AUTOMORPHISMS OF THE GALOIS GROUP OF THE ALGEBRAIC CLOSURE OF THE RATIONAL NUMBER FIELD

By Tsuneo Kanno

For any Galois extension K/k, let $\operatorname{Gal}(K/k)$ be the topological Galois group of K/k. Let Q be the rational number field and let \overline{Q} be the algebraic closure of Q. For algebraic number field K, let \widetilde{K} be the composite of all solvable extensions of K, and put $G_K = \operatorname{Gal}(\overline{Q}/K)$ and $\widetilde{G}_K = \operatorname{Gal}(\widetilde{K}/K)$.

In [1] and [2] Neukirch proved that for algebraic number fields K_1 and K_2 which are finite Galois extensions of Q, $G_{K_1} \simeq G_{K_2}$ (or $\widetilde{G}_{K_1} \simeq \widetilde{G}_{K_2}$) implies $K_1 = K_2$, and in [2] he gave a conjecture to the effect that any automorphism of G_Q (or \widetilde{G}_Q) is inner. By his theorem we have that $\sigma(G_K) = G_K$, for any automorphism σ of G_Q (or \widetilde{G}_Q) and for any number field K which is a finite Galois (or solvable, res.) extension of Q; thus we have that σ induces an automorphism σ_K of Gal(K/Q). If by $Aut_0(Gal(K/Q))$ we denote the subgroup of the automorphism group Aut(Gal(K/Q)) of Gal(K/Q) invariant, we have that the mapping $\sigma \mapsto (\sigma_K)_K$ gives a canonical isomorphism of the automorphism group $Aut(G_Q)$ (or $Aut(\widetilde{G}_Q)$) onto the projective limit $\lim_{K \to \infty} Aut_0(Gal(K/Q))$, where K runs among the number fields which are finite Galois (or solvable, resp.) extensions of Q. It is shown that the above conjecture is true if and only if any σ_E $Aut(G_Q)$ (or $Aut(\widetilde{G}_Q)$) induces an inner automorphism σ_K for any finite Galois (or solvable, resp.) extension K of Q.

As Neukirch pointed out in [2], it is natural to consider some kind of group extensions to solve this problem. In this note we shall show that σ_K is inner for a certain class of finite Galois (or solvable) extensions K of Q, at least for any finite abelian extension K of Q.

Let $G = \{g, g_1, g_2, \dots\}$ be a finite group and let $A = \{a, a_1, a_2, \dots\}$ be a finite abelian group. Let θ be a homomorphism of G into the automorphism group (A) of A and let

$$G \times A \ni (g, a) \longmapsto g \circ a = \theta(g)(a) \in A$$

be the operation of G on A by θ . Let \hat{G} be the semidirect product $A \times_{\theta} G$ of A and G by θ : i.e. \hat{G} is the group which is $A \times G$ as set and in which the group operation is given by

$$(1) (a_1, g_1)(a_2, g_2) = (a_1 \cdot g_1 \circ a_2, g_1 g_2).$$

For any automorphism σ of \hat{G} , let σ_A and σ_G be the mappings: $\hat{G} \rightarrow A$ and $\hat{G} \rightarrow G$, respectively, defined by

$$\sigma(a, g) = (\sigma_A(a, g), \sigma_G(a, g)).$$

Applying σ on (1), we have

$$(2) \qquad \sigma_A(\alpha_1 \cdot g_1 \circ \alpha_2, g_1 g_2) = \sigma_A(\alpha_1, g_1) \cdot \sigma_G(\alpha_1, g_1) \circ \sigma_A(\alpha_2, g_2),$$

(3)
$$\sigma_G(\alpha_1 \cdot g_1 \circ \alpha_2, g_1 g_2) = \sigma_G(\alpha_1, g_1) \sigma_G(\alpha_2, g_2).$$

From (3) it follows that σ_G is a homomorphism of \hat{G} into G. Suppose that σ induces an automorphism of $G/(A \times e)$; i.e.

$$\sigma_G(a, e) = e$$

where e is the identity element of the corresponding group. Substituting $g_1=g_2=e$ in (2), we have that the restriction σ_A to $A\times e$ is an endomorphism of $A\times e$, which is denoted by the same σ_A . Since σ is injective and A is finite, σ_A is an automorphism of $A\times e$.

