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ON EXTREMAL PROBLEMS WHICH CORRESPOND TO
ALGEBRAIC UNIVALENT FUNCTIONS

By Yosuiaisa KusoTa

1. Let S denote the class of functions f(z) regular and univalent in |z|<1
f()=z4 3] a.z".
n=2

Let V, denote the n-th coefficient region for functions of this class [6, §1.2]. Let
F=Fa,, a@,, -+, an, @») be a real-valued function satisfying the conditions

a) F is defined in an open set O containing Va,

b) F and F, are continuous in O,

c) |grad F|=(ZL.|F,|»)"*>0 in O
where

1/0F .oF
F”_§<§_Z 61/»)’

1 _ _ 1 _
xu—E(aﬁau), U= (@,—a,).
Then the following result was given by Schaeffer and Spencer [6, Lemma VII]:
Every function f(z) of class S belonging to a point (a@s, ‘-, @,) Where F attains
its maximum on V, must satisfy the differential equation

fl(z) )2 n—1 Au n—1 By

1 ( J'(2) A y
v T ) BT B
where

A= i @O Fy, B,,:%ykakah,u:]_,z’...,n__l,

E=vt1 =
(2)
BO:% (k—1)arFy, B—,=E,,
E=1

and

oo
f(2)°’=2] apn2"
k=v
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EXTREMAL PROBLEMS ON ALGEBRAIC UNIVALENT FUNCTIONS 413

The derivatives are taken at the point (as, --+, @,). Moreover this differential eqau-
tion has the properties (i) Bo>0 and (ii) the right hand side of (1) is non-negative
on |z|=1 with at least one zero there.

Further Schaeffer and Spencer showed that if a function f(z) of class S satis-
fies more than one differential equation of the form (1) which has the properties
(i) and (ii), then it is an algebraic function [6, Theorem V]. Moreover as in the
proof of Lemma XXXI in [6] we have that if f(z) is single-valued, then it is of
the form

z

IE= G

Ozawa proposed the following problem to the author orally: Determine the
algebraic functions of class S, not being single-valued, which are extremal functions
for certain two extremal problems

msax F(azy 521 0y Bmy am)

and
mSaX ﬁ(dg; az, cty Any an)

where m<n, and find corresponding functions F and F.

In this paper we shall consider two-valued algebraic functions and the cases
m=3,5. Here we remark that if an extremal function is two-valued, then » and
»n are odd.

2. In our study we use the following lemma which was proved by Ozawa.
For the sake of completeness we shall prove it.

LemMA. If a two-valued algebraic function w=f(2) of class S satisfies differen-
tial equations of the form

V4 dw zm_l Av — = v —_ —RB
(3) (7{)— _-dT) = w' _v=—Zm+1 2’ An-1=Bp-1#0, B-,=B,
and

z dw \2"2) Cv _ nol Dv _ —D

wheve n>m, then it satisfies an algebraic equation of the form
P2)w?+ pz*w—2z*=0, P(z)=1+a1z+ a2+ asz® +aszt, a,;#0.
Proof. w=f(z) satisfies an irreducible algebraic equation
P(z)uw*+Q(z)w+ R(z)=0
where P(z2), Q(z) and R(z) are polynomials of z. Dividing (3) by (4) we have
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om0 e Ay B2+ -+ + By

C1wn—2+ e +Cn—1 ﬁn—lzzn—z'l‘ oo +Dn—-1 )
Hence for the two branches w,, w. at z=0 we have
w1(1+11uh+ "')=Z(1+ﬂ12+ "‘))

wo(l+ 2w+ )= —Z(1+ﬂ12.'+ ).
Then

w1+ ws=—2212*+0(z%),
wiwy= — 2>+ 0(2%).

Since to each value of w there correspond two values of z, P, @, R have degree at
most 4 and one has degree 4. We may assume that P(0)=1. Comparing the
coefficients @, R with w,+w,, w,w. we have that

Q2)=p22+p'2*+ 52, B=—21,
R(z)y=7z2+7'28+7"" 2%, y=—L1

Similar situation holds for z=oo0, w=0. Only differences appearing here are the
conjugation for p, and the replacement of z by {=z2"!. Hence we have

‘B’=ﬁ,/=7”=r”=0-

Thus we have the desired result.

