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THE GALOIS GROUP OF THE ALGEBRAIC CLOSURE
OF AN ALGEBRAIC NUMBER FIELD

BY KEIICHI KOMATSU

Introduction

Let Q be the rational number field and let Qp be the field of p-aάic num-
bers for any prime number p. For any field F, we will denote by F the alge-
braic closure of F and by GF the automorphism group of F over F. Let k and
k' be algebraic extensions of Q such that they are contained in the same alge-
braically closed field Q.

In [2], Neukirch has shown the following results.

THEOREM A. For an algebraic extension k of Q, the following assertions are
equivalent to each other:

1) Gk is isomorphic to an open subgroup of GQP.
2) There exists a discrete place v of k such that v satisfies the following

conditions:
a) υ lies above p.
b) The residue field of v is finite,
c) The extension of v to Q is unique.

THEOREM B. For finite algebraic extensions k and kr of Q, let W and W be
the sets of finite places of k and k', respectively. If Gk and Gk> are isomorphic,
then there exists a bijection f of W onto W such that Gkv is isomorphic to Gk'f{Ό)

for any place v<^W, where kΌ (or k'f(χ)) is the completion of k at v (or kf at f(v)).

THEOREM C. // k is a finite Galois extension of Q and if k' is a finite alge-
braic extension of Q such that Gk and Gk> are isomorphic, then we have k—k'.

Without the assumption that k is Galois over Q, Theorem C does not hold:
In fact, there exist distinct two finite algebraic extensions k and k' such that
Gk and Gk are isomorphic and that k is isomorphic to k'. Hence, as for a
generalization of Theorem C, it is natural and interesting to consider whether,
for any finite algebraic extensions k and k', Gk^Gk, implies k^k' or not. In
this paper we shall give some affirmative data of this problem. For this pur-
pose in §3, we shall obtain a refinement of the above Theorem B as follows:
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PROPOSITION. For finite algebraic extensions k and kr of Q, let V and V be
the sets of places of k and of k', respectively. If Gk and Gk, are isomorphic,
then there exists a bijection f of V onto V such that Gkυ is isomorphic to Gk'f(υ)

for any place i ε F .

By the above Proposition and local class field theory, we shall show that
if Gk and Gk> are isomorphic, then the idele groups of k and k' are isomorphic,
the unit groups of k and kf are isomorphic, the ideal class groups of k and kf

are isomorphic, D—Df and R—R;, where D and Ό' are the discriminants of k
and k', respectively and where R and Rf are the regulators of k and k', re-
spectively.

§ 1. Neukirch's results. In this paper, fields shall be local fields of charac-
teristic 0 or algebraic number fields and isomorphisms mean topological ones.
Let F be a field, let TV be a Galois extension of F, let G be a profinite group
and let A be a topological G-module. We shall use the following notations:

F; the algebraic closure of F
G(N/F) the topological Galois group of N over F

GF the topological Galois group of F over F
μF all the roots of 1 in F
Fx the multiplicative group of F

Q the rational number field
Zv the ring of £-adic integers
Qp the field of p-aάic numbers

G(l) the maximal / factor group of G for any prime /
(G, G) the topological commutator group of G

Gab the factor group of G by (G, G)
Hn(G, A) the n-th cohomology group of G with coefficients in A.

We adopt similar notations for k, K and so forth.
Let p be a prime number. Then a profinite group G is said to be a pro-

p-group if G is a projective limit of finite ^-groups. For a pro-^-group G, the
rank of G means the minimal number of topological generators of G.

