{ }^{h}+\left(\nabla_{c} w_{b}+h_{c e} f_{b}^{e}\right) N^{h}
\end{gathered}
$$

by virtue of (2.7) $\sim(2.9)$ and consequently

$$
\begin{gather*}
\nabla_{c} f_{b}{ }^{a}=g_{c b}\left(\phi u^{a}-v^{a}\right)-\delta_{c}{ }^{a}\left(\phi u_{b}-v_{b}\right)-h_{c b} w^{a}+h_{c}{ }^{a} w_{b}, \tag{3.2}\\
\nabla_{c} w_{b}=(\phi \beta-\alpha) g_{c b}-h_{c e} f_{b}^{e} . \tag{3.3}
\end{gather*}
$$

Differentiating also (2.8) and (2.9) covariantly and taking account of (2.4), (2.6) and (3.1), we obtain

$$
\begin{align*}
& \nabla_{c} u_{b}=-\lambda g_{c b}+\beta h_{c b}-\phi f_{c b}, \tag{3.4}\\
& \nabla_{c} v_{b}=-\phi \lambda g_{c b}+\alpha h_{c b}+f_{c b}, \tag{3.5}
\end{align*}
$$

$$
\begin{equation*}
\nabla_{c} \alpha=-h_{c e} v^{e}+w_{c}, \quad \nabla_{c} \beta=-h_{c e} u^{e}-\phi w_{c} . \tag{3.6}
\end{equation*}
$$

Transvecting (2.5) with $B_{c}{ }^{3}$ and using (2.8) and (2.9), we have

$$
\begin{equation*}
\nabla_{\mathrm{c}} \lambda=u_{\mathrm{c}}+\phi v_{\mathrm{c}} . \tag{3.7}
\end{equation*}
$$

In section 1, we introduced several tensors on M determined by the Nijenhuis tensor $[F, F]$ of the complex structure tensor F on $M \times R^{3}$. Substituting (3.2)~ (3.7) into (1.14) $\sim(1.20), \cdots$ we have respectively

We now prove
Lemma 3.1. Let M be a hypersurface of $2 n$-dimensional manifold \tilde{M} with normal (f, g, u, v, λ)-structure such that the function $\lambda\left(1-\lambda^{2}\right)$ is not zero almost everywhere on \tilde{M} and satisfies $\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{\imath j}$ (or equivalently $\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda g_{j i}$). Then

$$
\begin{equation*}
\alpha^{2}+\beta^{2}+\lambda^{2}=1, \tag{3.15}
\end{equation*}
$$

if and only if λ is constant, where α, β are defined on (2.8) and (2.9).
Proof. Suppose that $\alpha^{2}+\beta^{2}+\lambda^{2}=1$. Then we know in Lemma 1.1 that u_{c}, v_{c}

$$
\begin{align*}
& S_{c b}{ }^{a}=\left(f_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} f_{e}{ }^{a}\right) w_{b}-\left(f_{b}{ }^{e} h_{e}{ }^{a}-h_{b}{ }^{e} f_{e}{ }^{a}\right) w_{c}, \tag{3.8}\\
& S_{c b}{ }^{1}=\left(h_{c e} u^{e}\right) w_{b}-\left(h_{b e} u^{e}\right) w_{c}+\left(u_{c} v_{b}-u_{b} v_{c}\right) \text {, } \tag{3.9}\\
& S_{c b}{ }^{5}=\left(h_{c e} v^{e}\right) w_{b}-\left(h_{b e} v^{e}\right) w_{c}+\phi\left(u_{c} v_{b}-u_{b} v_{c}\right) \text {, } \tag{3.10}\\
& S_{c b}{ }^{\overline{3}}=\left(h_{c e} w^{e}\right) w_{b}-\left(h_{b e} w^{e}\right) w_{c}-\left(v_{c} w_{b}-v_{b} w_{c}\right)+\phi\left(u_{c} w_{b}-u_{b} w_{c}\right), \tag{3.11}\\
& S_{c \mathrm{I}}{ }^{a}=\beta\left(f_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} f_{e}{ }^{a}\right)-\phi\left(v_{c} v^{a}+w_{c} w^{a}\right)-w_{c}\left(h_{e}{ }^{a} u^{e}\right)-v_{c} u^{a} \text {, } \tag{3.12}\\
& S_{c \overline{2}}{ }^{a}=\alpha\left(f_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} f_{e}{ }^{a}\right)+\left(u_{c} u^{a}-w_{c} w^{a}\right)-w_{c}\left(h_{e}{ }^{a} v^{e}\right)+\phi u_{c} v^{a} \text {, } \tag{3.13}\\
& S_{c \bar{s}}{ }^{a}=-h_{e d} f_{c}{ }^{e} f^{a d}+h_{c}{ }^{a}-w_{c}\left(h_{e}{ }^{a} w^{e}\right)+\left(\phi u_{c}-v_{c}\right) w^{a}, \tag{3.14}
\end{align*}
$$