3. In this section we prove the following

THEOREM 1. Let Flas, @y, as,@s) and F(as, @, -, @, Gn) (0>3) be real-valued
Sfunctions satisfying the conditions a), b), c) and d) F;=0, Fo#0. If f(2) is an ex-
tremal function for the extremal problems

max F(a,, s, as, as)

and
n;ax F(”Zy 6_12, cery Apy an);

then f(2) is of the form
==

L
evz)(1—e%z)”

Proof. By the result of Schaeffer and Spencer, w=s(2) satisfies differential
equations of the form

2 2 _
(5) <_i fli)z A”: P B:, A,=B,+0,B_,=B,

=1 w” —2 %

and
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2n—1 n-1 =
<_ —7“‘) Z%: Z D:’ Cn—lan—l#:O’ D—szv

which have the properties (i) and (ii). Then as in the proof of Lemma XXXI in
[6] we have that f(z) is either a two-valued algebraic function or of the form

F4
JE= A=)

We assume that f(z) is a two-valued algebraic function. By Lemma, w=/(z) satis-
fies an algebraic equation of the form

(6) P(2)w*+ pz*w—2z*=0, P(z)=14aiz+ az2*+asz® + a,2*, a,#0.
Putting {=w=' we can write this as
(7) 2= pL—272P=0,

and differentiating we have

g _ Pla=2P
dz 22 —p)°

Inserting this in (5) we have
A+ AL _ 228

L2C—p2 (P'z—2P)
where S=B,+ Biz+ Byz®+ B,2*+ B,z'.  Using (7) this reduces to the form
A+ AL S

(P22 +4APY, ~ (P'z—2P) "

Since f(z) is not single-valued, we have

A, S
G2 +4P  (P'z—2P)

Putting T'=p%*+4P we have
Ax(T'2—-2T)*=16ST.

This implies that all zeros of %22+4P are multiple, and hence that
f2t+4P=4a(z—a)(z—b)".

Hence we can write (6) as
da,(z2—a)*(z—b)2w®=2%(pw—2)%

This contradicts that f(z) is two-valued. Thus we have the desired result.
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4. In the sequel we are concerned with the case m=5. Firstly we determine
the two-valued algebraic functions of class S which are extremal functions for cer-
tain two extremal problems

max F(as, @, -+, as, Gs)

and
max F(as @5 -y ny @) (n>5).

THEOREM 2. Let F(as, ds, -+, as, s) and F (@) Gay **+, An, ) (B>5), be real-valued
Sfunctions satisfying the conditions a), b), c) and d) Fs+0, F.+0. If 1 (2) is a two-
valued algebraic function which is an extvemal function for the extremal problems

mSaX F(dz, sz -+ @s, 65)

and
m;a.x F(as, as, -+, an, Gn),

then it satisfies an algebraic equation of the form

(8) {14+e “az+(ai—2as—e “asa)22 — @z —e 24w — (e Ya + 2az)z*w — 22=0,
w=f(z)

wheve a, is the v-th coefficient of f(2), 0 is a real number and a is ¢ complex
number.

Proof. By the result of Schaeffer and Spencer, w=j(z) satisfies differential
equations of the form

2 4 4 Bu =
(9) (._z_ q"ﬁ.) Z A: = Z — A4=B4$0: B_,=B,

and

v = Z IR Crn-1=Dy1#0,D_,=D,

v=1 W v=—n+1 %

(i _@_)2”_1 Cv n—1 Du -
which have the properties (i) and (ii). Hence by Lemma w=f(z) satisfies an alge-
braic equation of the form
(10) $2—pL—2z"tP=0, P=1l+a1z+ a2+ az® +a,2%, a,#0,{=w".

Differentiating we have

a; _ P’z—2P
(1 & FE—p)
Inserting (11) in (9) we have
AL+ AL+ AL+ A S

L2L—-pr - (P’z-2PY



EXTREMAL PROBLEMS ON ALGEBRAIC UNIVALENT FUNCTIONS 417

where S= B+ Bsz+ Baz?+ Biz°+ Bozt+ B12°+ By2°+ Bsz"+ B,z8.  Using (10) this re-
duces to the form

Li{+Loy S
M — (P'z—2P)?

where
L1 = Az"l‘ ‘BAa + ﬂzAg + XA4,

Ly=4, +X(As +/3A4)s
M1 =ﬁ2+4X.,
X=2z"2P(2).

