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Introduction

Let Q be the rational number field and let Q, be the field of p;adic num-
bers for any prime number p. For any field F, we will denote by F the alge-
braic closure of F and by Gr the automorphism group of F over F. Let k and
k' be algebraic extensions of @ such that they are contained in the same alge-

braically closed field Q.
In [2], Neukirch has shown the following results.

THEOREM A. For an algebraic extension k of Q, the following assertions are
equivalent to each other:

1) G, is isomorphic to an open subgroup of Ge,.

2) There exists a discrete place v of k such that v satisfies the following
conditions:

a) v lies above p.

b) The residue field of v is finite.

¢) The extension of v to Q is unique.

THEOREM B. For finite algebraic extensions k and k&’ of Q, let W and W’ be
the sets of finite places of k and k', respectively. If G, and G, are isomorphic,
then there exists a bijection f of W onto W’ such that Gy, is isomorphic 10 Gy,
Sfor any place ve W, where k, (or k) is the completion of k at v (or k' at f(v)).

THEOREM C. If k is a finite Galois extension of Q and if k' is a finite alge-
braic extension of Q such that G, and G, are isomorphic, then we have k=Fk’,

Without the assumption that % is Galois over Q, Theorem C does not hold :
In fact, there exist distinct two finite algebraic extensions 2 and %k’ such that
G, and G, are isomorphic and that k2 is isomorphic to %2’. Hence, as for a
generalization of Theorem C, it is natural and interesting to consider whether,
for any finite algebraic extensions % and k’/, G,=G, implies k=k’ or not. In
this paper we shall give some affirmative data of this problem. For this pur-
pose in §3, we shall obtain a refinement of the above Theorem B as follows:
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PROPOSITION. For finite algebraic extensions k and k'’ of Q, let V and V' be
the sets of places of k and of k', respectively. If G, and G, are isomorphic,
then there exists a bijection f of V onto V' such that G, is isomorphic 1o G},
for any place veV,

By the above Proposition and local class field theory, we shall show that
if G, and G, are isomorphic, then the idele groups of 2 and %’ are isomorphic,
the unit groups of % and k’ are isomorphic, the ideal class groups of & and k&’
are isomorphic, D=D’ and R=R’, where D and D’ are the discriminants of k
and %/, respectively and where R and R’ are the regulators of %k and %/, re-
spectively.

§1. Neukirch’s results. In this paper, fields shall be local fields of charac-
teristic 0 or algebraic number fields and isomorphisms mean topological ones.
Let F be a field, let N be a Galois extension of F, let G be a profinite group
and let A be a topological G-module. We shall use the following notations:

F'; the algebraic closure of F
G(N/F); the topological Galois group of N over F

Gr; the topological Galois group of F over F

u#r; all the roots of 1 in F

F>*; the multiplicative group of F
(@ ; the rational number field

Z,; the ring of p-adic integers

Qp; the field of p-adic numbers

G(l); the maximal [ factor group of G for any prime [

(G, G); the topological commutator group of G
G the factor group of G by (G, G)
H™G, A); the n-th cohomology group of G with coefficients in A.

We adopt similar notations for %k, K and so forth.

Let p be a prime number. Then a profinite group G is said to be a pro-
p-group if G is a projective limit of finite p-groups. For a pro-p-group G, the
rank of G means the minimal number of topological generators of G.

Let L(I) be the discrete free group generated by a set I and let F, be the
field with p elements. G is said to be a free pro-p-group if G is the projective
limit of L(I)/U, where U is a normal subgroup of L(J/) such that U contains
almost all elements of I and that L(I)/U is a finite p group. Then the rank
of G is equal to the cardinality of I and dimp,HYG, Z/pZ), where the action
of G on Z/pZ is trivial and where dimp,H'(G, Z/pZ) is the dimension of the
vector space HY(G, Z/pZ) over F,. From the definitions follows the following :

LEMMA 1. For two finitely generated free pro-p-groups G, and G, G, is 150-
morphic to G, 1f and only if G,*° is isomorphic to G,*.
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A pro-p-group G is said to be a Demushkin group if

(1) dimp,H*G, Z/pZ)=1

(2) the cup product HYG, Z/pZ)X H'G, Z/pZ)—H*G, Z/pZ) is a non-
degenerate bilinear form.