and w_{c} are linearly dependent. Thus we can put

$$
\begin{equation*}
u_{c}=a v_{c}+b w_{c}, \tag{3.16}
\end{equation*}
$$

where a and b are numbers.
Transvecting (3.16) with $f_{b}{ }^{c}$ and using (2.11), (2.13), (2.14) and (3.16) itself, we find

$$
\begin{equation*}
\left(\lambda+a^{2} \lambda-a b \beta-b \alpha\right) v_{b}-\left(\beta+b^{2} \beta-a \alpha-a b \lambda\right) w_{b}=0 . \tag{3.17}
\end{equation*}
$$

On the other hand, transvecting (3.16) with u^{c}, v^{c} and w^{c} and using (2.12), (2.15), (2.16) and (3.15), we get

$$
\alpha(\alpha+a \beta+b \lambda)=\beta(\alpha+a \beta+b \lambda)=\lambda(\alpha+a \beta+b \lambda)=0,
$$

or, using (3.15),

$$
\begin{equation*}
\alpha+a \beta+b \lambda=0 . \tag{3.18}
\end{equation*}
$$

Substituting this into (3.17), we have

$$
\left(1+a^{2}+b^{2}\right)\left(\lambda v_{b}-\beta w_{b}\right)=0,
$$

from which,

$$
\begin{equation*}
\lambda v_{b}-\beta w_{b}=0 . \tag{3.19}
\end{equation*}
$$

Comparing (3.19) with (3.16) and taking account of (3.18), we obtain

$$
\begin{equation*}
\beta u_{b}+\alpha v_{b}=0, \quad \lambda u_{b}+\alpha w_{b}=0 . \tag{3.20}
\end{equation*}
$$

Differentiating the first equation of (3.20) covariantly along M and using (3.4), (3.5) and (3.6) we get

$$
\begin{align*}
0= & -\left(h_{c e} u^{e} u_{b}+h_{c e} e^{e} v_{b}\right)+w_{c}\left(v_{b}-\phi u_{b}\right) \tag{3.21}\\
& -\lambda(\phi \alpha+\beta) g_{c b}+\left(\alpha^{2}+\beta^{2}\right) h_{c b}+(\alpha-\phi \beta) f_{c b},
\end{align*}
$$

from which, multiplying this equation by α^{2} and making use of (3.20) in the equation obtained,

$$
\begin{aligned}
0= & -\left(\alpha^{2}+\beta^{2}\right) h_{c e} u^{e} u_{b}+\lambda(\phi \alpha+\beta) u_{c} u_{b} \\
& -\alpha^{2} \lambda(\phi \alpha+\beta) g_{c b}+\alpha^{2}\left(\alpha^{2}+\beta^{2}\right) h_{c b}+\alpha^{2}(\alpha-\phi \beta) f_{c b}
\end{aligned}
$$

or, taking the skew-symmetric part with respect to c and b,

$$
\begin{equation*}
-\left(\alpha^{2}+\beta^{2}\right)\left(h_{c e} u^{e} u_{b}-h_{b e} u^{e} u_{c}\right)+2 \alpha^{2}(\alpha-\phi \beta) f_{c b}=0 . \tag{3.22}
\end{equation*}
$$

