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ON (/, g, ut», αc*)-STRUCTURES

BY U-HANG KI, JIN SUK PAK AND HYUN BAE SUH

§ 0. Introduction.

Yano and Okumura [6] have studied hypersurfaces of a manifold with
(/, g, UJ v, ̂ -structure. These submanifolds admit under certain conditions what
we call an (/, g, wα), αα))-structure. In particular, a hypersurface of an even-
dimensional sphere carries an (/, g, um, αα))-structure (see also Blair, Ludden
and Okumura [2]). Submanifolds of codimension 2 in an almost contact metric
manifold also admit the same kind of structure (see Yano and Ishihara [5]).

The main purpose of the present paper is to study the (/, g, ua^ aiky)~
structure and hypersurfaces of an even-dimensional sphere. In § 1, we define
and discuss (/, Ua^ Ucn, am)-structure and (/, g, um, α^-structure. In § 2, we
recall the definition of (/, g, u, v, ̂ -structure and give examples of the manifold
with (/, g, um, αα))-structure. In § 3, we study non-invariant hypersurfaces of a
manifold with normal (/, g, u, v, Λ)-structure. In the last section, we study hyper-
surfaces of an even-dimensional sphere S2n under certain conditions by using of
the following theorem proved by Ishihara and one of the present authors [3] :

THEOREM A. Let (M, g) be a complete and connected hypersurface immersed
in a sphere Sm+1(l) with induced metric g5i and assume that there is in (M, g)
an almost product structure Pt

h of rank p such that V^Pt

Λ=0. // the second
fundamental tensor Hjt of the hypersurface (M, g) has the form HlJ=aPji

J

rbQjU

a and b being non-zero constants, where P>ji=PJ

tgu and Qji—gji—Pμ, and, if
m—l^p^l, then the hypersurface (M, g) is congruent to the hypersurface S ^ )
χSm-p(r2) naturally embedded in Sm+1(l), where 1/^=1+a 2 and l/r2

2=l+b\

Let M be an m-dimensional differentiate manifold of class C°°. We assume
there exist on M a tensor field / type (1,1), vector fields U, V and W, 1-forms
u, v and w, functions a, β and γ satisfying the conditions (1.1)~(1.7):

(1.1) pX=-X+u(X)U+v(X)V+w(X)W

for any vector field X,
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fU=-γV+βW, uof=γv-βw,

fV=γU+aW, vof=-γu-aw,

-/3£/-α:F, wof=βu+av,

161

(1.2)

(1.3)

(1.4)

where 1-forms wo/, yof and lί o/ are respectively defined by

(uof)(X)=u(fX), (vof)(X)=υ(fX), (wof)(X)=w(fX)

for any vector field X, and

(1.5) u(U) = l-β2-f, u(V) = -aβ, u(W)=-aγ,

(1.6) v(U)=-aβ, v ( ^ ) = l - « 8 - r a . *>(WO=j8r,

(1.7) w(U)=-aγ, w(V)=βγ, w(W)=l-a2-β2.

In this case, we say that the manifold M has an (/, £/α), M(W, am)-structure.
We first prove

LEMMA 1.1. /n α manifold with (/, ί/α), wα), ack))-structure, the vectors U, V
and W (or the covectors u, v and w) are linearly dependent if and only if

Proof. If there are three numbers a, b and c such that

aU+bV+cW=Q,

then, using (1.5), (1.6) and (1.7), we obtain

(l-β2-γ2)a-aβb-aγc=0 ,

-aβa+(l-a2-r2)b+βγc=0 ,

-aγa+βγb+(l-a2-β2)c=0.
Since we obtain

(1.8) det

i—β2 — γ2 —aβ —aγ

-aβ l-a2-γ2 βγ

-aγ βγ l-a2-β2

we can immediately derive our result.

