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ON THE RADIAL DISTRIBUTION OF ZEROS AND
POLES OF A MEROMORPHIC FUNCTION

By TApAsHI KOBAYASHI

1. Introduction.
Edrei, Fuchs and Hellerstein {17 proved the following

THEOREM A. Let F(2) be a meromorphic function with positive zeros (a,)
and negative poles (b,). Assume that

1 1
2T TR TR =
and that

p> 1(1]7.;[3 +2 Ibi]x < +oo
Jor some finite positive value of s. Then

&= N(@,0, F)4+N(7, oo, F) 1
K(F)=lim 1, F) =15

where A (>0) is an absolute constant.

By a rough estimation their constant A is less than 0.0017, and of course,
far from the best.

Recently, Ozawa [4] gave an improved form of Theorem A in the case of

a canonical product of finite genus having only negative zeros. His result is
the following

THEOREM B. Let G(z) be a canonical product of genus g, having only nega-
tive zeros. If g=2, then

A(g)
50, OzT A A

where

Alg)z—+

= 12n

If q tends to infinity, then A(q) tends to 1/2x?,
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In this note we shall prove the following results.

THEOREM 1. The assumptions of Theorem A imply

1
KE) =135

where
1 1

A*:_n'__ ks 0.068.

It should be remarked that our A* is larger than 40A, where A is defined

in Theorem A.
The next theorem is an improvement of Theorem B.

THEOREM 2. Let G(z) be an infinite product such that
G()=TIE(——, 1) »
where q=1, and the sequence (a,) satisfies the following conditions:
1) a,<0 for any n,
2) Ejﬁq—ﬂ“<+00.
Then for any positive r

T(r, G)=(1+A%(@)N(, 0, G),

where
Agyz-L 1.
Further
. 1 1
’117‘3} A*(Q)g—ﬁ — —ZF> 0.1084 .

COROLLARY 1. Let G(2) be a canonical product of finite genus having only
negative zeros. If its genus is sufficiently large, then

800, G)> -

THEOREM 3. Let F(2) be a meromorphic function of order 2, lower order p,
genus q and whose zeros (a,) and poles (b,) satisfy the following conditions:

larg a,—7| =B, largb,|=p

for some B (0=B<m/6q). Then
q—1
5 ]+1=p=a=g+1.

CorOLLAY 2. Let F(z) be a meromorphic function of order A, lower order p,



60 TADASHI KOBAYASHI

genus q and having only negative zeros and positive poles. Then

2l ‘151 J+1=p=a=q+1.

This Corollary 2 is not new, 'since J. Williamson pointed out this fact in
his paper [6]. Further, he mentioned that this inequality is best possible.
Professor N. Suita also made an example which gives the best possibility. The
author expresses his heartiest thanks to Professor M. Ozawa for his tender
support in preparing this note.

2. To prove Theorem 1, we need the following lemmas.

LEMMA 1. Let g(z) be a meromorphic function defined by

soT1E(-E 2) /1B, ).
where (a,) and (b,) satisfy
1) a,<0, b,>0 for any n,
1 1
2) 2 Ianls +E |bnl8 < o0,
Then for any positive r

T(r, e)z(1+A*)N(r),
where A* is the absolute constant in Theorem 1, and
Mr)=N(r, 0, g)+N(r, oo, g).
Proof. According to [5; Lemma 3], for any g, b (0<a=<b<=z) and r (>0)

m(r, g)%%f:loglg(rew) |du
= NG, OLE, 7, Kt 7, a)dt

+[ NG, )KL, 7, m—b)— Kilt, 7, n—a)]at,
where

_ 1 7 7\® tsin3x+4rsin2x
Ky, 7, x)”‘—n—( t ) £2+2ir cos x+7r% ¢

Putting a=z/2 and b—x—0, then
m(r, )2 N(r, 0~ "NOK,(t, 7, ) dt .
Hence

Tt 2N +-E [T N@ gy dt
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1 i 1
>
= N(r)+ 5.1 N(tr) e dt

Z(1+A*N(r).
This is the desired result.

LEMMA 2. Let f(2) be a meromorphic function of genus one or two, having
only negative zeros (a,) and positive poles (b,). If

1 1
D PR ERIP W el
then

1
K(f)éw

Further, this inequality still holds if f(z) is replaced by F(z):
F(2)=e521(2)
where S(z) is an entire function.

Proof. Let g(2) be a meromorphic function defined by
sto=TiB(-£.2) [E(£-9).

Of course, this function is well defined. By T(7, f)=0(r*) and T(r, g)=0(r*) [3;
p. 235],
f(z)___ea22+bz+cg(z) .

Since f(2)/f(—z)=e?g(2)/g(—z), we have
27(r, f)+2|b|r+0(1)=T(r, G),

where
G(2)=g(2)/g(—2).