Since f(z) is not single-valued, we have

(12) Lo=0
and
(13) L, S

M, - (P’z—2P)"

Since P(z) is a polynomial of degree 4, (12) implies that A,=0 and pg=—As4;%
Hence we can write (13) as

AP+ Mliz* S

(14) 4A:P+ A2~ (P'z—2P)*°

Suppose that there is no common zero of A}P+ A.A?2* and 4A2P+ Aiz%. Then
(14) reduces to the form

(P'2—2P)*=S*(4AiP+ Ajz%)
where S* is a polynomial of degree 4. Putting T=4A2P+ Az* we have
(T'2—2T)=16AiS*T.
This implies that all zeros of 4AiP+ A%z* are multiple, whence we have
4 AP+ Azt =4 Ala(2—a)*(z— D)%
Hence we can write (10) as
day(z2—a)¥(z2—b)’w?=2%(fw—2)*

This contradicts that f(z) is two-valued.
Let z, be a common zero of A}P+ A,A%z* and 4A:P+ A%z2. Then we have

(44:4,— A3z{=0.
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Since P(0)#0, we have the relation
(15) 44,A,= AL
Hence (14) reduces to the form
4S=A(P'z—2P).
We may assume that A,=B,=e¢*. By this equation we have the relation
Bs=B.e",
(16) 4B,=Bie" ¥,
2By=|Bs|?+4.

Using the relations (15) and (16) we can write (9) as

z dw\*(1 e¥A;\t (1  e¥By By .\
(7 a’z> (w2+ 2w )‘(?“L 5z T2 fte z)'

We integrate and find
{1+e Byz+ (302 —2as— e~ a, As) 22 — Byz® — e~ 24w — e~ Agztw — 22 =0

where @, is the v-th coefficient of f(2). Since As=B;+2e¢%a,, we have the desired
result by putting B;=a.

REMARK. Suppose that the polynomial
P(w, 2)={1+e Paz+(ai—2a;—e " a,0)2t — Az} —e P2 }uw? — (e Ya + 2a2)2*w — 2°
is reducible. We may assume that P(w, z) has the factorization
P(w, 2)={p(2)w+2}{(p(2) — (e~ "a+2az)2)w— 2z}, p(z)=22"+ pz+v.
Then we have the relations
B=—e ¥, =],
22p— e “a+2a:)=—a,
2uw—v(e~Ya+2a:)=eVa,
12420y — ple~Ya+2as)=ai—2as— e~ asa.
Hence there are two cases
i) a=ie*"q,
P(w, 2)={(1—asz+ie~ 2w —2{{(1+ (e~ "a+az)z+ie 2w+ 2},

i) a=—ie"a,
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P(w, 2)={1—a:z—ie 22w —zH{(1 + (e~ Pa+ as)z—ie~ 22w+ 2}.

However in these cases there are two-valued algebraic functions of S satisfying
(8). For instance in the case a=0, e-®=—1 the two-valued algebraic function
w=2z{1—(e+8)22+2%}~1%, || =1, satisfies (8).

5. Next we construct an extremal problem concerning the first four coefficients
a,, -, @5 for which the algebraic functions of class S satisfying (8) are extremal.

Let w=f(2) be an algebraic function of class S satisfying (8). Then it satisfies
the differential equation

( z dw )2 [ e? + a+2e¥a, + e~ a+2¢"a,)? }

w dz wt w? 4uw?
eio a e—i0a2 eiﬂd Ia,l2 eiﬁ&z
==+ + 24 ez ——— 22
zt 2z 422 z 2 4

+azt e iz4
Now we put in the relation (2)
A;=0, A;=4"'e""a?+aa+e¥ai, As=a+2¢"az, Ay=e®.
Then we have by eliminating F, (v=2,3,4,5)
Bo=e"(4as—8asa,+16aias —6ai—6a2)+ (3a,—6azas+ 3ad)a
+ e'“’(—;—as— —;— a§>a2.