Transvecting (3.22) with u^{b} and using (2.13) and (3.15), we get

$$
-\left(\alpha^{2}+\beta^{2}\right)\left\{\alpha^{2} h_{c e} u^{e}-\left(h_{e a} u^{e} u^{a}\right) u_{c}\right\}+2 \alpha^{2}(\alpha-\phi \beta)\left(\lambda v_{c}-\beta w_{c}\right)=0 .
$$

or, using (3.19),

$$
\left(\alpha^{2}+\beta^{2}\right)\left\{\alpha^{2} h_{c e} u^{e}-\left(h_{e a} u^{e} u^{a}\right) u_{c}\right\}=0 .
$$

Substituting last equation into (3.22), we have

$$
\alpha^{4}(\alpha-\phi \beta) f_{c b}=0,
$$

from which, transvecting $f^{c b}$ and using (3.15), $\alpha^{4}(\alpha-\phi \beta)=0$, which implies

$$
\begin{equation*}
\alpha^{2}(\alpha-\phi \beta)=0 . \tag{3.23}
\end{equation*}
$$

Similarly, from (3.21), we can prove that

$$
\begin{equation*}
\beta^{2}(\alpha-\phi \beta)=0, \quad \lambda^{2}(\alpha-\phi \beta)=0 \tag{3.24}
\end{equation*}
$$

by virtue of (3.15), (3.19) and (3.20).
Adding (3.23) to (3.24) and making use of (3.15), we find

$$
\begin{equation*}
\alpha-\phi \beta=0 . \tag{3.25}
\end{equation*}
$$

Differentiating (3.15) covariantly and taking account of (3.6), we obtain

$$
2 \alpha\left(-h_{c e} v^{e}+w_{c}\right)+2 \beta\left(-h_{c e} u^{e}-\phi w_{c}\right)+\nabla_{c}\left(\lambda^{2}\right)=0,
$$

or,

$$
-h_{c e}\left(\alpha v^{e}+\beta u^{e}\right)+(\alpha-\phi \beta) w_{c}+1 / 2 \nabla_{c}\left(\lambda^{2}\right)=0
$$

and consequently $\nabla_{c}\left(\lambda^{2}\right)=0$ by virtue of (3.20) and (3.25). Thus $\lambda=$ const. on M.
Conversely, if we suppose $\lambda=$ const., then we have from (3.7)

$$
\begin{equation*}
u_{c}=-\phi v_{c}, \tag{3.26}
\end{equation*}
$$

which means that u^{a}, v^{a} and w^{a} are linearly dependent vectors.
According to Lemma 1.1, we see

$$
\alpha^{2}+\beta^{2}+\lambda^{2}=1
$$

This completes the proof of Lemma 3.1.
Lemma 3.2. Under the same assumptions as those in Lemma 3.1, the four conditions $S_{c b}{ }^{\mathrm{i}}=0, S_{c \mathrm{i}}{ }^{a}=0$, (3.15) and $\lambda=$ const. are equivalent to each other.

Proof. Assume that $S_{c b}{ }^{\mathrm{I}}=0$, that is,

$$
\begin{equation*}
\left(h_{c e} u^{e}\right) w_{b}-\left(h_{b e} u^{e}\right) w_{c}+\left(u_{c} v_{b}-u_{b} v_{c}\right)=0 . \tag{3.27}
\end{equation*}
$$

Transvecting (3.27) with w^{b}, we find

$$
\begin{equation*}
\left(1-\alpha^{2}-\beta^{2}\right) h_{c e} u^{e}=-\beta \lambda u_{c}-\alpha \lambda v_{c}+\left(h_{e a} u^{e} w^{a}\right) w_{c}, \tag{3.28}
\end{equation*}
$$

from which, combining (3.28) and (3.27),

$$
\begin{equation*}
0=\left(1-\alpha^{2}-\beta^{2}\right)\left(u_{c} v_{b}-u_{b} v_{c}\right)-\alpha \lambda\left(v_{c} w_{b}-v_{b} w_{c}\right)+\beta \lambda\left(w_{c} u_{b}-w_{b} u_{c}\right), \tag{3.29}
\end{equation*}
$$

or, transvecting (3.29) with $f^{c b}$ and using (2.11)~(2.15),

$$
\lambda\left(1-\alpha^{2}-\beta^{2}-\lambda^{2}\right)=0 .
$$

If we put $N_{0}=\left\{P:\left(1-\alpha^{2}-\beta^{2}-\lambda^{2}\right)(P) \neq 0\right\}$, then $\lambda=0$, i. e., $\lambda=$ const. on N_{0},
which means $1-\alpha^{2}-\beta^{2}-\lambda^{2}=0$ on N_{0} by virtue of Lemma 3.1. Therefore we find (3.15) on M.