Let L{I) be the discrete free group generated by a set / and let Fp be the
field with p elements. G is said to be a free pro-£-group if G is the projective
limit of L(I)/U, where U is a normal subgroup of L(I) such that U contains
almost all elements of / and that L(I)/U is a finite p group. Then the rank
of G is equal to the cardinality of / and dim^i/XG, Z/pZ), where the action
of G on Z/pZ is trivial and where άιmFpH\G, Z/pZ) is the dimension of the
vector space H\G, Z/pZ) over Fp. From the definitions follows the following:

LEMMA 1. For two finitely generated free pro-p-groups Gλ and G2, Gλ is iso-
morphic to G2 if and only if Gλ

ab is isomorphic to G2

αδ.
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A pro-^-group G is said to be a Demushkin group if
(1) dimFpH*(G, Z/pZ)=l
(2) the cup product H\G, Z/pZ)xH1(G, Z/pZ)-*H\G, Z/pZ) is a non-

degenerate bilinear form.
The characterization of Demushkin groups (cf. [1]) gives the following:

LEMMA 2. For two finitely generated Demushkin groups G2 and G2, Gx is iso-
morphic to G2 if and only if Gx

ah is isomorphic to G2

ab.

The following lemma (cf. [3]) is well known.

LEMMA 3. For a prime number I, let ζt be a primitive l-th root of 1 and let
K be a finite algebraic extension of Qp. Then the following assertions hold:

1) // ζi&K, then Gκ(l) is a finitely generated free pro-l-group.
2) // ζi^K, then Gκ(l) is a finitely generated Demushkin group.

We shall use the following lemmas (cf. [2]) in §3.

LEMMA 4. For finite algebraic extensions k and k' of Q, let W and W be
the sets of finite places of k and of k', respectively. If Gk and Gk, are isomor-
phic, then there exists a bijection f of W onto W such that Gkυ and Gk'fiΌ) are
isomorphic for any place v^W, where kυ (or kr

fw) is the completion of k at v (or
k> at f(v)\

LEMMA 5. Let k and k1 be finite algebraic extensions of Q. If Gk and Gk,
are isomorphic, then the maximal Galois extension of Q contained in k and the
maximal Galois extension of Q contained in k' coincide.

LEMMA β. Let k and k' be finite algebraic extensions of Q. If Gk and Gk,
are isomorphic, then the minimal Galois extension N of Q containing k coincides
with the minimal Galois extension N' of Q containing k' and the cardinality of
C(σ)r\G(N/k) is equal to the cardinality of C(σ)Γ\G(N/k') for any σ^G(N/Q),
where C(σ) = {τ-1στ\τ^G(N/Q)}.

COROLLARY. // Gk and Gk, are isomorphic, we have \ k Q \ = | k' Q \, where
\k;Q\ (or \kf \Q\) is the degree of k (or k', respectively) over Q.

It should be noted that Theorem A is a generalization of the following
Artin's result.

LEMMA 7. Let k be an algebraic extension of Q, then the following assertions
are equivalent to each other:

1) The order of Gk is 2.
2) There exists a real place v of k such that v is uniquely extended to k.
(The above v is uniquely determined by k.)

§2. The Galois group of the algebraic closure of a local field. In this
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section, K, Kx and K2 shall be finite algebraic extensions of Qp such that they
are contained in the same algebraic closure Qp of Qp. We will denote by q
the cardinality of the residue field of K, by e the order of ramification of K
over Qp and by / the modular degree of K over Qp. Then we have q=pf.
Let n=\K;Qp\. Then we have n—ef. Let m be the largest integer such that
K contains a primitive pm-th root of 1. We adopt similar notations, viz, qu et,
ft9 nu for Kt, for i=l , 2. See [4] as for results of number theory used in the
followings.

It is well known

(1) K*9ίZx ZPX Z/(q-ϊ)Zx Z/pmZ.

By local class field theory, we have

(2) GΫ^TlZtXZlx Z/(q-ΐ)Zx Z/pmZ,

where IL is taken over all prime numbers. For completeness we shall give a
proof of the following lemma.

LEMMA 8. For a profinite group G and prime number p, Ga\p) and G(p)ah

are isomorphic.

Proof Let N be a normal subgroup of G such that the factor group G/N
is G(p). Then we have G(p)ab=G/(G, G)N. Suppose that the group (G, G)N
contains a subgroup H such that the index |(G, G)N; H\ is p and that H con-
tains the subgroup (G, G). It follows \N; Nr\H\=p from \HN; H\ = \N; Nr\H\
and HN=(G, G)N. This contradicts the definition of N. Hence Ga\p) is iso-
morphic to G/(G, G)N. This completes our proof.

