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ON THE RADIAL DISTRIBUTION OF ZEROS AND

POLES OF A MEROMORPHIC FUNCTION

BY TADASHI KOBAYASHI

1. Introduction.

Edrei, Fuchs and Hellerstein Cl] proved the following

THEOREM A. Let F(z) be a meromorphic function with positive zeros (αn)
and negative poles (bn). Assume that

and that

for some finite positive value of s. Then

where A (>0) is an absolute constant.

By a rough estimation their constant A is less than 0.0017, and of course,
far from the best.

Recently, Ozawa [4] gave an improved form of Theorem A in the case of
a canonical product of finite genus having only negative zeros. His result is
the following

THEOREM B. Let G{z) be a canonical product of genus q, having only nega-
tive zeros. If q^2, then

where

If q tends to infinity, then A{q) tends to 1/27Γ2.
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In this note we shall prove the following results.

THEOREM 1. The assumptions of Theorem A imply

where

*=-^ j - > 0.068.

It should be remarked that our A* is larger than 40A, where A is defined
in Theorem A.

The next theorem is an improvement of Theorem B.

THEOREM 2. Let G(z) be an infinite product such that

where #Ξ>1, and the sequence (αn) satisfies the following conditions:
1) an<0 for any n,

2 )

Then for any positive r

where

Further

COROLLARY 1. Let G{z) be a canonical product of finite genus having only
negative zeros. If its genus is sufficiently large, then

THEOREM 3. Let F(z) be a meromorphic function of order λ, lower order μ,
genus q and whose zeros (an) and poles (bn) satisfy the following conditions:

for some β (0£β<π/6q). Then

COROLLAY 2. Let F{z) be a meromorphic function of order λ, lower order μ,
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genus q and having only negative zeros and positive poles. Then

This Corollary 2 is not new, since J. Williamson pointed out this fact in
his paper [6]. Further, he mentioned that this inequality is best possible.
Professor N. Suita also made an example which gives the best possibility. The
author expresses his heartiest thanks to Professor M. Ozawa for his tender
support in preparing this note.

2. To prove Theorem 1, we need the following lemmas.

LEMMA 1. Let g{z) be a meromorphic function defined by

where (an) and (bn) satisfy
1) <2n<0, bn>0 for any n,

2) Σ 1 ^ ^

Then for any positive r

where A* is the absolute constant in Theorem 1, and

N(.r)=N(r,0,g)+N(r,™,g).

Proof. According to [5; Lemma 3], for any a, b (0<a^b<π) and r (>Ό)

, 0)ίK2(t, r, b)-KJjt, r, a)2dt

t, r, π-b)-K2(t, r, π-afidt,

where
1 r

' y ~ π\t J t2+2trco$x+r2 '

Putting a=π/2 and b-^π—0, then

m(r,g)^N(r, 0)-{°°N(t)K2(t1 r.-^-λdt.
Jo \ Δ /

Hence
T(r σ)> IV(r)-\ — Γ N(f) ^ ήf
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This is the desired result.

LEMMA 2. Let f(z) be a meromorphic function of genus one or two, having
only negative zeros (an) and positive poles (bn). If

v> 1 v* 1

then

Further, this inequality still holds if f(z) is replaced by F{z):

where S(z) is an entire function.

Proof. Let g(z) be a meromorphic function defined by

Of course, this function is well defined. By T(r, f)=o(r*) and T(r, g)=o(rs) [3;
p. 235],

/U)=e" 2 + 6 ' + c S(s).

Since f(z)/f(-z)=e2bzg(z)/g(-z), we have

where

G(z)=g(z)/g(-z).

Applying Lemma 1 to G(z), we obtain

T(r, G)^
for any positive r, where N(r)=N(r, 0, f)+N(r, oo, /). On the other hand, by
the assumption and

= π Jo t2

we have
limT(r,G)/r=-

Hence
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This means that

The second part of Lemma 2 is an immediate consequence of the first part.

Proof of Theorem 1. By the assumptions, there exists the integer q which
satisfies

lβ+1 < + c o

In the case that # is less than three, Theorem 1 is obvious by Lemma 2. Hence
we may assume that q is greater than two.

Consider the auxiliary meromorphic function G(z) defined by

where k is an odd integer satisfying (q+l)/3^k^q, and

Evidently we have

JV(r*, oo, G)=^7V(r, oof F) , ΛΓ(r̂ , 0, G)=ftiV(r, 0, F),

T(rfe, G)^kT(r, F).
Therefore,

Since (^+l)/3^^^^, we obtain

• * •

Δ-i

Thus Lemma 2 yields

Hence, the proof of Theorem 1 is completed.