In the next place, we prove that a manifold with (/, Um, w(W, αc^)-structure
is odd-dimensional. Let P be a point of M at which a2+β2+γ2φl. Then the
vectors U, V and W are linearly independent at this point P by virture of
Lemma 1.1. Thus we can choose m linearly independent vectors X1=Uf X2=V,
XB=W, X4, •••, Xm which span the tangent space TP(M) of M at P and such
that u(Xt)=0, v(Xt)=0 and w(Xι)=0J for i=4, •••, m. Consequently, we have
from (1.1)



162 U-HANG KI, JIN SUK PAK AND HYUN BAE SUH

f*Xt=-X%, i=4, . . , m ,

which shows that / is an almost complex structure in the subspace Vp of TP(M)
at P spanned by Xiy •••, Xm and that Vp is even-dimensional. Thus TP(M) is
odd-dimensional.

Next, let P be a point of M at which a2+β*+γ*=L Then u, v and w are
linearly dependent at this point by virtue of Lemma 1.1. Let say,

(1.9) u=av+bw,

where a and b are numbers. Then, from (1.2), (1.3), (1.4) and uof=avof+bwof,
we have

γv—βw——aγ(avJrbw)—aaw-\-bβ(av-\rbw)-\-bav,

or,

(1.10) 0=(-γ-a2γ+abβ+ba)v+(β-abγ-aa+b2β)w.

Moreover, from (1.9), we get u(W)=av(W)+bw(W), or, using (1.7),

(1.11) -aγ=aβγ+bγ2

by virtue of γ2=l—a2—β2.
If γ(P)Φ0, then, from (1.10) and (1.11), we find

This means that any two of covectors u, v and w are also linearly dependent at
this point. Since M/^0 at P, we can choose m linearly independent covectors
w1=w) w2, ws, •••, wm which span the cotangent space CTP(M) of M at P. We
denote the dual basis by (Xlt •••, Xm). Then we have

/ • * , = - * , , i=2,3, ,m,

which shows that / is an almost complex structure in the subspace Vp of TP(M)
which is spanned by X2, •••, Xm and that dim Vp=even, and consequently TP(M)
is of odd-dimensional.

If 7 (P)=0, then β(P)Φθ because of a2=-aaβ-baγ and a2+β2+γ2=l. More-
over, from —aβ=aβ2+bβγ and (1.10), we have 0=(α&/3+&α)ι;+(l+α2+&2)βiί/.

On the other hand, two covectors u and v are not zero at the same time.
Thus we can get the same result as above in this case.

The cases left to examine are in which

v=a1u-\-b1w, w—a2u+b2v,

where α/s and bfS (i—1, 2) are numbers. But, in these cases, we can also prove
the same results as above by the similar method. Thus we have

THEOREM 1.2. A differentiable manifold with (/, [/(», uck), a^J-structure is
odd-dimensional.
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Suppose that (2n—l)-dimensional manifold M has an (/, ί/α), uiK)i αcw)-struc-
ture. Now, we consider the product manifold MxR*, Rz being a 3-dimensional
Euclidean space. We define in Mx Rs a tensor field F of type (1, 1) with local
components FB

Λ given by

(1.12)

jja wa

0 -γ β

-vc γ 0 a

L — wc —β —a 0

in {NxR*, xA}, {N, xa} being a coordiante neighborhood of M and Λ:1, X2, X3

Cartesian coordiantes in R\ where fc

a, Ua, Va, Wa, uc, vc and wc are respectively
local components of /, U, V, W, u, v and w in {N, xa}. (The indices A, B, C, •••
run over the range {1, 2, •••, 2n+2} and α, 6, c, ύί, e run over the range {1, 2, •••,
2w—1}. We denote 2n, 2n+l, 2?z+2 by ϊ, 2 and 3 respectively.) Then, taking
account of (1.1)~(1.7), we can easily check that F2=—I holds in MxR*. Thus
we have

PROPOSITION 1.3. // there is given an (/, £/<*>, M(«, a^)structure in M, then
the tensor field F defined by (1.12) is an almost complex structure in Mx Rz.

