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ON PSEUDO-PRIME MEROMORPHIC FUNCTIONS

BY GENKO HIROMI AND SHIGERU KIMURA

A transcendental meromorphic function F(z) is called pseudo-prime if F(z)
=f°g(z) implies that either f(z) or g(z) is a rational function.

The notion of asymptotic spots of meromorphic functions was introduced by
Heins [7], [8]. In this paper we shall give several sufficient conditions for mero-
morphic functions F(z) to be pseudo-prime involving restrictions on the asymptotic
spots of F(z).

At first we shall show the following.

THEOREM 1. Let F(z) be a transcendental meromorphic function of finite order
PF which takes a value b at most a finite number of times and has a finite number
of asymptotic spots σι (ί=l, •••, k) over a (aΦb) such that, for any simply-connected
Jordan region Ω containing a, U?=ι #*(£?) contains infinitely many roots of F(z) = a.
Further assume that there exist at mot a finite number of roots of F(z)=a outside
U i=ι ot(Ω). Then F(z) is pseudo-prime.

Proof. We may assume that #=0 and b=oo. Suppose that / and g are both
transcendental and F(z) has a factorization of the form F(z)=f°g(z). Then we
have pf=0 by a result of Edrei-Fuchs [2], in view of pF<+oo. Since F(z) has
only a finite number of poles, /(ζ) has also a finite number of poles. If /(ζ) has
a finite number of zeros, then /o/ ̂ l. This is a contradiction. Hence /(ζ) has
infinitely many unbounded zeros {ζi}Γ=ι By the assumption, U ϊ=ι 0faίW) contains
{ζί}Γ=ι except for at most one ζz. Therefore at least one of g(σt(Ω)) which we
denote g(σ(Ω)) contains infinitely many unbounded {ζ*}. Hence g(σ(Ω)) is unbounded
and Ω("Df°g(σ(Ω))) is unbounded by an extension of Wiman's theorem to mero-
morphic functions [6] (p. 119). This is a contradiction. Therefore F(z) is pseudo-
prime.

An application. Theorem 1 can apply to the function F(z) = R(z) smz where
R(z) is a rational function satisfying R(z)-*Q as 2->>oo.

In [10], Ozawa gave several sufficient conditions for entire functions to be
pseudo-prime. We shall give two theorems (Theorem 2 and Theorem 3), as suffi-
cient conditions for meromorphic functions to be pseudo-prime, which are analogous
to his theorems (Theorem 6 and Theorem 7 in [10], respectively).
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In order to prove our theorems we shall need the following lemma which
refers to the existence of asymptotic spots for composed meromorphic functions.

LEMMA. Let F(z)=f°g(z) be a meromorphic function of finite order where
/(ζ) and g(z) are both transcendental and let σ be an asymptotic spot of F(z) over
WQ. Further assume that <5(oo, /)>0. Then there exists an asymptotic spot Σ of
g(z) over a root a of f(ζ) = wQ such that ΣM = σ(Ω) where ω(3α) is a component
of /- W

Proof. Let Ω0 be a simply-connected region containing w0 in w -plane. Assume
that g(σ(Ω0)) is unbounded. Since <5(oo, /)>0, Ω0(c:fog(σ(Ωo)')) is unbounded by an
extended Wiman's theorem. This is a contradiction. Hence g(σ(Ω0)) is bounded.
Suppose that g(σ(Ω0)) is contained in the disk |ζ|<jf?. We may assume that /(ζ)
has no w0-points on \ζ\=R. Denote by ζt (/=!, •••, K) the wvpoints of /(ζ) in
\ζ\<R. Consider disks ^ (/=1, •••, K) centered at ζι such that KlΓ\KJ =φ (iφj)
and f(Ki)c.Ω0. Let Ω be a simply-connected region contained in Π?=ι /(/Q. Then
g(σ(Ω)) is contained in only one disk centered at α of ^. Denote by ω a compo-
nent of f~l(Ω] containing a. Then we can define an asymptotic spot Σ of g(z)
over α, putting Σ(ω} = σ(Ω).