Applying Lemma 1 to G(z), we obtain
T(r, G)=2(14 A*)N(7)

for any positive 7, where N(n)=N(r, 0, )+ N7, o, f). On the other hand, by
the assumption and
Ni) r?

RS

L7 (T N@)
= T j.o t2 dtv

2r ("
T(r, Oz

we have
lim T(r, G)/r=4c0.

Hence
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A+o(INT(r, £)=A+A*N().
This means that

1
LGES

The second part of Lemma 2 is an immediate consequence of the first part.

Proof of Theorem 1. By the assumptions, there exists the integer ¢ which
satisfies

1 1
2T, 7 2T,

> Ianllqn +2 Ibn}qu <400,

In the case that ¢ is less than three, Theorem 1 is obvious by Lemma 2. Hence
we may assume that ¢ is greater than two.
Consider the auxiliary meromorphic function G(2) defined by

G(2)=TI Fw" ¥/7),
n=1
where % is an odd integer satisfying (¢+1)/3=k=gq, and
M2
Evidently we have
N(r¥, 0, G)=EkN(r, 0, F),  N(r*, 0, G)=kN(r, 0, F),

T(r*, G)XkT(r, F).
Therefore,
K(G)=K(F).
Since (¢+1)/3<k=gq, we obtain

1 1
a7 T =

S D<o,
Thus Lemma 2 yields

1
K(G)éw.

Hence, the proof of Theorem 1 is completed.
3. In this section, we shall show Theorem 2. The following lemma upon

which our method of proof depends heavily, is due to Hellerstein and William-
son [2].
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LEMMA 3. Let Hy(t, 7, Sy, Sy, *++, Sgs1) be

[(g+1)/2]

2 (Kq(ty ry 82n+1)_~Kq(t7 r, Szn)) ’

n=e

where

_ (=12 7 7\ tsin(g+1)x+7sin g2
Kt 1, 9="—"() 124267 cos a1

If
2n—1 2n—1
g2 =T g

2q+1
2q+2

then for any r>0 and t>0,
(_l)qu(tr r’ sl Sger 3q+1)2—0-

T, n:]w 21"',q

=Sy =7, So="5442=0

Further, for any t=1,

(—1)TH,(t, 1, 51 55 sq+1)gW.

In the first place, we assume that ¢ is even. Put

32n+1:4n—2j]_1_ﬂ n=0,1, -, (¢—2)/2

_ 4n—1
an— 2q+2

S T n=1,2,,q/2

and
s,=0, Sg41=T.

By Shea’s representation, we have

1 U
T, G)g—ﬂ—jlq Jog| G(re™)| du

=N)+[ T NOHL 7, 53 537+ sq2)dt,
where
qujé [Som Sone],  N(O=N(, 0, G).
According to Lemma 3,
T(r, =N (1+( I”Hq(t, 1, 5, 83 0 Sgen)dt)

for any positive 7.
Here, we define A*(q) such that

AHQ)=[ "Ht,1, 5180+ squ)d

Since
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Hi(t, 1, 54+ See)Z—aon( Ty
for any =1,

= 1
ANQz | e

11
T r j, u*(1+u?) du
1

11
T

4 .

By an easy calculation,
(g—2)/2 141 coS Sppsy

g+1 — o 2 D I20 ]
ﬂt Hq(ty ly Sl) 527 y Sq+1) ’IEO t2+2t cos SZn+1+1

2 t+cos Sy
+n§1 1242t cos Sy +1 °

The following elementary relations

1 N t+cosu
ge,,,( t4e )'" t*4+2tcosu+1’

1 _ 1+¢cosu
_%( 1—|—te“‘)_ t*+2tcosu+1 "’

e

INU
T (1<t |lu|==),

t < n
IFet =7§0(—1)

1 e n 1
Triew = 2D g (A<t Jul=7),
yield
+ q g 2+
T H (1, 1, sy, Sgy 0, Sq41)= N+77) +_2—(1WQ+T)+Aq(t)
for any t>1, where
had t
Aq<t>=”=‘ 217" cog —2n—L 1 _Ez 2tm+ cos1 L
. 24 (q-lz-ll";*n 24+2
Since
d 1 —1 2
> = > ,
< n 2n—1 1+t%2 & 2n+1
n=l 42 0 LAl B
cos—————zq T cos 9 "
1 __1 qz—:l t2n+1
nZ2 4n+1 = 1+t2q+2 n=0 n+1 ’
Wiid gz " COSTgFI T
we obtain