Denoting d/dxA by dΛ, then Nijenhuis tensor [F, F ] of F has local com-
ponents

(1.13) SCB

A=FcεdEFB

A-FB

EdEFc

A-{dcFB

E-dBFc

E)FE

A

in MxR3. Thus, using (1.12), we can write down SCB

A as follows;

(1.14) Srt

β=/β

ί3.Λ«-/, 9β/ί -O eΛ -3»/ί )/.β

(1.15)

(1.16)

(1.17)

(1.18)

—r(dcvt,—dbvc)+β(dcwb—dι,wc),

β{dcub—dbuc)-a{dcvb-dbvc),

β3eί/α- Uedefc

a-(dcU
e)fe

a-(dcΐ)Va
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(1.19) Sc^fc

edeV
a-V%fc

a-(dcV
e)

+(dca)W\

-iβca)V\

Specially, if Scb

a=0, then we say that the (/, ί/(ft), wα), αα ))-structure is normal.
We assume that, in M with (/, Ua), u^, α(feJ)-structure, there exists a positive
definite Riemannian metric g such that

(1.21) g(U, X)=u(X), g(V, X)=v(X), g(W, X)=w(X)

and

(1.22) g(fX, fY)=g{X, Y)-u{X)u{Y)-v{X)v{Y)-w(X)w{Y)

for any vector fields X and Y of M. We call such a structure a metric (/, ί/<ft),
K(», ocm)-structure and denote it by (/, 5", w(Jk), α c w ) .

Finally, we define a tensor field of type (0, 2) of M by

(1.23) Θ(X, Y)=g(fX, Y)

for any vector fields X and Y of M. Then we can easily verify that

(1.24) Θ(X, Y)=-Θ(Y, X)

because of (1.1)~(1.4) and (1.21)^(1.23).

§ 2. Examples.

Let Mbe a 2n-dimensional differentiable manifold with (/, g, u, v, Λ)-structure,
that is, a Riemannian manifold admitting a tensor field f%

h of type (1,1), Rie-
mannian metric gJit two 1-forms u% and v% (or two vector fields uh=Uigih and
vn—vxg

in) and a function λ which satisfy

(2.1) f/ut=λvJ9 f/vt=-λuJf

u'ff^-λv*, vιft

h=λuh,

< utu
t=vtv

t=l—λ2, utv
l=^0

where (gji)=(gji) \ here and in the sequel the indices A, j , i, ••• running over
the range {1, 2, •••, 2n}.

If we put fjί=fjtgtι, we can easily see that /,* is skew-symmetric.
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We put

(2.2) V = H / , / ] / + ( 7 ; . ί / i - 7 i i / > H ( V ^ - 7 i ί ; > f t ,

C/> /]jiA denoting the Nijenhuis tensor formed with ft

h and 7Z the operator of

covariant differentiation with respect to the Christoffel symbols -f .j formed

with gji. If Sjih vanishes, it is said that the (/, g, u, v, Λ)-structure is normal
([7]).

The following theorem is well known (cf. [4], [8]):

THEOREM 2.1. Let M be a manifold with normal (/, g, u, v, λ)-structure
satisfying 7 ^ — 7 ^ = 2 / ^ (or equivalently 7 ^ + 7 ^ = —2λgjt). If the function
λ(l—λ2) does not vanish almost everywhere, then we have

(2.3) 7,Λft

(2.4) Vjut

(2.5) Vjλ^Uj + φVj,

φ being constant. Moreover, if M is complete and dimM>2, then M is isometric
with an even-dimensional sphere.

An even-dimensional sphere S2n induces a normal (/, g, u, v, Λ)-structure and
satisfies differential equations (2.3)~(2.5) with 0=0 (cf. [1]).