Conversely, suppose that (3.15) satisfies, then (3.20), (3.25) and (3.26) are implied.

Differentiating (3.26) covariantly and making use of (3.4) and (3.5), we obtain

$$
\beta h_{c b}-\lambda g_{c b}=0 .
$$

On $N_{1}=\{P: \beta(P)=0\}, \alpha=0$ and $\lambda=0$ as consequences of (3.25) and the above equation, respectively. This is contradiction to (3.15). It follows that N_{1} is void. Thus $\beta \neq 0$ on M. Therefore we have

$$
\begin{equation*}
h_{c b}=\frac{\lambda}{\beta} g_{c b} . \tag{3.30}
\end{equation*}
$$

Substituting (3.20) and (3.30) into (3.9), we get $S_{c b}{ }^{i}=0$. Therefore, the two conditions $S_{c b}{ }^{\mathrm{I}}=0$ and (3.15) are equivalent.

Next, hypothesize $S_{c \mathrm{I}}{ }^{a}=0$, that is,

$$
\beta\left(f_{c}^{e} h_{e a}+f_{a}{ }^{e} h_{e c}\right)-\phi\left(v_{c} v_{a}+w_{c} w_{a}\right)-w_{c}\left(h_{e a} u^{e}\right)-v_{c} u_{a}=0,
$$

from which, taking the skew-symmetric part,

$$
w_{c}\left(h_{e a} u^{e}\right)-w_{a}\left(h_{e c} u^{e}\right)+v_{c} u_{a}-u_{c} v_{a}=0,
$$

which is the same equation as (3.27).
Hence, by the same method, we can verify that the two conditions $S_{c i}{ }^{a}=0$ and (3.15) are equivalent.

Therefore, combining these and Lemma 3.1, we obtain Lemma 3.2.
Now, if (3.15) holds, then, substituting (3.19), (3.20) and (3.30) into (3.8), (3.10), (3.11), (3.13) and (3.14), we find $S_{c b}{ }^{a}=S_{c b}{ }^{\overline{2}}=S_{c b}{ }^{5}=S_{c 2^{a}}{ }^{a}=S_{\bar{c}}{ }^{a}=\cdots=0$. Thus we obtain

Theorem 3.3. Let M be a hypersurface of $2 n$-dimensional manifold \tilde{M} with normal (f, g, u, v, λ)-structure such that the function $\lambda\left(1-\lambda^{2}\right)$ is not zero almost everywhere on \tilde{M} and satısfies $\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}$ (or equivalently $\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda g_{j i}$). Then

$$
\begin{gather*}
\alpha^{2}+\beta^{2}+\lambda^{2}=1, \tag{3.31}\\
S_{c b}{ }^{\mathrm{I}}=0, \quad S_{c \mathrm{I}}{ }^{a}=0 \quad \text { or } \quad \lambda=\text { const. }
\end{gather*}
$$

implies $S_{c b}{ }^{a}=S_{c b}{ }^{\overline{5}}=S_{c b}{ }^{\overline{3}}=S_{c \overline{2}}{ }^{a}=S_{c \overline{3}}{ }^{a}=\cdots=0$. If one equation of (3.31) satisfies, then M is totally umbilical.