PROPOSITION 1. Let Kx and K2 be two finite algebraic extensions of Qp. Then
the following assertions are equivalent to each other.

1) Kΐ is isomorphic to Kξ.

2) μκi=μK2 and n,=n2.
3) Q1^=q2f eλ—e2 and m1—m2.
4) Gfx is isomorphic to Gf2.
5) GKl(l) is isomorphic to GK2(l) for any prime I.

Proof. 2) from 1): Since Ki is isomorphic to Kξ, we have that the tor-
sion subgroups of Kΐ and of Kl are isomorphic. Hence we have μκ1=

zμκ2'
By (1), Kϊ is isomorphic to ZxZ»*xZ/(qi-l)ZxZ/pmiZ for z=l, 2. Therefore
the maximal compact subgroup Ut of Kϊ is isomorphic to Zn

p

ιxZ/(qι—ΐ)ZxZ/pmχZ
and then Ut(p) is isomorphic to Zγ X Z/pmiZ for i=l , 2. For the torsion sub-
group T% of Ui(p), the factor group Ui(p)/Tt is isomorphic to Zy for 2=1, 2.
Since nt is the rank of Ui(p)/Tι as Zp-module and since U1{p)/Tι is isomorphic
to U2(p)/T2, we have nx—n2. In a similar way, we can prove 1) from 4) part,
so its proof is omitted.
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3) from 2): The cardinality of μKχ is ί W ί ( ^ - l ) , qι=Pft and ni^eifx for
i = l , 2. Therefore it is clear.

4) from 3): It follows from (2).
4) from 5): Let #*—l=EWai'* be the decomposition of #*—1 into the product

of powers of distinct prime numbers for ι = l , 2. From (2) and Lemma 8, we
have

r Z^Zfl^Z for IΦp,
(3) GKi(ir^\

I Z ^ Z / ί ^ Z for /=/>,

for f=l, 2. Since GKl(l)ab and GK2(l)ab are isomorphic for any prime /, we shall
obtain ahl—aι^ nλ—n2 and m1=m2 in a similar way as the above 2) from 1)
part. From (2), it follows that Gfx and Gf2 are isomorphic.

5) from 4): Since Gft(l) and GKi(l)ab are isomorphic for i = l , 2, GKl(l)ab

Gκ2(l)ab are isomorphic. From Lemma 3, GKl(l) and GK2(l) are finitely generated
free pro-/-groups or finitely generated Demushkin groups. Hence from Lemma
1 and Lemma 2, we have that GKl{l) and GK2{1) are isomorphic. This completes
our proof.

COROLLARY. Let Kλ and K2 be two finite algebraic extensions of K such that
Kλ is an unramified extension of K. If GKl and GK2 are isomorphic, then we
have K1=K2.

Proof. Since Kt is unramified over K, Kx is the extension of K generated
by μκi GKl^GK2 implies Gf^Gf2. By Proposition 1, we have μκi=μκ2

 a n ^
n,=n2. Hence Kx(zK2 and \KX) K\ = \K2) K\. It follows K,=K2.

% 3. The Galois group of the algebraic closure of an algebraic number
field. In this section, we denote by k and kf finite algebraic extensions of Q
such that they are contained in the same algebraic closure Q of Q. We shall
use the following notations:

a the cardinality of μk

the number of the real places of k
the number of the imaginary places of k
the zeta-function of k
the set of places of k
the set of finite places of k
the set of infinite places of k
the set of real places of k

Us)
V
w

Poo

Soo.

the completion of k at
the cardinality of the residue field of kΌ.

We adopt similar notations, viz. α7, r[, ••• for k'.

LEMMA 9. Let k and k' be finite algebraic extensions of Q. If Gk and Gk,
are isomorphic, then we have μk=μk,.
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Proof, Let M be the maximal Galois extension of Q contained in k. Then
by Lemma 5, M is the maximal Galois extension of Q contained in k'. Hence
from μk=μM and μk>=μM, we have μh—μv.