We consider a (2n—l)-dimensional manifold M covered by a system of
coordinate neighborhoods {U;xa}, where here and throughout the paper the
indices a, b, c, d, e, ••• run over the range {1, 2, •••, In—1}. We assume that the
manifold M is immersed in M by the immersion ι' M^M as a hypersurface
i(M) of M and that the equations of i(M) in M are

yh=y\xb).

If we put Bb

hj=dby
h(db=d/dxb), then the Riemannian metric induced on i(M)

from that of M is given by gcb^gjiB^Bb1- We identify i(M) with M itself.
Moreover, if we choose a unit vector Nh of M normal to M in such a way

that 2n vectors Bb

h, Nh give the positive orientation of M, then the transforms
ft

hBb

ι of Bb by f%

h can be expressed as linear combinations of Be

h and Nh,
that is,

(2.6) ft

hBb

ι=fb

eBe

h+wbN
h,

where fb is a tensor field of type (1, 1) and wb is a 1-form on M. Similarly,
the transform ft

hNι of Nι by / / and vectors uh, vh can be written as

(2.7) ffN^-w B*,

(2.8) uh=ueBe

h+βNh,

(2.9) vh=veBe

h+aNh,
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where we=wag
ae, ue and ve are vectors, a and β are functions on M.

Transvecting (2.6) with fh

J and taking account of (2.1), (2.6) itself and (2.7),
we find

or, using (2.8) and (2.9),

from which,

(2.10) fb

efea=-δb

a+ubu
a+vbv

a+wbw
a,

(2.11) fb

ewe

Transvecting (2.7) with fh

J and making use of (2.1), (2.6), (2.8) and (2.9), we
have

(2.12) wew
e=l-a2-β2.

Transvecting (2.8) and (2.9) with fh

3 and using (2.1), (2.6) and (2.7), we get

(2.13) f<aue=-λva+βwa,

(2.14) fe

ave=λua+awa,

(2.15) uew
e=-aλ, vew

e=βλ.

Similarly, transvecting (2.8) and (2.9) with uh and vh, we obtain

(2.16) ueu
e=l-β2-λ2, vev

e=l-a2-λ2, uev
e=-aβ.

On the other hand we find, from the second equation of (2.1) and (2.6),

(2.17) geafcefba=gcb-U€Ub-VcVI)~-WcWb .

Therefore, equations (2.10)^(2.17) mean that M admits an (/, g, ui10, α c w )-
structure. If we put fCb~fcegeb, then fcb is skew-symmetric because fμ is skew-
symmetric.

Next, we assume that M be a (2n+l)-dimensional almost contact metric
manifold covered by a system of coordinate neighborhoods {U y*}, i.e.,

(2.18) fμ

κff=-δf+vλv
κ,

(2.19) ΛV=0, vλv*=l,

(2.20) gκJμfx=gμχ-vμυλ,

where / / is a tensor field of type (1, 1), gμλ is the Riemannian metric of M, vλ

is a 1-form and vκ=vλg
λκ, the indices λ, μ, v, — running over the range {1, 2, •••,

2n+l} in this section.
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Let M be a (2n—1) -dimensional manifold covered by a system of coordinate
neighborhoods {U xb}, which is differentiably immersed in M as a submanifold
of codimension 2 by the equations yκ=yκ(xb). If we put Bb

κ=dby
κ, db=d/dxb,

then 5 6 * are In—1 linearly independent local vector fields of A/ tangent to M,
and the Riemannian metric induced on M from that of M is given by gcb—
gμυBc

μBb

v. If we choose two unit vectors Cκ and D* of M normal to M m such
a way that 2 n + l vectors Bb

κ, Cκ, Dκ give the positive orientation of M, then
we can write equations of the form

(2.21) fλ<Bb*=fb'BS+wbC*+ubD*,

(2.22) f/Cλ=-weBe

κ+βD«, fλ«Dλ=-ueBe«-βC«,

where ue=uag
ae, we=wag

ae, fb

a is a global tensor field of type (1, 1), ua and wa

are 1-forms and β is a function in M. We can easily see that β is independent
of the choice of C and D. The vector field vκ has the form

(2.23) vK=veBe

K+aCK+rD*,

where ve defines vector field in M and α, p are functions of M.
In this case, we also verify that a submanifold M of codimension 2 in an

almost contact metric manifold admits an (/, g, uCk>, αcw)-structure (cf. [4]).