Proposition 3.4. Let M be a hypersurface of $2 n$-dimensional manifold \tilde{M} with normal (f, g, u, v, λ)-structure such that the function $\lambda\left(1-\lambda^{2}\right)$ is not zero almost everywhere on \tilde{M} and satisfies $\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}$ (or equivalently $\nabla_{j} u_{i}+\nabla_{i} u_{\text {, }}$ $\left.=-2 \lambda g_{j i}\right)$. Then the necessary and sufficient condition that the induced ($f, g, u_{(k)}$, $\left.\alpha_{(k)}\right)$-structure on M is normal is

$$
\begin{equation*}
f_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} f_{e}{ }^{a}=0 . \tag{3.32}
\end{equation*}
$$

Proof. The proof of the necessity is trivial.
Let ($f, g, u_{(k)}, \alpha_{(k)}$)-structure be normal, that is, $S_{c b}{ }^{a}=0$. Putting $T_{c}{ }^{a}=f_{c}{ }^{e} h_{e}{ }^{a}-$ $h_{c}^{e} f_{e}^{a}$, (3.12) becomes

$$
\begin{equation*}
T_{c}{ }^{a} w_{b}-T_{b}{ }^{a} w_{c}=0, \tag{3.33}
\end{equation*}
$$

from which, contracting with respect to c and b,

$$
\begin{equation*}
T_{c}{ }^{e} w_{e}=0 . \tag{3.34}
\end{equation*}
$$

Transvecting (3.33) with w^{b} and using (3.34), we get

$$
\left(1-\alpha^{2}-\beta^{2}\right) T_{c}^{a}=0 .
$$

On $N_{2}=\left\{P \in M: T_{c}{ }^{a}(P) \neq 0\right\}, 1-\alpha^{2}-\beta^{2}=0$ from which $w_{c}=0$. Thus it follows that $f_{c}^{e} w_{e}=\beta u_{c}+\alpha v_{c}=0$ on N_{2}. Since the last equation means that u_{s} and v_{c} are linearly dependent, we get (3.15). Hence, owing to (3.15) and $1-\alpha^{2}-\beta^{2}=0, h_{c b}=0$ holds on this set. Thus we find $T_{c}{ }^{a}=0$ on N_{2}, which implies $T_{c}{ }^{a}=0$ on M. Therefore, the sufficiency is also proved.

§ 4. Hypersurfaces of an even-dimensional sphere.

In this section, we consider a manifold M admitting ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure as a hypersurface of even-dimensional sphere $S^{2 n}$.

According to the structure equations of $S^{2 n}$ given in section 2, we can see that M satisfies differential equations (3.2) $\sim(3.7)$ with $\phi=0$ (cf. [2]), i. e.,

$$
\begin{align*}
& \nabla_{c} f_{b}{ }^{a}=-g_{c b} v^{a}+\delta_{c}{ }^{a} v_{b}-h_{c b} w^{a}+h_{c}{ }^{a} w_{b}, \tag{4.1}\\
& \nabla_{c} w_{b}=-\alpha g_{c b}-h_{c e} f_{b}{ }^{e}, \tag{4.2}\\
& \nabla_{c} u_{b}=-\lambda g_{c b}+\beta h_{c b}, \quad \nabla_{c} v_{b}=\alpha h_{c b}+f_{c b}, \tag{4.3}\\
& \nabla_{c} \alpha=-h_{c e} v^{e}+w_{c}, \quad \nabla_{c} \beta=-h_{c e} u^{e}, \tag{4.4}\\
& \nabla_{c} \lambda=u_{c} . \tag{4.5}
\end{align*}
$$

Since we consider $S^{2 n}$ as a space of constant curvature, M also satisfies

$$
\begin{equation*}
\nabla_{c} h_{b a}-\nabla_{b} h_{c a}=0 . \tag{4.6}
\end{equation*}
$$

Remark. If we assume that $\lambda=0$, then $u_{c}=0$ from (4.5), from which $\beta^{2}=1$ by virtue of (1.5). Hence we find $h_{c b}=0$ from (4.3). This means that M is totally geodesic. Afterward we consider the case in which $\lambda \neq 0$ almost everywhere.

