A REMARK ON ANALYTIC MAPPINGS BETWEEN TWO ULTRAHYPERELLIPTIC SURFACES

By Hideo Mutō and Kiyoshi Niino

1. Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^{2}=G(z)$ and $u^{2}=g(w)$, respectively, where G and g are two entire functions each of which has no zero other than an infinite number of simple zeros. Let \mathfrak{P}_{R} and \mathfrak{R}_{S} be the projection maps: $(z, y) \rightarrow z$ and $(w, u) \rightarrow w$, respectively. Let φ be a non-trivial analytic mapping of R into S. Then $h(z)=\mathfrak{R}_{S} \circ \varphi \circ \mathfrak{R}_{R}^{-1}(z)$ is a singlevalued regular function of z in $|z|<\infty$ [8]. This entire function $h(z)$ is called the projection of the analytic mapping φ. We denote by $\mathfrak{N}(R, S)$ the family of non-trivial analytic mappings of R into S and by $\mathfrak{f}(R, S)$ the family of projections of analytic mappings belonging to $\mathfrak{X}(R, S)$. Let $\mathfrak{S}_{P}(R, S)$ be the subfamily of $\mathfrak{g}(R, S)$ consisting of polynomials and $\mathscr{S}_{T}(R, S)$ the subfamily of $\mathfrak{g}(R, S)$ consisting of transcendental entire functions.

Let $P(R)$ and $P(S)$ be the Picard constants of R and S, respectively (cf. Ozawa [6]).

In [5] one of the authors has obtained
Theorem A. Let R and S be two ultrahyperelliptic surfaces with $P(R)=$ $P(S)=4$. If $\mathfrak{g}(R, S) \neq \emptyset$, then $\mathfrak{g}(R, S)=\mathfrak{g}_{P}(R, S)$ or $\mathfrak{g}(R, S)=\mathfrak{g}_{T}(R, S)$. Further if $\mathfrak{y}_{P}(R, S) \neq \emptyset$, then $\mathfrak{S}_{P}(R, S)$ consists of polynomials of the same degree and the same modulus of the leading coefficients.

In this paper we shall consider the structure of $\mathscr{S}_{T}(R, S)$ and $\mathfrak{S}_{P}(R, S)$. Our result is the following:

Theorem. Let R and S be two ultrahyperelliptic surfaces with $P(R)=P(S)=4$. Then the followings hold.
(I) If $\mathfrak{S}_{T}(R, S) \neq \emptyset$, then $\mathfrak{S}_{T}(R, S)$ consists of transcendental enture functions of the same order, the same type and the same class.
(II) If $\mathfrak{S}_{P}(R, S) \neq \emptyset$ and $p(z)$ and $q(z)$ are elements of $\mathfrak{S}_{P}(R, S)$, then either (i) there exast a root of unity μ and a constant k such that $p(z)=\mu q(z)+k$ or (ii) there exist constants k, l and m such that $q(z)=r(z)^{2}+k$ and $p(z)=(r(z)+l)^{2}+m$, where $r(z)$ is a polynomıal.

Received May 17, 1973
2. The notions of order, type and class of a meromorphic function are found in Hayman [3, pp. 16-18]. We shall say that the category of a meromorphic function $f(z)$ is larger than that of a meromorphic function $g(z)$ if the order of $f(z)$ is larger than that of $g(z)$ or if the orders are equal and non-zero finite and further the type of $f(z)$ is larger than that of $g(z)$ or if the both are of minimal type and further $f(z)$ is of divergence class and $g(z)$ is of convergence class.