§ 3. Hypersurfaces of a manifold with normal (/, gf u, v, Λ)-structure.
/%/

Let M be a manifold with normal (/, g, u, v, /O-structure such that the func-
tion λ(l—λ2) is non-zero almost everywhere and satisfies ^jVi—livj=2fji (or
equivalently ^^-{-1 iuj—--2λgji). In this section we consider a differentiable
manifold M which is a hypersurface immersed in such a manifold M.

Denoting by 7C the operator of covariant differentiation with respect to the

Christoffel symbols | a Λ formed with gcb, then the equations of Gauss and

Weingarten for M are given by

(3.1) lcBb

h=hcbN
h, !cN

h=-hc

eBe

h,

where hc

a=hceg
ea, ΊcBb

h^dcBb

h+{ h^Bc

jBb

ι-{c

a^Ba

h is the so-called van der

Waerden-Borbtolotti covariant derivative of Bb

h and hcb the second fundamental
tensor.

Differentiating (2.6) covariantly along M and using (2.3) and (3.1), we find

form which,
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gcb(φueBe

h+φβNh-veBe

h-aNh)-δc%φub-vb)Be

h-hcbw
eBe

h

by virtue of (2.7)^(2.9) and consequently

(3.2) Vcfb

a=gcb(φua

(3.3) ^cwb

Differentiating also (2.8) and (2.9) covariantly and taking account of (2.4),
(2.6) and (3.1), we obtain

(3.4) Vcub=

(3.5) !cvb=-φλgcb+ahcb+fcb,

(3.6) lca=-hcev
e+wc, Vcβ=-hceu

e-φwc.

Transvecting (2.5) with Bc

3 and using (2.8) and (2.9), we have

(3.7) leλ=ue+φυc.

In section 1, we introduced several tensors on M determined by the Nijenhuis
tensor [F, F ] of the complex structure tensor F on MX R3. Substituting (3.2)~
(3.7) into (1.14)^(1.20), ••• we have respectively

(3.8) Scb

a=(fc

ehe

a-hc

efe

a)wb-(fb

ehe

a-hb%
a)wCf

(3.9) Scb

ι—{lficeu
e)wb-{hbs

e)wc^{ucvb-ubv^),

(3.10) Scb*=(hcev
e)wb-(hbev

e)wc-\-φ(ucvb—ubvc),

(3.11) Scb

s=(hcew
e)wb—(hbew

e)wc—(vcwb~vbwc)+φ(ucwb—ubwc)f

(3.12) Scl

a=β(f/he

a-he

(3.13) Scf=a(fc

ehe

a-hc

(3.14) Scf=-hedfc

efad+hc

a-wc(he

awη+(φuc--vc)wa,

We now prove

LEMMA 3.1. Let M be a hypersurface of 2n~dimensional manifold M with
normal (/, g, u, v, λ)~structure such that the function λ(l—λ2) is not zero almost
everywhere on M and satisfies T7jVi—

x7iVj=2ftJ (or equivalently 7 J wi+7ίWy=—2λgji).
Then

(3.15) a%+

if and only if λ is constant, where a, β are defined on (2.8) and (2.9).

Proof. Suppose that a2+β2+λ2=l. Then we know in Lemma 1.1 that uc, vc
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and wc are linearly dependent. Thus we can put

(3.16) uc=avc

J

Γbwc,

where a and b are numbers.
Transvecting (3.16) with fb

c and using (2.11), (2.13), (2.14) and (3.16) itself,
we find

(3.17) (λ+a2λ-abβ-ba)vb-(β+b2β-aa-abλ)wb=O.