We shall show that

max F,
S
F=%R { e% (4as—8aa,+16aa;—6ai— 6a?)+ —% (Bas—6aza3+3a3)a

+2e*“(%a3——%a§>a2

is a desired extremal problem.

THEOREM 3. In S

?RIei"(ds—Zazm +4a§a3——g a;———g a§> +(as—2asas+ ) -!—e‘“’(——}1 as——}i a§>a2}
1.1

==—4=l|alz
2 4 la

Equality occurs only for the algebraic functions of class S satisfying
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{14+eYaz+(a2—2as— e Yaza)z® — @28 — e~z w? — (e~ + 2a5) 2w — 22 =0.

Proof. By the result of Schaeffer and Spencer, every extremal function w=f(z)
satisfies the differential equation

m (Y532

o 2y 0z

where
Al =0, A2 =4-1g-t0g? +aa+ e”ag, As =a+ Ze“’ag, A4 = e”,

By =e"(2a,—4asas+2a3) +(as— ad)a, B;=4"'e~*a?, Bs=a, B,=e",
By=e"(4as—8aza4+16a%as—6ai—6a%) + (3a:—6azas+3a3) a + —é— e (as—ad)a’.

Since 4A4;A,= A3 we can write (17) as

z aw\* [ 1 e ®a+2e¥a) > (1  e¥a @ A
(w a’z) {w2+ 2w }_<—z—2—+ 2z +—2~z+e z>'

We integrate and find
{l+eYaz+ (a2 —2as— e Paa)2® — @z* —e 024w — (e~ ¥a+ 2az) 22w — 22 =0.
Hence the coefficients of f(z) satisfy the relations

2a,—4asa3+ 205 —e (@i —as)a—a=0
and
2as—4a.a,+8aas—3ai—3ai— eV + e (@i — 2a.as+ @) =0.

Therefore we have

%{ei’<a5—-2aza4 +4aia;— —S—ag ~% a§> +(as—2a:as+ a&d)a+ e*”(%as —711— a§>a2}
N N T
=3 4+ 1 |a]?

Thus we have the desired result.

6. Now we show that for some » (#>5) there is an extremal problem con-
cerning the first n—1 coefficients @, -, @, for which the algebraic functions of
class S satisfying (8) are extremal.

Let Y denote the class of functions g(z) univalent in |z|>1, regular apart from
a simple pole at the point at infinity and having expansion at that point

) bn
9(2)=z+bo+ 2, —

n=1 4
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Let G.(w) be the p-th Faber polynomial which is defined by
Gulaen=2+ 3 L2

Then Grunsky’s inequality [1] has the form

N N
2 vBw, = X vlm |
#v=1 v=1

Let f(2) be a function of class S and put
oo bn
fet=ztbot 2 (121>D).
n=1

Applying Grunsky’s inequality with N=8, z1=zs=xs=x,=0 to the function ¢(2)
=f(z27%)-12, we have

|G(x2y 4y Tey 353 b1, Doy +++, b7)| = | 22|24+ 2| 24|+ 3| w6 |2+ 4| 252,
where

G(xs2y 4, Loy Ts; b1, b2y -+, br)

=x3b1 +4%224b2 + 62226Ds + 8x215bs
+223(2bs + b3) + 12 4206(b s+ b1b2) + 8w 405(205 + 251 b5 + b)
+ 3x4(3bs + 3b1bs + 3b% + b3) + 24 w6 25(bs + 1ba + 2b2bs + bib2)
+4z3(4br+4b1b5 + 8babs + 605+ 4b2bs +8b, b5+ b7).

We seek for the values xs, x4, 26, 25 Such that G(xs, x4, x6, Ts; b1, b2, -++, b7) attains the
value |xz|®+42|x4|?+3|ws|2+4|xs|? at the algebraic functions satisfying (8). The
coefficients of the algebraic functions satisfying (8) satisfy the relations

2by+e~Yba+a=0,
2bs+bi+e b +e1 =0,
(18) 2b4+2b1bs+ e bsa =0,
2b5+2b1bs+ b3+ e b =0,
2b6+2b1b4+2b3bs + e~ bya=0

and
2b7 + 2b1b5 + 2bzb4 + b§ + e’”bsa =0.