In the first place we shall prove the following :
Lemma. Let $f(z)$ and $g(z)$ be two entire functions. If the category of $f(z)$ is larger than that of $g(z)$, then for any non-constant entire function $h(z)$

$$
\begin{equation*}
\lim _{r \rightarrow \infty}-\frac{T(r, h \circ g)}{T(r, h \circ f)}=0 . \tag{2.1}
\end{equation*}
$$

Proof. It follows from Pólya [8] (cf. [3, p. 51]) that

$$
-\frac{T(r, h \circ g)}{T(r, h \circ f)} \leqq \frac{3 \log M(M(r, g), h)}{\log M(C M(r / 4, f), h)},
$$

where C is a positive constant. We know from Hadamard's three-circle theorem that $\log M(r, h)$ is an increasing convex function of $\log r$, so that $\log M(r, h) / \log r$ is finally increasing. Hence (2.1) follows from

$$
\begin{equation*}
\frac{\lim }{\frac{\log M(r, g)}{r \rightarrow \infty}} \log M(r / 4, f)=0 . \tag{2.2}
\end{equation*}
$$

Now, we shall prove (2.2) when the category of $f(z)$ is larger than that of $g(z)$.

In the case that the order of $f(z)$ is larger than that of $g(z)$ (2.1) follows from Theorem 5 in Gross-Yang [2].

Suppose that the orders are equal to $\lambda(0<\lambda<+\infty)$ and $f(z)$ is of maximal type and $g(z)$ is of mean type or of minimal type, that is,

$$
\varlimsup_{r \rightarrow \infty} \frac{\log M(r, f)}{r^{2}}=\infty \quad \text { and } \quad \varlimsup_{r \rightarrow \infty} \frac{\log M(r, g)}{r^{2}}<A \quad(A<+\infty) .
$$

Then for arbitrary large $K(>A)$, there is a sequence $\left\{r_{n}\right\}$ of positive, increasing and unbounded numbers such that

$$
\frac{\log M\left(r_{n} / 4, f\right)}{r_{n}^{\lambda}}>K \quad \text { and } \quad \frac{\log M\left(r_{n}, g\right)}{r_{n}^{\lambda}}<A
$$

and so

$$
\frac{\lim _{r \rightarrow \infty}}{} \frac{\log M(r, g)}{\log M(r / 4, f)} \leqq \frac{\lim _{1-\infty}}{} \frac{\log M\left(r_{n}, g\right)}{\log M\left(r_{n} / 4, f\right)} \leqq \frac{A}{K} .
$$

Hence we obtain (2.2) since K is arbitrary.
A similar argument shows that (2.2) is true when $f(z)$ is of mean type and
$g(z)$ is of minimal type.
Next suppose that $f(z)$ is of divergence class and $g(z)$ is of convergence class, that is,

$$
\int_{r_{0}}^{\infty} \frac{\log M(r, f)}{r^{\lambda+1}} d r=\infty \quad \text { and } \quad \int_{r_{0}}^{\infty} \frac{\log M(r, g)}{r^{\lambda+1}} d r<+\infty
$$

Then we have

$$
\frac{\lim _{r \rightarrow \infty}}{} \frac{\log M(r, g)}{\log M(r / 4, f)} \leqq \lim _{r \rightarrow \infty} \frac{\int_{r_{0}}^{r} \frac{\log M(s, g)}{s^{\lambda+1}} d s}{\int_{r_{0}}^{r} \frac{\log M(s / 4, f)}{s^{\lambda+1}} d s}=0
$$

which gives (2.2).
Thus the proof of our Lemma is complete.
3. Proof of Theorem. Let R and S be two ultrahyperelliptic surfaces with $P(R)=P(S)=4$ defined by the equations $y^{2}=G(z)$ and $u^{2}=g(w)$, respectively. Then by a result in Ozawa [7], we get

$$
F(z)^{2} G(z)=\left(e^{H(z)}-\alpha\right)\left(e^{H(z)}-\beta\right), \quad \alpha \beta(\alpha-\beta) \neq 0, \quad H(0)=0,
$$

where $F(z)$ is a suitable entire function and $H(z)$ is a non-constant entire function and

$$
f(w)^{2} g(w)=\left(e^{L(w)}-\gamma\right)\left(e^{L(w)}-\delta\right), \quad \gamma \delta(\gamma-\delta) \neq 0, \quad L(0)=0,
$$

where $f(w)$ is a suitable entire function and $L(w)$ is a non-constant entire function.