The characterization of Demushkin groups (cf. [1]) gives the following :

LEMMA 2. For two finitely generated Demushkin groups G, and G,, G, is iso-
morphic to G, if and only if G,*® is isomorphic to G,*.

The following lemma (cf. [3]) is well known.

LEMMA 3. For a prime number [, let £, be a primitive I-th root of 1 and let
K be a finite algebraic extension of Q,. Then the following assertions hold:

1) If (&K, then Gg(l) is a finitely generated free pro-l-group.

2) If {ieK, then Gg(l) is a finitely generated Demushkin group.

We shall use the following lemmas (cf. [2]) in §3.

LEMMA 4. For finite algebraic extensions k and k' of Q, let W and W' be
the sets of finite places of k and of k', respectively. If G, and G, are isomor-
Dhic, then there exists a bijection f of W onto W’ such that G, and Gy, are
isomorphic for any place ve W, where k, (or Eyw) is the completion of k at v (or

k' at f(v)).

LEMMA 5. Let k and k' be finite algebraic extensions of Q. If G, and Gy
are 1somorphic, then the maximal Galois extension of Q contained in k and the
maximal Galois extension of Q contained in k' coincide.

LEMMA 6. Let k and k' be finite algebraic extensions of Q. If G, and Gp
are isomorphic, then the mimumal Galois extension N of Q containing k coincides
with the minumal Galois extension N’ of Q contaiming k' and the cardinality of
C(a)NG(N/E) 1s equal to the cardinality of C(e)NG(N/k’) for any c=G(N/Q),
where C(o)={t "ot | 7=G(N/Q)}.

COROLLARY. If G, and G, are isomorphic, we have |k;Q|=1|k"; Q|, where
|&; Q| (or |k ;Q|) 1s the degree of k (or k’, respectively) over Q.

It should be noted that Theorem A is a generalization of the following
Artin’s result.

LEMMA 7. Let k be an algebraic extension of Q, then the following assertions
are equivalent to each other:

1) The order of G, 1s 2.

2) There exists a real place v of k such that v is uniquely extended to k.

(The above v is uniquely determined by k.)

§2. The Galois group of the algebraic closure of a local field. In this
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section, K, K, and K, shall be finite algebraic extensions of @, such that they
are contained in the same algebraic closure 67,, of Qp,. We will denote by ¢
the cardinality of the residue field of K, by e the order of ramification of K
over Q, and by f the modular degree of K over Q,. Then we have g=p’.
Let n=|K; Q,|. Then we have n=ef. Let m be the largest integer such that
K contains a primitive p™th root of 1. We adopt similar notations, viz, ¢;, e,
fu, n, for K,, for i=1,2. See [4] as for results of number theory used in the
followings.
It is well known

@ K*=ZXZ2X Z[(q—1)ZX Z/p™Z.
By local class field theory, we have

(2 G%}’;l‘L[Z,xZg,x Z/(q—1)ZXZ/p"Z,

where II; is taken over all prime numbers. For completeness we shall give a
proof of the following lemma.

LEMMA 8. For a profinite group G and prime number p, G**(p) and G(p)®
are isomorphic.

Proof. Let N be a normal subgroup of G such that the factor group G/N
is G(p). Then we have G(p)*=G/(G, G)N. Suppose that the group (G, G)N
contains a subgroup H such that the index |(G, G)N; H| is p and that H con-
tains the subgroup (G, G). It follows |N; NNH|=p from |HN; H|=|N; NNH|
and HN=(G, G)N. This contradicts the definition of N. Hence G%(p) is iso-
morphic to G/(G, G)N. This completes our proof.