3. In this section, we shall show Theorem 2. The following lemma upon
which our method of proof depends heavily, is due to Hellerstein and William-
son [2].
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L E M M A 3. Let Hq(t, r, slt s2, •••, sq+1) be

[(<Z+l)/2]

Σ (Kq(t, r, s2n+1)-Kq(t, r, s2 n)),

where
K(t r x\- ( ~ l ) g / rΛ , U , n x)- π { t

then for any r > 0 and t>0,

( -
Further, for any ί^l,

( l)QHq(t, 1, 5i 52

In the first place, we assume that q is even. Put

n=0 f 1, - , (q~2)/2

2α+2 n=l,2f~',q/2

and

By Shea's representation, we have

T(r, G)^4"

=N(r)+\ "W)Ht(t, r, sx s2 - S ρ + 1

where

/ « = j | [s2», s2n+1] , N(t)=N(t, 0, G)

According to Lemma 3,

' 1

for any positive r.
Here, we define A*(q) such that

i4*(<7)=J i

β β/?β(M,s1s2..-sβ + 1)Λ.

Since
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Hq{t, 1, Sj s2 ••• sq+1)^ πtq+1(\+t2q)

for any ί^l,

π

__1 1_
~ π 4 '

By an easy calculation,

t, 1, Sl, S2, **• , »q+i;— sLJ_ > 2 j - 9 i / . O g S 2 j i + l - f : i

_i_ v ^+COS 527l

"^ntί ί 2 +2ίcoss 2 n +l
The following elementary relations

1 Λ-
ί 2 +2ίcosu+l '

1

x I fro w=i ί ^

yield

irfQ+lfl (f 1 o c ... ς Λ _ _ _ _ ? i ^ ^ I /I
Λ l I1q\L> •*•» 51> ύ2> > ύ 3 + i y — 9M_l_/2g\ "T O/Ί_ι+2g+2\ "Γ^ig

for any t>l, where
oo J.

A ffλ—. " ^ VΛ

71=1 2t2ncos 2n~l π nil It

Since

we obtain

ŵ 2 fn+i n I + ϊ ?ι=o - n o n-rl ^
2 In t C O S 7Γ COS 7Γ

D

Σ(
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where

Clearly
Λ-i<0, B0>0,

Bn-Λn>0 for n ; 0 ^ n ^ - | - - l ,

Bn—An<0 for n\ -ί~Sn^q—ly

Bn—A^^yO for n; O^n^q—1, n

Hence

2J1 ( 5 n - Λ - i ) ^ 2 3 + 2 n + 1 + I) (
n—q/2 n=q/2

Σ1

»=(β+2)/2
where

From the concavity of cosx for 0^x^-5

Thus, we have

qx /==z 2 ( l + ί 2 5 ) ( l + ί 2 3 + 2 ) '
Therefore

A*

i i . e
2τr 8(9+1) •+" 2 2π J, ί49+2

_ 1 1 Cg , _ _DQ

2π (8g+l) ^ 4(2^+l)π: "*" 2(4^+l)π '
Further

Hence

2\q

Next consider the case that q is odd. In this case we select (ŝ ) such-that
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s ^ ^ π n l 2

i~~2jffΐ~π n=:r0, 1, •••, —2—

sq+1—π.

By Shea's representation, we obtain

log\G(re™)\du

=N{r)-ΓN(t)Hq(t, r, sx s2 - sί+1)Λ
J 0

1)dt)tfβU, 1 , S l S 2 * Sq + 1J

where
(ϊ+Ό/2

/3— 2 [s2n_!, s2n] .

Put Λ*(tf) such that

Then, Lemma 3 yields

The same process leads

where

^ 2q
Hence

(7
COS o , o π

2q+2

Therefore, we have the desired result.

4. Before proceeding with the proof of Theorem 3, we need the following
lemmas.

LEMMA 4 [1 Lemma 2]. Let g(z) be an infinite product such that
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g{z)=τiE(-j-, 2),

where the sequence (cn) satisfies the following conditions:

= + OO and Σ -

2) | a r g c j ^ s for some s(0^s^τ

TΛen
lim T(r, g(z)/g(-z))/r=+oo.

LEMMA 5. Let f(z) be a meromorphic function of genus one or two, and
whose zeros and poles are (an) and (bn), respectively. If

and

for some s (O^s<7r/β), then

limT(r,/)/r=+oo.

Proof Put

A(z)=πE(-£-, 2), B(z)=πE(-£-, 2),

Since the genus of f(z) is less than three, P(z) must be a polynomial of degree
at most two. Thus

f(z)/f(-z)=e"G(z)/G(-z),
where

G(z)=A(z)B(-z).
Applying Lemma 4 to G(z),

lim7Xr,/(z)//(-*))/f=+co.
r-*oo

Hence
lim T(r,/)/r=+00.
r-*oo

0/ Theorem 3. If (αn), (6n) satisfy

then F(^) is regular growth. So there is nothing to prove. Hence, we my
assume that

Σ w + Σ w
Consider the auxiliary function
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where

By the definition,
T(rk,G)^kT(r,F).

Thus, the order of G(z) is not greater than λ/k. Further, from

the genus of G(z) is at most two. The zeros and the poles of G(z) are (an

k)
and (bn

k) respectively, and by l^k^Q, we obtain

Then, Lemma 5 yields
lim T(r, G)/r=+ 00.

This means that the lower order of G(z) is at least one and hence that of F{z)
is at least k. Thus, we complete the proof.
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