Substituting $g_1=e$, $a_2=e$ in (2) and using (4), we have

(5)
$$\sigma_A(\alpha, g) = \sigma_A(\alpha, e)\sigma_A(e, g).$$

Substituting $a_1=e$, $a_2=e$ in (2), we have

(6)
$$\sigma_A(g \circ a, g) = \sigma_A(e, g) \cdot \sigma_G(e, g) \circ \sigma_A(a, e).$$

Since A is abelian, from (5) and (6) it follows

(7)
$$\sigma_{A}(g \circ a, e) = \sigma_{G}(e, g) \circ \sigma_{A}(a, e).$$

On the other hand, sustituting $g_1=e$ in (3) and using (4) we have

$$\sigma_G(a_1a_2, g) = \sigma_G(a_2, g).$$

Hence

$$\sigma_G(a, g) = \sigma_G(e, g)$$

and the mapping $g \rightarrow \sigma_G(e, g)$ is the automorphism f of G induced by σ .

Suppose that θ is an isomorphism of G onto Aut (A), then there exists $x \in G$ such that $\theta(x) = \sigma_A$ and from (7) it follows

$$\theta(x)\theta(g) = \theta(f(g))\theta(x)$$
.

Hence we have $f(g) = xgx^{-1}$.

Now we have

Lemma. Let θ be an isomorphism of a finite group G onto the automorphism

group of a finite abelian group A, and let $\hat{G} = A \times_{\theta} G$ be the semidirect product of A and G by θ , then any automorphism σ of \hat{G} such that $\sigma(A \times e) \subset A \times e$ induces an inner automorphism of G.

EXAMPLE. For the cyclic group A of order m and the unit group $G = (Z/mZ)^*$ of the ring Z/mZ, where Z is the integer ring, we have an isomorphism $\theta : G \simeq \operatorname{Aut}(A)$.

Theorem. Let K be a finite Galois (or solvable) extension of Q such that there exists a splitting extension

$$1 \longrightarrow N \longrightarrow \operatorname{Aut}(A) \longrightarrow \operatorname{Gal}(K/Q) \longrightarrow 1$$

where N is a finite nilpotent group, A is a finite abelian group and $\operatorname{Aut}(A)$ is the automorphism group of A. Then any automorphism of G_Q (or \tilde{G}_Q , res.) induces an inner automorphism of $\operatorname{Gal}(K/Q)$.

Proof. The Šafarevič imbedding theorem [3] shows that the extension K/Q is imbedded in a finite Galois extension E/Q such that $\operatorname{Gal}(E/Q) = \operatorname{Aut}(A)$ and $\operatorname{Gal}(E/K) = N$. Again, the Šafarevič theorem and the above lemma show that any automorphism of G_Q (or \widetilde{G}_Q) induces an inner automorphism of $\operatorname{Gal}(E/Q)$ and induces an inner automorphism of $\operatorname{Gal}(E/Q)$ also.

COROLLARY. Any automorphism of G_Q or \widetilde{G}_Q induces the identity automorphism of the Galois group of any finite abelian extension of Q.

Proof. Since any finite abelian extension of Q is contained in some cyclotomic field, the theorem and the above example give the corollary.

BIBLIOGRAPHY

- [1] Neukirch, J., Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper. Inventiones math. 6 (1969) 296–314.
- [2] Neukirch, J., Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren Erweiterung. J. Reine Angew. Math. 238 (1969), 135–147.
- [3] Šafarevič, I. R., On the problem of imbedding fields. Izv. Akad. Nauk SSSR Ser. Mat. 18 (1954), 389-418; Amer. Math. Soc. Translations 4.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.