On the other hand, transvecting (3.16) with uc, vc and wc and using (2.12),
(2.15), (2.16) and (3.15), we get

a(a+aβ+bλ)=β(a+aβ+bλ)=λ(a+aβ+bλ)=O,

or, using (3.15),

(3.18) a+aβ+bλ=0.

Substituting this into (3.17), we have

from which,

(3.19) λvb-βwb=0.

Comparing (3.19) with (3.16) and taking account of (3.18), we obtain

(3.20) βub+avb=0, λ

Differentiating the first equation of (3.20) covariantly along M and using
(3.4), (3.5) and (3.6) we get

(3.21) 0= — (hceu
eub+hcev

evb)
J

Γwc(vb—φub)

-λ(φa+β)gcb+(a2+β2)hcb+(a-φβ)fcb,

from which, multiplying this equation by a2 and making use of (3.20) in the
equation obtained,

0=-(α 2 +β 2 )h c e u
e u b +λ(φa+β)u c u b

-a2λ(φa+β)gcb+a2(a2+β2)hcb+a2(a-φβ)fcb,

or, taking the skew-symmetric part with respect to c and b,

(3.22) -(cc2+β2)(hceu
eub-hbeu

euc)+2a\a-φβ)fcb=0.

Transvecting (3.22) with ub and using (2.13) and (3.15), we get

-(a2+β2){a2hceu
e-(heau

eua)uc}+2a2(a-φβ)(λvc-βwc)=0,

or, using (3.19),

(a2+β2){a2hceιι
e-(heau

eua)uc}=0 .
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Substituting last equation into (3.22), we have

a\a-φβ)feb=0,

from which, transvecting fcb and using (3.15), a\a— φβ)=Q, which implies

(3.23) a%a-φβ)=0.

Similarly, from (3.21), we can prove that

(3.24) β%a-φβ)=Q, λ\a-φβ)=0

by virtue of (3.15), (3.19) and (3.20).

Adding (3.23) to (3.24) and making use of (3.15), we find

(3.25) a-φβ=0.

Differentiating (3.15) covariantly and taking account of (3.6), we obtain

2a(-hcev
e+wc)+2β(-hceu

e-φwc)+Vc(λ2)=0,
or,

-hce(ave+βue)+(a-φβ)wc+l/2Vc(λ2)=0

and consequently Vc(Λ2)=0 by virtue of (3.20) and (3.25). Thus Λ=const. on M.
Conversely, if we suppose λ—const., then we have from (3.7)

(3.26) uc=-φvc,

which means that ua, va and wa are linearly dependent vectors.
According to Lemma 1.1, we see

This completes the proof of Lemma 3.1.

LEMMA 3.2. Under the same assumptions as those in Lemma 3.1, the four
conditions Sch

ι=Q, 5 c i

α =0, (3.15) and λ—const, are equivalent to each other.

Proof. Assume that SCδi=r0, that is,

(3.27) (hceu
e)wb-(hbeu

e)wc+(ucvb-ubvc)=0.

Transvecting (3.27) with wb, we find

(3.28) a-a2-β2)hceu
e=-βλuc-aλvc+(heau

ewa)wc,

from which, combining (3.28) and (3.27),

(3.29) 0=(l—a 2 —β 2 )(u c v b —u b v c )—aλ(v c w b —v b w c )+βλ(w c u b —w b u c ),

or, transvecting (3.29) with fcb and using (2.11)^(2.15),

If we put A^ 0 ={P:( l-α 2 -/3 2 -^ 2 ) (P)^0} , then λ=0f I e., λ=const, on NQ,
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which means 1—a2—β2—λ2—0 on No by virtue of Lemma 3.1. Therefore we find
(3.15) on M.

Conversely, suppose that (3.15) satisfies, then (3.20), (3.25) and (3.26) are
implied.

Differentiating (3.26) covariantly and making use of (3.4) and (3.5), we obtain

βhcb-λgcb=0.