2L+ A1) = — Ay, 1141 53 (By— A, )70+
n=1

+B0t2q+l+ ‘Ii_:’(Bn"'A")tzn+l s
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where
A :_________J'______ B :—1—_ n:O 1 .ee q__]_
" cos 2n+11r’ " cosﬁl—n , T '
2q q+1
Clearly
A‘l—1<0! BO>0y
B,—A,>0 for n; O_S_ng—g——— ,
B,—A,<0 for n; —2~Sn<q—1.,
B,—A,,>0  for n; 0sn=<q—1, n#--,
Hence
ALHENLHDANZ S (By— Ay )00 4 S (By— A
n=q/2 n=q/2
SC P44 Dt 4 jil) (2B,— A,_,— A)t*™+
n=(g+2
where
quB'q —A quBq_'—Aq

9 a4 9 9
2 71

From the concavity of cos x for ngélé—,

2B,z Ayst Ay, =l e, g1

Thus, we have

C tsq+1+D tq+l
N> q q
AQ(t>= 2(1+129)(14-¢22%2) -

Therefore

A*<Q>2‘2qn. ) _TF'(' _Tdt_l" 2(;. 5‘ 1+t2q+2 dt+"—§

AdD) 4y

1 q 1
Z o~ 8(q+1)+ 2n'j (1+t"“1“)2 dit-g f, e dt
1 1 + o Dq
2 (8g+1) 4(2(1—}—1)71 2(4q+Dr -
Further
. Cq 4 . Dq _
{ﬂ q ~ m’ iim“ =0.
Hence
lim A*(q)= - — L
e~y 7= 2 2n®

2iq

Next consider the case that ¢ is:odd. In this case we select (s;) such that
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sznzil—%%n n=l1,2, -, —q-_z—l—
32n+1=_%rql—ii—7r n"‘oy 1y STty q—z_l
Sqi1=T.

By Shea’s representation, we obtain

1 1%
70, Oz~ 10g1Glre)|du
= N[ NOH, 7, 51 5+ squ2)dt

2N THt 1, 505 sqe)at)

where
(q+1)/2

= 2 Son-1y Szn] .
n=1

Put A*(q) such that
A== [ (H1,1, 5150 squ)dt

T'hen, Lemma 3 yields
1 1
* Rl
AXq)= p 4
The same process leads

_ntq+1Hq(t, 1,8 8- sqﬂ)

> qg—1 +_(q+1)t2‘1+1 | Cqt3*14 Dgtatt
= 2(14-2%9) 201412772 T 2(1+-¢29)(14-£20%%)
where
_ 1 1
Cq—_ (A0 15) Q+l (4 coSs pd ’
29 29+2
D= ql_ _ 1q
cos 2% T COS—2q+2 T
Hence
lim 4%(Q)Z 35— g7
2rq

Therefore, we have the desired result,

4. Before proceeding with the proof of Theorem 3, we need the following
lemmas.

LEMMA 4 [1; Lemma 2]. Let g(2) be an wnfinite product such that
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_ z
2()=T1E(-7- 2),
where the sequence (c,) satisfies the following conditions:

2) largc,|<s  for some s(0<s=r/6).
Then
lim T(r, g(2)/8(—2)/r=+o0.

LEMMA 5. Let f(2) be a meromorphic function of genus one or two, and
whose zeros and poles are (a,) and (b,), respectively. If
1 1
e, T2 5,7 =+

and
larg a,—=|=<s, larg b,| =s

for some s (0=s<x/6), then
lim T(r, f)/r=+0o.
Proof. Put
ARD=TIE(5~2), B@=IE(5-2),
F(2)B(z)/ A(z)=e"® .

Since the genus of f(2) is less than three, P(2) must be a polynomial of degree
at most two. Thus

[(2)/(—2)=e"G(2)/G(—2),
G(2)=A(2)B(—2).

where

Applying Lemma 4 to G(2),
lim 7(r, (2/f(—2)/r=-+co.

Hence
lim T(7, f)/r=4c.

Proof of Theorem 3. 1If (a,), (b,) satisfy

1 o 1
> Ianlq > |bn‘q <400,

then F(z) is regular growth. So there is nothing to prove. Hence, we my
assume that

T
E g, 7T ETp, e =

Consider the auxiliary function
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G(2)= 1T Fw" ¥7),

k:Z[ q;l ]+1, w=exp (z%f—)

By the definition,

T(r*, G)<kT(r, F).

Thus, the order of G(z) is not greater than A/k. Further, from

2 q+1

the genus of G(z) is at most two. The zeros and the poles of G(z) are (a,?)
and (b,*) respectively, and by 1=<k=<gq, we.aobtain

1 1
2, T T T

larg an"—nlék,8<—7é—, larg b,k | <kB.

Then, Lemma 5 yields

lim T(r, G)/r=-4c0.

r—00

This means that the lower order of G(z) is at least one and hence that of F(2)
is at least k. Thus, we complete the proof.
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