Now, we suppose that $S_{c b}{ }^{a}=0$ and $S_{c b}{ }^{\overline{3}}=0$, or equivalently,

$$
\begin{equation*}
h_{c e} f_{b}^{e}+h_{b e} f_{c}^{e}=0, \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(h_{c e} w^{e}\right) w_{b}-\left(h_{b e} w^{e}\right) w_{c}-\left(v_{c} w_{b}-v_{b} w_{c}\right)=0 . \tag{4.8}
\end{equation*}
$$

Transvecting (4.8) with v^{b}, we have

$$
\begin{equation*}
\beta \lambda h_{c e} w^{e}=\beta \lambda v_{c}+\left\{\left(h_{e a} v^{e} w^{a}\right)-\left(1-\alpha^{2}-\lambda^{2}\right)\right\} w_{c} . \tag{4.9}
\end{equation*}
$$

Transvecting (4.9) with u^{c}, we get

$$
\begin{equation*}
0=\beta\left(h_{e a} u^{e} w^{a}\right)+\alpha\left(h_{e a} v^{e} w^{a}\right)-\alpha\left(1-\alpha^{2}-\beta^{2}-\lambda^{2}\right) \tag{4.10}
\end{equation*}
$$

because of (1.5).
On the other hand, transvecting (4.7) with $w^{c} w^{b}$ and using (1.4), we also find

$$
\begin{equation*}
\beta\left(h_{e a} u^{e} w^{a}\right)+\alpha\left(h_{e a} v^{e} w^{a}\right)=0 . \tag{4.11}
\end{equation*}
$$

Comparing (4.10) and (4.11), we find

$$
\alpha\left(1-\alpha^{2}-\beta^{2}-\lambda^{2}\right)=0 .
$$

If we put $M_{1}=\{P: \alpha(P) \neq 0\} \subset M$, then $\alpha^{2}+\beta^{2}+\lambda^{2}=1$ on M_{1}. It is easily shown that $\alpha=0$ on M_{1} by the same method as that in the proof of Lemma 3.1. Thus M_{1} is void, that is, $\alpha=0$ on M.

Using (1.7), (4.4) and the fact $\alpha=0$, we have

$$
\begin{equation*}
h_{c e} \nu^{e}=w_{c} \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{c e} v^{c} w^{e}=1-\beta^{2} . \tag{4.13}
\end{equation*}
$$

On $M_{2}=\{P: \beta(P)=0\}$, transvecting (4.8) with w^{b} and taking account of $\alpha=0$, we obtain

$$
h_{c e} w^{e}=v_{c}+\left(h_{e a} w^{e} w^{a}\right) w_{c},
$$

and consequently

$$
h_{c e} v^{c} w^{e}=1-\lambda^{2}
$$

by virtue of (1.6).
Substituting this equation into (4.13), we find $\lambda=0$ on M_{2}. Thus M_{2} is null, i. e., $\beta \neq 0$ on M.

On the other hand, substituting (4.13) into (4.9), we have

$$
\begin{equation*}
\beta \lambda h_{c e} w^{e}=\beta \lambda v_{c}-\left(\beta^{2}-\lambda^{2}\right) w_{c} . \tag{4.14}
\end{equation*}
$$

Transvecting (4.7) with v^{c} and using (1.3), (1.4) and (4.12), we find

$$
\begin{equation*}
\lambda h_{c e} u^{e}=-\beta u_{c} . \tag{4.15}
\end{equation*}
$$

Differentiating (4.14) covariantly, we obtain

$$
\begin{aligned}
& \nabla_{b}(\beta \lambda)\left(h_{c e} w^{e}\right)+\beta \lambda\left(\nabla_{b} h_{c e}\right) w^{e}+\beta \lambda h_{c e} \nabla_{b} w^{e} \\
= & \left(\nabla_{b}(\beta \lambda)\right) v_{c}+\beta \lambda \nabla_{b} v_{c}-2\left(\beta \nabla_{b} \beta-\lambda \nabla_{b} \lambda\right) w_{c}-\left(\beta^{2}-\lambda^{2}\right) \nabla_{b} w_{c},
\end{aligned}
$$

from which, using (4.2)~(4.5), (4.14) and (4.15), we also have

$$
\beta \lambda\left(\nabla_{b} h_{c e}\right) w^{e}-\beta \lambda h_{c e} h_{b a} f^{e a}=\beta \lambda f_{b c}+\left(\beta^{2}-\lambda^{2}\right) h_{b e} f_{c}^{e} .
$$

Taking the skew-symmetric part of this equation and making use of (4.6) and (4.7), we get

$$
\begin{equation*}
\beta \lambda\left(h_{c e} h_{a}{ }^{e} f_{b}{ }^{a}+f_{c b}\right)+\left(\beta^{2}-\lambda^{2}\right) h_{c e} f_{b}^{e}=0 . \tag{4.16}
\end{equation*}
$$