LEMMA 10. Let k and k' be finite algebraic extensions of Q. If Gk and Gk>
are isomorphic, then we have rλ=r[ and r2=r'2.

Proof Let a be an isomorphism of Gk onto Gk>. For veS*,, let v be an
extension of v to Q and let H» be the decomposition subgroup of Gk for v.
Since v is a real place of k and since Gkv is isomorphic to H^, the order of
J75 is 2. Therefore the order of a(H^) is 2. Let K! be the subfield of Q
attached to α(i%) in the sense of Galois theory. By Lemma 7, there exists a
real place ϋ' of K! which is uniquely extended to Q. Let fa(v) be the restric-
tion of vf to k' which is uniquely determined by v. Let ϋ* be another exten-
sion of v to Q, then H$ and H& are conjugate in Gk to each other. Hence fa

is well defined as a mapping of &» to SL By a similar way, using the inverse
a'1 of a, we construct a mapping /α_! of S£o to &» such that f(χofa_1 and fa-i°fa

are identity mappings. Hence we have r1=r[. It is well known that the degree
\k;Q\ (or \k';Q\) is equal to n+2r2 (or rj+2rj). By the Corollary of Lemma
6, we have r1+2r2=r[+2rr

2. Hence we have r2=rf

2. This completes our proof.

Now, using Lemma 10 we can extend the Neukirch's bijection between the
finite place sets W and W in Lemma 4 to a bijection between the place sets
V and V.

PROPOSITION 2. Let k and kf be finite algebraic extensions of Q. If Gk and
Gk> are isomorphic, then there exists a bijection f of V onto V such that Gkυ and
Gk'f{v) are isomorphic for any place V G F .

COROLLARY. // Gk and Gk, are isomorphic, then there exists a bijection f of
V onto Vf such that k£ and k'f*Ό) are isomorphic for any place V<EV. Hence
f(W)=W and

Proof. It follows from Proposition 1 and Proposition 2.

Let K (or K') be a finite algebraic extension of k (or k') and let Wκ (or
Wκ) be the set of finite places of K (or K'). For a place v^W such that v
lies above prime p, let ek(v) be the order of ramification of kΌ over Qp. We
adopt similar notations, viz. ek,(y'), eκ(w) and eκ (w') for k', K and Kf, respec-
tively.

LEMMA 11. // a is an isomorphism of Gk onto Gk< such that a(Gκ)=Gκ>,
then there exist two bijections f of W onto W and F of Wκ onto Wκ, such that
f and F satisfy the following conditions

a) Gkv is isomorphic to Gk'f(v) for any place v^W.
b) GKyj is isomorphic to Gκ'Fm for any place w^Wκ.
c) A place WSΞWK lies above veW if and only if F(w) lies above f(v).
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Proof, Using Theorem A, we can prove this Lemma in a similar way to
the proof of Lemma 10. So its proof is omitted.

LEMMA 12. Assumptions and notations being as above, if K is an unramified
extension of kr, then Kr is an unramified extension of k'.

Proof. Using Proposition 1 and Lemma 11, we have ek(v)=ek>(f(v)) and
eκ(w)=eκ,(F(w)) for any place v<=W and w<=Wκ. Suppose that w lies above v.
Since K is an unramified extension of k, we have eκ(w)—ek(v). A place w lies
above v if and only if F(w) lies above f{v). So we have eκ^F(w))=ek,(f(v))
and K' is an unramified extension of k'.

LEMMA 13. Assumptions and notations being as Lemma 12, if K is the
absolute class field of k, then K' is the absolute class field of k\

Proof Let L1 be the absolute class field of kf. From Lemma 12, K! is an
unramified extension of kr and G(Kr/kr) is commutative. Hence we have K'aV'.
Let L be the extension of k such that a(GL)=GL>, then we have LdK. Since
L'cK' follows from LczK, we have L=K.

LEMMA 14. Let C{k) and let C(k') be the ideal class groups of k and kr,
respectively. If Gk and Gk> are isomorphic, then C(k) and C(kf) are isomorphic.