PrOPOSITION 1. Let K, and K, be two finite algebraic extensions of Q,. Then
the following assertions are equiwvalent to each other.

1) K is isomorphic to K.

2) pr,=px, and n,=n,.

3) ¢1=¢, e;=e, and my;=ms.

4) G% s 1somorphic to GE.

5) G () is isomorphic to Gg,(l) for any prime I

Proof. 2) from 1): Since Ky is isomorphic to Kj, we have that the tor-
sion subgroups of K; and of K; are isomorphic. Hence we have px,=px,.
By (1), K is isomorphic to ZXZ2X Z/(q¢;—1)ZX Z/p™Z for i=1,2. Therefore
the maximal compact subgroup U, of K; is isomorphic to Z%X Z/(q,—1)ZX Z/p™Z
and then U;(p) is isomorphic to Z%:X Z/p™Z for i=1,2. For the torsion sub-
group T, of U,p), the factor group U;(p)/T, is isomorphic to Z7* for i=1, 2.
Since n, is the rank of U;(p)/T, as Z,-module and since U,(p)/T, is isomorphic
to Uxp)/T,, we have n,—=n,. In a similar way, we can prove 1) from 4) part,
S0 its proof is omitted.
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3) from 2): The cardinality of pg, is p™i(g;—1), ¢,=p"* and n;=e;f, for
i=1, 2. Therefore it is clear.

4) from 3): It follows from (2).

4) from 5): Let ¢;—1=TI,(""* be the decomposition of ¢;—1 into the product
of powers of distinct prime numbers for i=1,2. From (2) and Lemma 8, we
have

Z X Z/1%Z for I#p,

&) Gry ()™=
ZpHxz/p™mZ  for I=p,

for i=1, 2. Since Gg,()® and Gg,(I)® are isomorphic for any prime /, we shall
obtain «a;,;=a;, n,=n, and m;=m, in a similar way as the above 2) from 1)
part. From (2), it follows that G# and G# are isomorphic.

5) from 4): Since G%,(I) and Gg,(I)® are isomorphic for i=1, 2, Gg,([)®
G, (D)™ are isomorphic. From Lemma 3, Gg,(I) and Gg,(l) are finitely generated
free pro-l-groups or finitely generated Demushkin groups. Hence from Lemma
1 and Lemma 2, we have that Gg,(/) and Gg,(l) are isomorphic. This completes
our proof.

COROLLARY. Let K, and K, be two finite algebraic extensions of K such that
K, is an unramified extension of K. If Gk, and Gg, are isomorphic, then we
have K,=K,.

Proof. Since K, is unramified over K, K, is the extension of K generated
by pk;. G, =Gy, implies G¥=G¥. By Proposition 1, we have px,=px, and
n,=n,. Hence K,CK, and |K,; K|=|K,; K|. It follows K,=K,.

§3. The Galois group of the algebraic closure of an algebraic number
field. In this section, we denote by % and k’ finite algebraic extensions of Q
such that they are contained in the same algebraic closure Q of Q. We shall
use the following notations:

a; the cardinality of u,
7,; the number of the real places of %
7,; the number of the imaginary places of %

{i(s); the zeta-function of 2

V', the set of places of &

W the set of finite places of %

P.; the set of infinite places of %

S.; the set of real places of %

k,; the completion of 2 at veV

¢, ; the cardinality of the residue field of k,.
We adopt similar notations, viz. a’, 7y, -+ for k’.

LEMMA 9. Let k and k' be finite algebraic extensions of Q. If G, and G,
are isomorphic, then we have p,= .
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Proof. Let M be the maximal Galois extension of Q contained in k2. Then
by Lemma 5, M is the maximal Galois extension of Q contained in %’. Hence
from p,=py and pp=gpy, we have p,=py.

LEMMA 10. Let & and k' be finite algebraic extensions of Q. If G, and Gy
are isomorphic, then we have r,=r} and r,=74.