In the first place we shall prove (I). Now suppose, to the contrary, that there are two entire functions $h_{1}(z)$ and $h_{2}(z)$ belonging to $\mathfrak{S}_{T}(R, S)$ and the category of $h_{2}(z)$ is larger than that of $h_{1}(z)$. Then it follows from our Lemma that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T\left(r, L \circ h_{1}\right)}{T\left(r, L \circ h_{2}\right)}=0 . \tag{3.1}
\end{equation*}
$$

On the other hand Hiromi-Ozawa [4] implies that for each $h_{i}(z)$ belonging to $\mathfrak{S}_{T}(R, S)$, one of two equations

$$
\begin{equation*}
H(z)=L \circ h_{i}(z)-L \circ h_{i}(0) \quad \text { and } \quad H(z)=-L \circ h_{\imath}(z)+L \circ h_{i}(0) \tag{3.2}
\end{equation*}
$$

is valid. Hence we get

$$
T\left(r, L \circ h_{1}\right)=T\left(r, L \circ h_{2}\right)+O(1),
$$

which contradicts (3.1). Hence all entire functions belonging to $\mathfrak{S}_{T}(R, S)$ are of the same category. This completes the proof of (I).

Next we shall prove (II). By Theorem A, for certain μ with $|\mu|=1, a, b_{\jmath}, c_{\jmath}$, we have

$$
\begin{align*}
& q(z)=a z^{n}+\sum_{j=0}^{n-1} b_{j} z^{j}, \tag{3.3}\\
& p(z)=\mu a z^{n}+\sum_{j=0}^{n-1} c_{j} z^{j} \tag{3.4}
\end{align*}
$$

The statement (II) of Theorem holds if $L(z)$ is a linear polynomial. So in the following lines we may assume that $L(z)$ is not a linear polynomial.

By (3.3) and (3.4), we get, about infinity,

$$
\varphi=p\left(q^{-1}(z)\right)=\mu z+\sum_{k=1}^{\infty} A_{k} z^{(n-k) / n} \equiv \mu z+S(z) .
$$

By (3.2) we get

$$
\begin{equation*}
L(p(z))=\varepsilon L(q(z))+C, \tag{3.5}
\end{equation*}
$$

where C and ε are constants satisfying $\varepsilon=1$ or -1 .
As in the proof of the Lemma 2 in [1] we have

$$
\begin{equation*}
\varphi=\mu z+e+\sum_{k=n+1}^{\infty} A_{k} z^{(n-k) / n} \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\varphi=\mu z+\nu z^{1 / 2}+e+d z^{-1 / 2}+\sum_{k>3 n / 2} A_{k} z^{(n-k) / n} . \tag{3.7}
\end{equation*}
$$

We shall prove (3.6) and (3.7). (3.6) and (3.7) are certainly true if $n \leqq 2$, so we assume that $n>2$.

Suppose that $A_{k^{\prime}}$ is the first non-zero coefficient in $S(z)$ and that $k^{\prime}<n$ and $k^{\prime} \neq n / 2$. Then we can see that for large R and any z with $|z|=R$, one of the determinations of $\varphi(z)$ satisfies $|\varphi(z)| \leqq R-\kappa R^{1 / n}$, where $\kappa(0<\kappa<1)$ is a constant, which is independent of R, since $n>2$. We take a large R. Suppose that z_{1} is a point where $|L(z)|$ takes its maximum on $|z|=R$. Let $z_{2}=\varphi\left(z_{1}\right)$ be a point such that $\left|z_{2}\right| \leqq R-\kappa R^{1 / n}$. Then

$$
\begin{align*}
M\left(R-\kappa R^{1 / n}, L\right) & \geqq\left|L\left(z_{2}\right)\right|=\left|L\left(\varphi\left(z_{1}\right)\right)\right| \tag{3.8}\\
& \geqq\left|L\left(z_{1}\right)\right|-|C|=M(R, L)-|C|
\end{align*}
$$

Hence $M(R, L) \leqq K_{1} R+K_{2}$, where K_{1} and K_{2} are constants. By this fact and (3.8) we can see that $L(z)$ must be a constant. It contradicts our assumption.