On # i = { P : β(P)=0}, α = 0 and λ=0 as consequences of (3.25) and the above
equation, respectively. This is contradiction to (3.15). It follows that Λ^ is
void. Thus β^O on M. Therefore we have

(3.30) hcb=^gcb.

Substituting (3.20) and (3.30) into (3.9), we get 5 ^ = 0 . Therefore, the two
conditions S c 6

x =0 and (3.15) are equivalent.
Next, hypothesize Scι

a=0, that is,

from which, taking the skew-symmetric part,

wc(heau
e)—wa(hecu

e)-\-vcua—ucva=0,

which is the same equation as (3.27).
Hence, by the same method, we can verify that the two conditions S ci

α=0
and (3.15) are equivalent.

Therefore, combining these and Lemma 3.1, we obtain Lemma 3.2.

Now, if (3.15) holds, then, substituting (3.19), (3.20) and (3.30) into (3.8), (3.10),

(3.11), (3.13) and (3.14), we find Scb

a=Sc/=Scf=SC2
a=Scf= ••• =0. Thus we obtain

THEOREM 3.3. Let M be a hypersurface of In-dimensional manifold M with
normal (/, g, u, v, λ)-structure such that the function λ(l—λ2) is not zero almost
everywhere on M and satisfies ^jVi—Vivj=2fji (or equivalently Vjuί+

r7iuj=—2λgji).
Then

(3.31) a*+β*+λ*=l,

Sj=0t Scl

a=0 or Λ:=const.

implies Scb

a=Scb*=Sj=SC2
a=Scf= ••• =0. If one equation of (3.31) satisfies, then

M is totally umbilical.

PROPOSITION 3.4. Let M be a hypersurface of 2n-dimensional manifold M
with normal (/, g, u, v, λ)-structure such that the function λ(l—λ2) is not zero
almost everywhere on M and satisfies ^jVi—

T7ivj=2fji (or equivalently
=—2λgji). Then the necessary and sufficient condition that the induced
am)-structure on M is normal is
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(3.32) fcehe

a-hc

efea=O.

Proof. The proof of the necessity is trivial.
Let (/, g, M(Jk), αα ))-structure be normal, that is, S c δ

α=0. Putting Tc

a=fc

ehe

a—
hc

efe

a, (3.12) becomes

(3.33) Tc

awb-Tb

awc=0,

from which, contracting with respect to c and b,

(3.34) Tc

ewe=0.

Transvecting (3.33) with wb and using (3.34), we get

( l-α 2 - j8 2 )T c

β =0.

On N2={P<ΞM: Tc

a(P)Φθ}, l-a2-β2=0 from which wc=0. Thus it follows
that fc

ewe=βuc-{-avc=Q on N2. Since the last equation means that uε and vc are
linearly dependent, we get (3.15). Hence, owing to (3.15) and 1—α2—β2=0, hcb=0
holds on this set. Thus we find T c

α = 0 on N2, which implies Tc

α=0 on M.
Therefore, the sufficiency is also proved.

§ 4. Hypersurfaces of an even-dimensional sphere.

In this section, we consider a manifold M admitting (/, g, um, αα ))-structure
as a hypersurface of even-dimensional sphere S2n.

According to the structure equations of S2n given in section 2, we can see
that M satisfies differential equations (3.2)~(3.7) with φ=0 (cf. [2]), i.e.,

(4.1) Vcfb

α=-gct>vα+δc

αvb-hcbw
α+hc

αwb,

(4.2) VcWb^-αgcb—hceft,6,

(4.3) Vcub=-λgcb+βhcb, Vcvb=αhcb+fcb,

(4.4) Vcα=-hcev
e+wc, lcβ=-hceu

e,

(4.5) VcΛ=wc.

Since we consider S2 ί l as a space of constant curvature, M also satisfies

(4.6) V c / ι 6 α - 7 δ / ι c α - 0 .