Transvecting (4.16) with $f_{d}{ }^{b}$, we aftain

$$
\begin{equation*}
\beta \lambda h_{c}^{e} h_{e d}+\left(\beta^{2}-\lambda^{2}\right) h_{c d}-\beta \lambda g_{c d}=0 . \tag{4.17}
\end{equation*}
$$

On the other hand, owing to (4.4), (4.5) and (4.15), λ / β is covariantly constant, and consequently, $\lambda=\beta c$ for suitable non-zero constant c.

Thus, we can get, from (4.17),

$$
h_{c}{ }^{e} h_{e d}=\frac{c}{c^{2}-1} h_{c d}+g_{c d} .
$$

From this relation we can easily verify that eigenvalues of $\left(h_{b}{ }^{c}\right)$ are c and $-1 / c$.
Now we define a (1,1)-type tensor $P_{b}{ }^{c}$ as the form:

$$
\begin{equation*}
P_{b}{ }^{c}=-\frac{c}{c^{2}+1}\left(h_{b}^{c}-c \delta_{b}{ }^{c}\right) . \tag{4.18}
\end{equation*}
$$

Then we can easily see that

$$
\begin{equation*}
P_{c}^{e} P_{e b}=P_{c b}, \tag{4.19}
\end{equation*}
$$

that is, $P_{b}{ }^{c}$ is an almost product structure, and

$$
\begin{equation*}
\nabla_{d} P_{b}{ }^{c}=0 \tag{4.20}
\end{equation*}
$$

because of (4.6).
Moreover, from (4.15) we can classify our development in two cases;
1st case: M is totally umbilical:
2 nd case: $1 \leqq$ rank of $\left(P_{c}{ }^{b}\right) \leqq 2 n-2$.
In the 1 st case, we find that M is a $(2 n-1)$-dimensional sphere $S^{2 n-1}$.
In the 2nd case, taking account of $h_{c b}=-P_{c b} / c+c Q_{c b}$, (4.18), (4.19) and (4.20), where $P_{c e}=P_{c}{ }_{c}^{e} g_{e b}$ and $Q_{c b}=g_{c b}-P_{c b}$, we can apply the Theorem A to our discussion.

Summing up, we have
Theorem 4.1. Let M be a complete and connected hypersurface of an evendimensional sphere $S^{2 n}$. If the induced $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure is normal, $S_{c o}{ }^{\bar{b}}=0$ and the function λ is almost everywhere non-zero on M, then M is congruent to $S^{2 n-1}$ or the hypersurface $S^{p} \times S^{2 n-1-p}$ naturally embedded in $S^{2 n}$, where p is the rank of $\left(P_{c}{ }^{b}\right)$.

Bibliography

[1] Blair, D. E., Ludden, G.D. and K. Yano, Induced structures on submanifolds. Kōdai Math. Sem. Rep., 22 (1970), 188-198.
[2] Blair, D.e., Ludden, G.D. and M. Okumura, Hypersurface of an even-dimensional sphere satisfying a certain commutatıve condition. J. of Math. Soc. Japan, 25 (1973).
[3] Ishihara, S. and U-Hang Ki, Complete Riemannian manifolds with (f, g, u, v, λ). structure. J. of Diff. Geo. 8 (1973), 541-544.
[4:] Ki, U-Hang and Jin Suk Pak, On certain ($f, g ; u, v, \lambda$) -structure. Kōdai Math. Sem. Rep. 25 (1973), 435-445.
[5] Yano, K. and S. Ishihara, On a problem of Nomizu-Smyth on a normal contact Riemannian manifold. J. Diff. Geo., 3 (1969), 45-58.
[6] Yano, K. and M. Okumura, Invariant hypersurfaces of a manifold with (f, g, u, v, λ)-structure. Kōdai Math. Sem. Rep., 23 (1971), 290-304.
[7] Yano, K. and M. Okumura, On (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep., 22 (1970), 401-423.
[8] Yano, K. and U-Hang Ki, On quasi-normal (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep., 24 (1972), 106-120.

Kyungpook University.