Using these relations, we can find that z,=—2¢%@, xy=e “a? 2s=2a and zs=e"
are desired numbers, namely
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G(—2e"a, e¥a?, 2a, €% by, b, -+, ba)
=|—2e9@|*+ 2|6 "a®|2+ 3| 2a|? + 4| |2
at the algebraic functions satisfying (8). Thus we have the inequality
R{e®0(16b, +16b1b5 + 32020, + 2405+ 16b2bs + 32,155 +4b7)
+e%(48b -+ 48b1bs +96b5bs + 48b%b.)
+(52b5+ 520105 + 4403+ 12b})a® + e~ (24b4+ 24b1bs)o®
+e71%(4bs +2b})at — 16e¥h,@ + 4e12b 0 — 24€¥bs | a|* — 8bax || %}
=4+16|a|?*+2]al*

in S. Equality occurs for the algebraic functions satisfying (8). Rewriting with
the coefficients of f(z) we have the following

THEOREM 4. In S
% 1260 2 3 4 5 35 8
2% —qg+2a.as—4adar +8aias — 16aias + 30a3a, — 50aias + e as

—12a.a5as—16asa.a5+48aa%a, + 36aiasas +21aia?

—52a%a3—88aiasas+87atai— 10asai+ 3asa, — 9atas

19
+ _4‘ d§+4a4ae+—g—d§>

+e¥(—3as+6a:a, —12a%as+ 24dias — 45aia,+ T5a%as — 15a] — 36a.asa;5
—21a,a%+39a.a3 + 99aiasa, — 108a3ai + 9asas — 24 dias +12a.a5)a

1 3 asas+10a8—37a.a5a,

183 39 29
1 aiai+ e Qasas —T d§+6df)a2

+ (—‘ "'1—3'— a:+ ‘13— Q286 — 13(1505 +25a§a4— 825

+

+ et (—% s+ 3a.05s—6aia,+ 221 adas—3a3— % aa? +% asa4>a3

+ e‘“”<—711- as +—;— aza4—a§as+%a;+%a§>a4

+e10(gs—2a,a5 + 3aias—Aaias + a5 — 2asa,+ 3a.0%) X

+et? (—%as +—‘11—a§>672
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+ef’<%a5—3a2a4+—g— aias—%aé—%ﬁ)wz

+ <% a;—azas—l-%ag) alalz}

1 1
==+ |af*+=|alt
_4+la|+8|al

Equality occurs for the algebraic functions satisfying

(19)

{1+e Yaz+(ai—2as—e Pa,a)22— @z — e ¥ 24w — (e~ Pa +2a5) 22w — 22=0.

P(2)w?+ pzw— 22 =0,
P(2)=1+eYaz+(a;—2as—e aa)z* — @z*—e 4z,

B=—e-¥a—2a,.

Further let w=f(z) satisfy a differential equation of the form

(20)

2z dw\%28, C, s. D,
(7 E?) L3=2 3% C=De#0,D.=D.

423

7. Finally we consider the case m=5, n=7. Let w=s(2) be a two-valued
algebraic function of class S satisfying an algebraic equation of the form

which has the properties (i) and (ii). Then as in the proof of Theorem 2 we have

Li{+Lo S

M = P3P} =r(2)

where

Ly=Cz+BCs+ f2Cs+ B°Cs+ B*Ce+(Cs 4 28Cs +3°Co) X+ Ce X 2,
Lo=Cy+(Cs+ BCs+ F*Cs+ B*Ce) X +(Cs+28Ce) X2,
M,=p*+4X,

X=2z"%P(2),

S=De¢+Dsz+ -+ +Do2%+ -+ + D5z +Dez*2

Since f(z) is two-valued, we have

2y

and

(22)

Lo’—_-o

L ___s

M, z¥(P'z—2P)*"
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By (21) we have

Cs+2pCs=0,
(23) Cs+ BCy+ BCs+ BCs=0,
C,=0,
whence we can write (22) as
24) 4CiP®+(4C,Ci—CiCe)2*P+-4CCiz* _ S .
16C2P+Ciz? (P'z—2P)

Suppose that the numerator and the denominator of the left hand side of (24) have
no common zero. Then (24) reduces to the form

(P’2—2P)*=S*(16CiP+Ciz?)
where S* is a polynomial of degree 4. Putting 7=16C:P+C2z? we have
(T'2—2T)2=256C{S*T.
This implies that all zeros of 16C2P+C%z? are multiple. Hence we can write (19) as
—de~(z— a)*(z— b)*w? =2*(pw —2)*.