Proof. Let a be an isomorphism of G, onto G,. For vES., let 7 be an
extension of v to Q@ and let H; be the decomposition subgroup of G, for 7.
Since v is a real place of %k and since G,, is isomorphic to H;, the order of
H; is 2. Therefore the order of a(H;) is 2. Let K’ be the subfield of @
attached to a(H;) in the sense of Galois theory. By Lemma 7, there exists a
real place # of K’ which is uniquely extended to Q. Let f,(v) be the restric-
tion of 9’ to &/ which is uniquely determined by #. Let 7* be another exten-
sion of v to @, then H; and Hs are conjugate in G, to each other. Hence fa
is well defined as a mapping of S. to S.. By a similar way, using the inverse
a™ of a, we construct a mapping f,-, of S. to S. such that f,0f,.;and f,-;of,
are identity mappings. Hence we have r;=7{. It is well known that the degree
[k; Q| (or |k ;Q]) is equal to r,+27, (or ri+2r;). By the Corollary of Lemma
6, we have r,+2r,=r{+2r,. Hence we have 7,=73. This completes our proof.

Now, using Lemma 10 we can extend the Neukirch’s bijection between the
finite place sets W and W’ in Lemma 4 to a bijection between the place sets
V and V.

PROPOSITION 2. Let k and k' be finite algebraic extensions of Q. If G, and
G are isomorphic, then there exists a bijection f of V onto V' such that G, and
G}, are isomorphic for any place ve V.

COROLLARY. If G, and G, are isomorphic, then there exists a bijection f of
V onto V' such that ky and k7, are isomorphic for any place veV. Hence
SW)=W' and f(P.)=PL.

Proof. 1t follows from Proposition 1 and Proposition 2.

Let K (or K’) be a finite algebraic extension of k2 (or %2’) and let Wg (or
Wx) be the set of finite places of K (or K’). For a place v W such that v
lies above prime p, let e¢,(v) be the order of ramification of %, over Q,. We
adopt similar notations, viz. e,.(v’), ex(w) and eg.(w’) for &/, K and K’, respec-
tively.

LEMMA 11. If a is an isomorphism of G, onto G, such that a(Gg)=Gg,
then there exist two bijections f of W onto W’ and F of Wyx onto Wy such that
f and F satisfy the following conditions

a) Gy, 1s isomorphic to Giroy Jor any place ve W,

b) Gk, is isomorphic to Ggp,, for any place we W.

c) A place we Wy lies above ve W 1f and only 1f F(w) lies above f(v).
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Proof. Using Theorem A, we can prove this Lemma in a similar way to
the proof of Lemma 10. So its proof is omitted.

LEMMA 12. Assumptions and notations being as above, if K is an unramified
extension of k', then K’ is an unramified extension of k’.

Proof. Using Proposition 1 and Lemma 11, we have e¢,(v)=e,(f(v)) and
ex(w)y=eg.(F(w)) for any place ve W and we Wx. Suppose that w lies above v.
Since K is an unramified extension of k2, we have ex(w)=e,(v). A place w lies
above v if and only if F(w) lies above f(v). So we have ex.(F(w))=e,(Av))
and K’ is an unramified extension of k’.

LEMMA 13. Assumptions and notations being as Lemma 12, if K is the
absolute class field of k, then K’ is the absolute class field of k.

Proof. Let L’ be the absolute class field of #/. From Lemma 12, K’ is an
unramified extension of 2 and G(K’/k’) is commutative. Hence we have K'CL’.
Let L be the extension of £ such that a(G;)=G;.,, then we have LCK. Since
L'C K’ follows from LCK, we have L=K.

LEMMA 14. Let C(k) and let C(k’) be the ideal class groups of k and ¥,
respectively. If G, and G, are isomorphic, then C(k) and C(k’) are isomorphic.

Proof. Let K be the absolute class field of 2 and let @« be an isomorphism
of G, onto G,.. It is well known that C(k) is isomorphic to G(K/k). Let K’ be
the extension of &’ such that a(Gx)=Gg, then K’ is the absolute class field of
k’. Hence, C(k’) is isomorphic to G(K’/k’). From G,/Gx=a(G,)/a(Gg), we have
G(K/k)=G(K'/k"). So we have C(k)=C(k’).