Remark. If we assume that λ=0, then wc=0 from (4.5), from which β2=l
by virtue of (1.5). Hence we find hcb=0 from (4.3). This means that M is
totally geodesic. Afterward we consider the case in which λφO almost every-
where.

Now, we suppose that S c 6

α =0 and S c 6

3=0, or equivalently,

(4.7) hcefb

e+hbefc

e=0,
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and

(4.8) (hcew
e)wb—(hbew

e)wc—(vcwb—vbwc)=O.

Transvecting (4.8) with vb, we have

(4.9) βλhcew
e=βλvc+{(heav

ewa)-a-a2-λ2)}wc.

Transvecting (4.9) with uc, we get

(4.10) 0=β(heau
ewa) + a(heav

ewa)-a(l-a2-β2-λ2)

because of (1.5).
On the other hand, transvecting (4.7) with wcwb and using (1.4), we also find

(4.11) β(heau
ewa)+a(heav

ewa)=0.

Comparing (4.10) and (4.11), we find

α(l-α 2 -/3 2 —Λ 2 )=0.

If we put M1={P:a(P)Φθ}dM9 then a2+β2+λ2=l on Mx. It is easily
shown that a=0 on Mx by the same method as that in the proof of Lemma 3.1.
Thus Mx is void, that is, a—0 on M.

Using (1.7), (4.4) and the fact α=0, we have

(4.12) hcev
e=wc

and

(4.13) hcev
cwe=l-β2.

On M 2 = { P : β(P)=0}, transvecting (4.8) with wh and taking account of a=0,
we obtain

hcew
e=vc-\-(heaw

ewa)wc,
and consequently

hcev
cwe=l-λ2

by virtue of (1.6).
Substituting this equation into (4.13), we find Λ=0 on M2. Thus M2 is null,

i.e., βΦO on M.
On the other hand, substituting (4.13) into (4.9), we have

(4.14) βλhcew
e=βλvc-(β2-λ2)wc.

Transvecting (4.7) with vc and using (1.3), (1.4) and (4.12), we find

(4.15) λhceu
e=-βuc.

Differentiating (4.14) covariantly, we obtain

lb(βλ)(hcew
e)+βλ(lbhce)we+βλhcelbw

e
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from which, using (4.2)~(4.5), (4.14) and (4.15), we also have

Taking the skew-symmetric part of this equation and making use of (4.6) and
(4.7), we get

(4.16)

Transvecting (4.16) with fd, we aftain

(4.17)

On the other hand, owing to (4.4), (4.5) and (4.15), λ/β is covariantly con-
stant, and consequently, λ—βc for suitable non-zero constant c.

Thus, we can get, from (4.17),

hc

ehed= c 2 ^ 1 hcd-\-gcd.

From this relation we can easily verify that eigenvalues of (hb

c) are c and — 1/c.
Now we define a (1, l)-tyρe tensor Pb

c as the form:

(4.18) Pb

c=

Then we can easily see that

(4.19) Pc

ePeb=Pcb,

that is, Pb is an almost product structure, and

(4.20) ΊdPb

c=0

because of (4.6).
Moreover, from (4.15) we can classify our development in two cases;
1st case : M is totally umbilical:
2nd case: l ^ r a n k of (/Y)^2n-2.
In the 1st case, we find that M i s a (2n—1)-dimensional sphere S271"1.

In the 2nd case, taking account of hcb=-Pcb/c+cQcb, (4.18), (4.19) and (4.20),
where Pce—Pfgeb and Qcb—gcb—PCb, we can apply the Theorem A to our dis-
cussion.

Summing up, we have

THEOREM 4.1. Let M be a complete and connected hypersurface of an even-
dimensional sphere S2n. If the induced (/, g, wα), a^)-structure is normal, Sc/=0
and the function λ is almost everywhere non-zero on M, then M is congruent to
S271'1 or the hypersurface SpxS2n~1~p naturally embedded in S2n, where p is the
rank of (P*).
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