This is a contradiction. Let z, be a common zero of the numerator and the deno-
minator of the left hand side of (24). Then we have

(256C,C3—16C.CiCs+5CHz2=0.
Since P(0)=+0, we have 2,0, whence
(25) 256C,C:—16C,CiCs+5CE=0.
Hence (24) reduces to the form
64C:S={16C2P+(16C,C;—5C8)2*}(P’'z—2P)*.

By this equation and the relations (23), (25) we obtain the following relations by
putting Cs=e* and D,=y

Co=e", Cs=4e"a,+2¢'"")a, Cs=e*(4a5+2a,)+6e* "~ P s +7,

Cs=4e*a,a;+ ¢~ (4aj+2a5)a — *¢ 30 4+ 2a,5y +- e~ Yary,

Co=e¥(2a3a;— a5) +20* "~ ayas0:+ €120 (é— as ——]é— a§>a2

5 . 1
— i3 g8 1 i1t 1 gy + e~ Vgsay + T ety

Cl=0



EXTREMAL PROBLEMS ON ALGEBRAIC UNIVALENT FUNCTIONS

and
Ds=e#*, D;=2¢!*-%a, D,=7, Dy=e-a*+e~ar,
D2=e1(¢—0)+ }_ei(w—a)'alz_l_i e—t(¢+ﬂ)a4+l e—izoazr
2 16 4 ’

(26)

Dy=—2e74*=0g 4 =100 |a|? 4 @y,

D0=(_12.. ]a]2+2><e‘“’r+ Z ~t%¢ >—%(8‘“a2+ei"dz),

oi(2=30) — __ 1

425

Since the differential equation (20) has the properties (i) and (ii), 7 must satisfy

the conditions
( I ) D (1] > Ov

8
(D) Do+2 3 |D,|cos pt—B)=0  (0=t=2x),
v=1

=|D,je.

On the other hand as in §5 we can construct an extremal problem whose every

extremal function satisfies a differential equation of the form

z dw\t& A, &, B,
<w dz ) vz=:1 > —Z—s 2’
where ~
./‘1/‘4=Cy’ g_,=_§” y:l, 2, ...’6_

In fact we put A,=C, (v=1,2, -,
eliminating F, (v=2,--,7)

6) in the relation (2).

Then we have by

BO= ei'PXo+ei(¢—0)Xla+ei(W—20)X2a2 +e7}(¢—30)X3a3 + ei(W—AO)X“aAi

+ Xsr + e Xeay + e X0y,

Xo=6a:—12a,a¢+24a2as—48a3a,+ 78atas — 1825 —84atai +72a.a5a,
—18asas—12az+12a3,

X1 =10as—20a.as+40a2a, — T0a3as + 2045+ 50a.a2— 30asa.,

Xo=at—2a%as+as, Xs= —3as+6a.0:—3a;, X, =% a;— 7w

Xs=4a;—8a,a,+16aa;—6at— 642, Xe=3a,—6a.as+ 3a;,

X7 = ']2-“ ads— %‘ aé
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— 1 (A4 6 2(P—80) 3 i (P—-26) 2 i (P—388) 3

‘_—'F-?RE e Xo+ge Xla-i——z- e Xoa®+2e Xsa
+3ei(“’""”X4a“+%X57’+2e‘”Xsar+3e'i2”X7a27}.

Then we can verify that max & is a desired extremal problem. We can not decide
whether the algebraic functions of class S satisfying (8) are extremal for this pro-
blem in S or not. However by using the general coefficient theorem [4] we can
prove that the algebraic functions of class S satisfying (8) are extremal for this
problem in a certain subclass of S.