THEOREM. Let k and k' be finite algebraic extensions of Q. Let D be the
discriminant of k over Q, let C(k) be the ideal class group of k, let R be the
regulator of k, let E be the unit group of k and let ki be the idele group of k.
We adopt sumilar notations for k. If G, and G, are isomorphic, then we have
D=D’, E and E’ are isomorphic, k3 and ky are isomorphic, C(k) and C(k’) are
1somorphic and R=R’.

Proof. In Lemma 14, it has shown that C(k) and C(k’) are isomorphic. Let
h and h’ be the class numbers of %2 and &/, respectively. We have A=A,
Using the bijection f of Proposition 2, we have ¢,=¢7w» for any veW. So it
follows that

G(9= I (1—a9)
= vE[W(l—q;gv))_l

=Cw(s)

for Re(s)>1. From the theorem of identity, we have ,(s)={(s) for any com-
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plex number s. Let G, and G, be defined by the formulas
Gi(8)=n"""I'(s/2),  Gu(s)=(2r)'*I'(s)

where I'(s) is the gamma function. Let Z,(s) and Z,(s) be defined by the
formulas

Zy(8)=G1()Gy(8)"2L()
Zp(8)=Gy(8)"1Gy(8)"2Cu(s) -

Since, from Lemma 10, we have r,=r{ and 7,=73, it follows that Z,(s)=2Z,.(s).
It is well known that Z,(s) is a meromorphic function in the complex plane,
holomorphic except for simple poles at s=0 and s=1. Further, it is well known

lsut%x sZ,(s)=—2"(2x)"2hR/a
Ismg SZy(s)=—2""1(2x)""th' R’ [a’ .

By Lemma 9, we have a=a’. So we have hR=h'R’. Hence it follows R=R’.
Since we have

lim (s—1)Z,(s)=|D| '%Z’I(Zn)TZhR/a

$—1

lim (s—1)Z,(s)=| D’|~227"1(2z)" 2’ R’ Ja’ ,
§—1

it follows |D|=|D’|. So we have D=D’ because the signs of D and D’ are
(—=1)"2. From the Dirichlet’s theorem of the units, E is isomorphic to g, X Z"1*7271
and E’ is isomorphic to p, X Z™'*72'"', By Lemma 9 we have y,=py,. Hence
E is isomorphic to E’. From Corollary of Proposition 2 and the definition of
the idele group of %, k4 and %’} are isomorphic. This completes our proof.

Now we shall give an example in which G, determines the isomorphism
class of %, using the theorem of P.Hall: Let G be a solvable finite group, and
let H; and H, be subgroups of G such that the orders of H; and H, are equal
and relatively prime to the index |G; H,|, then H; and H, are conjugate in G.

PROPOSITION 3. Let k and ¥ be finite algebraic extensions of Q, let § be the
solvable closure of Q and let | be a prime nu~mber such that |k; Q|=Il. If G, and
G are isomorphic and if k is contained wn Q, then k is isomorphic to k’.

Proof. Let us use the notations of Lemma 6. Since £ is contained in O,
G(N/Q) is solvable. By Lemma 6, N=N’ and the order of G(N/k) is equal to
that of G(N/k’). Since |G(N/Q); G(N/k)| is prime number [, it is easily seen
that the common order of G(IN/k) and G(N/k’) is relatively prime to [. Hence
by the theorem of P. Hall, G(N/k) is conjugate to G(N/k’) in G(N/Q). There-
fore % is isomorphic to %’.
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For the above Galois group G(N/Q), it should be noted that the commutator
group of G(N/Q) is commutative. Now we shall give an example of the above
field k: For an integer m such that 4/m is not contained in Q, the field
Q(4/m) is contained in §, |Q(¥m); Q|=I and N=Q(4/m, ), where ¢, is a

primitive [-th root of 1.
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