It remains to discuss the case when $n=2 k$ is even, $A_{k}=\nu \neq 0$ and

$$
\begin{equation*}
\varphi=\mu z+\nu z^{1 / 2}+\sum_{j=k+1}^{\infty} A_{j} z^{(2 k-j) / 2 k} . \tag{3.9}
\end{equation*}
$$

We have to show that $A_{j}=0$ for $k<j<2 k$ and $2 k<\jmath<3 k$. Suppose that $\tilde{\alpha} z^{s / 2 k}$ is the first non-zero and non-constant term in the sum in the right-hand side of (3.9). Then as in [1, pp. 73-74], for large R and any z with $|z|=R$ there exists
a point z_{1} such that $\varphi\left(z_{1}\right)=\varphi(z)$ and $\left|z_{1}\right| \leqq R-\tilde{\kappa} R^{-(k-1) / 2 k}$, where $\tilde{\kappa}(0<\tilde{\kappa}<1)$ is a constant, which is independent of R. By this fact

$$
\left|L\left(z_{1}\right)\right|+|C| \geqq\left|L\left(\varphi\left(z_{1}\right)\right)\right|=|L(\varphi(z))| \geqq|L(z)|-|C| .
$$

Thus, as above, we have $M(R, L) \leqq \tilde{K}_{1} R^{1+(k-1) / 2 k}+\tilde{K}_{2}$, where \tilde{K}_{1} and \tilde{K}_{2} are constants. Hence $L(z)$ must be a linear polynomial. It contradicts our assumption.

If (3.6) holds, then we have the case (i) by (3.5), as in [1, p. 74]. If (3.7) holds, then we get

$$
\varphi=\mu z+\nu z^{1 / 2}+e+d z^{-1 / 2}+\cdots,
$$

where μ, ν, e and d are constants. Since $L(z)$ is not linear, there is an unbounded increasing sequence $\left\{R_{n}\right\}$ such that $M\left(R_{n}-1, L\right)+K \leqq M\left(R_{n}, L\right)$ for any constant K. Hence we have $\mu=1$ by (3.5), as in [1, pp. 72-73]. Put $p(z)-q(z)-e$ $=\nu r(z)$. Then $r(z)$ is a polynomial and satisfies $r\left(q^{-1}(z)\right)=z^{1 / 2}+(d / \nu) z^{-1 / 2}+\cdots$. Thus $r\left(q^{-1}(z)\right)^{2}=z+2(d / \nu)+O\left(z^{-1 / n}\right)$. Hence $r(z)^{2}=q(z)+2(d / \nu)$. So we get $q(z)=$ $r(z)^{2}+k$ and $p(z)=(r(z)+l)^{2}+m$, where k, l and m are constants. This completes the proof of (II).

References

[1] Baker, I.N. and F. Gross, On factorızing entıre functions. Proc. London Math. Soc. (3), 18 (1968), 69-76.
[2] Gross, F. and C.-C. Yang, Some results on growth rate of meromorphic functions. Arch. Math. 23 (1972), 278-284.
[3] Hayman, W.K., Meromorphic functions. Oxford Math. Monogr. (1964).
[4] Hiromi, G. and M. Ozawa, On the existence of analytic mappings between two ultrahyperelliptıc surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 281-306.
[5] Ninno, K., On the family of analytic mappings between two ultrahyperelliptic surfaces. Kōdaı Math. Sem. Rep. 21 (1969), 182-190.
[6] Ozawa, M., On complex analytic mappings. Kōda1 Math. Sem. Rep. 17 (1965), 93-102.
[7] Ozawa, M., On ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 103-108.
[8] Ozawa, M., On the exıstence of analytıc mappıngs. Kōdai Math. Sem. Rep. 17 (1965), 191-197.
[9] Pólya, G., On an integral function of an integral function. J. London Math. Soc. 1 (1926), 12-15.

Department of Mathematics
Faculty of Education, Saitama University, and

Faculty of Engineering, Yokohama National University