Proof Let K be the absolute class field of k and let a be an isomorphism
of Gk onto Gk>. It is well known that C(k) is isomorphic to G(K/k). Let K' be
the extension of kf such that a{GK)—GKli then K! is the absolute class field of
k\ Hence, C(kf) is isomorphic to G{Kf/k'). From Gk/Gκ^a(Gk)/a(Gκ), we have
G(K/k)ς*G(K'/k'). So we have

THEOREM. Let k and k' be finite algebraic extensions of Q. Let D be the
discriminant of k over Q, let C{k) be the ideal class group of k, let R be the
regulator of k, let E be the unit group of k and let k\ be the idele group of k.
We adopt similar notations for k'. If Gk and Gk> are isomorphic, then we have
D=D/, E and Ef are isomorphic, k\ and k'£ are isomorphic, C(k) and C(kf) are
isomorphic and R—Rf.

Proof. In Lemma 14, it has shown that C(k) and C(k') are isomorphic. Let
h and h' be the class numbers of k and k'', respectively. We have h—h'.
Using the bijection /of Proposition 2, we have qυ=Qf(υ) for any v(=W. So it
follows that

=C*-(s)

for Re(s)>l. From the theorem of identity, we have ζ*(s)=ζ*<(s) for any com-
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plex number s. Let Gx and G2 be defined by the formulas

where Γ(s) is the gamma function. Let Zk(s) and Zk,(s) be defined by the
formulas

Since, from Lemma 10, we have rλ=r[ and r2=ra, it follows that Zk(s)=Zk.(s).
It is well known that Zk(s) is a meromorphic function in the complex plane,
holomorphic except for simple poles at s=0 and s=l. Further, it is well known

lim sZk(s)=-2rK2πY2hR/a
5->0

lim sZk.(s)=-2rll(2πγ'*h'R'/a'.
S->0

By Lemma 9, we have a=a\ So we have hR—h'R1. Hence it follows R=R'.
Since we have

lim (s-l)Z*(s)= ID \ -Ϊ2rK2π)r*hR/a
β-»l

lim (s-l)ZΛ,(s)= I£'1 -\2r'^2%)r'^hrRrlar,

it follows \D\=-\D'\. So we have D=D' because the signs of D and Dr are
(—I)7*2. From the Dirichlet's theorem of the units, E is isomorphic to μkxZri+r2~1

and Er is isomorphic to μk>xZri'+r2'~1. By Lemma 9 we have μk=μk>. Hence
E is isomorphic to E'. From Corollary of Proposition 2 and the definition of
the idele group of k, k\ and k'\ are isomorphic. This completes our proof.

Now we shall give an example in which Gk determines the isomorphism
class of k, using the theorem of P. Hall: Let G be a solvable finite group, and
let Hx and H2 be subgroups of G such that the orders of Hλ and H2 are equal
and relatively prime to the index | G Hx \, then Hλ and H2 are conjugate in G.

P R O P O S I T I O N 3. Let k and k' be finite algebraic extensions of Q, let Q be the

solvable closure of Q and let I be a prime number such that \k;Q\=L If Gk and

Gk> are isomorphic and if k is contained in Q, then k is isomorphic to k''.

Proof. Let us use the notations of Lemma 6. Since k is contained in Q,
G(N/Q) is solvable. By Lemma 6, N=N' and the order of G(N/k) is equal to
that of G(N/kf). Since | G(N/Q) G(N/k) \ is prime number /, it is easily seen
that the common order of G(N/k) and G(N/kf) is relatively prime to /. Hence
by the theorem of P. Hall, G(N/k) is conjugate to G(N/k') in G(N/Q). There-
fore k is isomorphic to k''.



52 KEIICHI KOMATSU

For the above Galois group G(N/Q), it should be noted that the commutator
group of G(N/Q) is commutative. Now we shall give an example of the above
field k: For an integer m such that Vm is not contained in Q, the field
Q(Vm) is contained in Q, \Q(Vm); Q\=ί and N=Q(Vm, ζ{), where & is a
primitive l-th root of 1.
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