In the sequel we denote by

[X¥z)=z+ i axz"
n=2
the functions of class S satisfying (8) and denote by

o pk
g*(2)=z+bf+ 2, %:'7
n=1

the functions of class X satisfying
27 22w+ (e~ P — 2bF) 22w+ (e~ + @z — (2bF — b¥* + e~ 9bfa)z* — e az® — 24} =0.

Let S(a, #) denote the class of functions f(z)eS with expansion at the origin
f(@)=z+2] an2"
n=2

where a;—ai=a¥—a¥* for a certain f*(z). Let X(a, #) denote the class of functions
g(z)€X with expansion at the point at infinity

oo bn
g(Z)——_— 2+bo+ Z n
n=1 z
where b;=b¥ for a certain g*(2).

THEOREM 5. If y satisfies the conditions (1), (II), then in 2(a, 6)
ER{ — &% (bs+b1bs+bE) — €t P=9(2b,+2b1bs)a + % et piy?

Fei-s0p,a0 % Qi i0p gt ( by +%— b‘f)r —e~bsar
28)

1 1 5 _, 1
<{ = 2y = -6 P A e -1 ,,2 1P 72
_——(4|a] +2><e 7+4e a) 82]%{2e a?+ et q%
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where e'®*-3=_1. FEquality occurs for the functions of class X satisfying (27).
Further in S(a, 0)

(29) g= (% la|2+ 1) <e‘“r+%e‘“’a2> —% Ri2e~a® + @)

where ¢¢* =30 =—_1, FEguality occurs for the functions of class S satisfying (8).

Proof. Let

9(2)=2+bo+ Z—Z

=1
be a function of class X(a, #) and let

o bt
*@)=z+b+ T S
n=1
be a function of class X satisfying (27) such that b,=5b%. We may assume that
by=b¥=0. w=g*(2) satisfies the differential equation

2 6 6
2 (5 %) Bow=LEps pomb.
yv=2 y=—6
where
ol =80 = 1

Co=e¥,  Cs=26"""Pa,  C,=y—2e"bF,

Co= —261¢-Dp¥q—git?=30q3 4 o=y,
C __1 $(P-20) % 2O io—in 4+l ~420,,2
2= 2 e T 16 e 44 4 e ay

and D,, Dy, -, D¢ are the same as in (26). The right hand side of (30) is non-
negative on |z|=1. Hence the image of |z|>1 under w=g¢*(2) is an admissible
domain with respect to the quadratic differential

(3 o)

n=2
Then by the general coeffieient theorem [4] we have
R{—(Cscs+Cs¢s+Cics+Cscz+Coc)} =0

where

® ¢
gog*(w)=w+ Y, —.
n=2 W

Rewriting with the coefficients of ¢*(z) and ¢(z) we have
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R{—et*(bs — b¥ + b¥bs— b¥b¥ + bi— bF?) — et~ (2b, — 2b¥ + 2b¥ by — 2b}bF)
+et¥=30(hy — bF)a® — (by — bF)y — e 49(bs — b¥)ay} =O0.

Since b;=b¥, we obtain the inequality (28) by using the relation (18).
Next let f(2) be a function of class S(a, ). Then f(z7!)~! belongs to X(a, 6).
Hence we obtain the inequality (29) by rewriting (28) with the coefficients of f(z).

COROLLARY 1. Let 2=2 and let
) bn
Q(Z)=Z+bo+z by
n=1 2
be a function of class X whose coefficient b, is real. Then
1 1
(31) R{ = (bs+bibs+b2)+2 b3+5 b _S_—z— A

Equality occurs for the functions of class X satisfying
(32) 22w? — 2b¥ 22w — {24+ (2bF — b¥*) 22 +1} =0.

Proof. Put a=0 and #==r. Then e¢**=+1 and the conditions (I), (II) reduce
to the condition that y=—2. Hence we have the inequality (31) in 2(0,x) by putt-
ing 2=—7. On the other hand the function

2& ]_ 1/2
gs(Z)=z<1+~27+?>

=z+£-+~-- (—1=e=1)

satisfies (32). Hence ¢(z) belongs to X(0,z). Thus we obtain the desired result.
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