THEOREM 2. Let F(z) be a transcendental meromorphic function of finite order
PF which takes a value b at most a finite number of times, and let H be the grand
total of harmonic indices of all the asymptotic spots of F(z). Further assume that
the order of N(r\ a, F) for a value a(ΦV) is less than H/2. Then F(z) is pseudo-
prime.

Proof. We may assume that a=Q and b=oo. Suppose that F(z) has a facto-
rization F\z)=fog(z) where / and g are both transcendental.

By the same reasoning as in Theorem 1, /(ζ) has infinitely many zeros. Take
two zeros d and ζ2. Then we have

m(r, g)))

by the second fundamental theorem for g. Hence

rr

Let σ be an asymptotic spot of F(z) over w0 with harmonic index h(σ). Then
we show that there exists an asymptotic spot Σ of g(z) over a (a root of /(ζ)=&00)
with harmonic index not less than h(σ).

Since F(z) has only a finite number of poles, /(ζ) has also only a finite number
of poles. Hence β(oo, /) = !. Therefore, by our Lemma we can find an asymptotic
spot Σ of g(z) over a.
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Since /(ζ) has the expansion in ω (a component of f~l(Ω) containing α)

with a non-zero constant c, we have

f o g ( z ) - wo = c(g(z) - «)»{

in σ(Ω). Hence we have

in σ(Ω) where £ = {&;; |M;— wQ\<ε}.

On the other hand, we have

log+

in a) where ©ω(ζ, α) is the Green's function of ft> with the pole at a and M is a
positive constant, and hence

in σ(Ω). Therefore we have

,
\f°g(z)—wo\ \c\

in σ(-G). If we put

then we have

in ίτ(^) with a positive constant M7. Since the harmonic index of σ is h(σ),
dominates h(σ) positive minimal harmonic functions Ut(z) (f=l, ~,h(σ)) in (ί

Thus it follows that

in Σ(ω)=σ(Ω), by the maximum principle of subharmonic functions. Therefore the
harmonic index of the asymptotic spot Σ of g(z) over a is not less than h(σ).

Now applying the Heins' main theorem [8], we have
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This contradicts pg<H/2. Thus we have the desired result.

THEOREM 3. Let F(z) be a transcendental meromorphic function of finite order
PF which has at most a finite number of poles, and let H be the grand total of
harmonic indices of all the asymptotic spots of F(z). Further assume that the
order of N(r, 0, F') is less than H/2. Then F(z) is pseudo-prime.

Proof. Suppose that F(z) has a factorization F(z)=fog(z) where / and g are
both transcendental. Then, at first we shall prove that /'(ζ) has only a finite
number of poles.

Let zQ be a pole of f'°g(z). If we put

and

(C-ζo)31 '

then from the right hand of the derived equation;

F'(z) = f'cg(Z) g'(z),

we have

and since pq+l^2, ZQ is a pole of F'(z). This means that /'(ζ) has only a finite
number of poles.

Hence, if /'(ζ) has only a finite number of zeros, then ρf=pf,^l. But since
we have pf=Q by a result of Edrei-Fuchs [2], this is a contradiction. Therefore
/'(ζ) has infinitely many zeros. Take two zeros ζi and ζa. Then we have

and by the second fundamental theorem,

N(r, 0, Ff)^m(r. </)-O(log (r-ι»(r,

Hence we have

2p0<H.

The remaining reasoning is the same as in Theorem 2. Hence we have the
desired result.

Now, Goldstein gave a sufficient condition for meromorphic functions to be
pseudo-prime involving restrictions on the asymptotic values. We shall give a
modification of his result (Theorem 1 in [5]), by using asymptotic spots instead of
asymptotic values.
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THEOREM 4. Let F(z) be a taanscendental meromorphic function of finite
order pF which takes a value b at most a finite number of times and has an
asymptotic spot σ over a (aΦb), and let Ωm—{w\ \w—a <l/m} and J(r) = {reίθ\ 0^0^2ττ,
l/\F(reiθ)—a\>exp(K'T(r,F))} with a positive constant K. Further assume that
there exists a sequence {rm}%=1 such that the angular measure of J(rm) Π σ(Ωm) is not
less than a positive number A. Then F(z) is pseudo-prime.

Proof. Suppose that F(z) has a factorization F(z)=f°g(z) where/ and g are
both transcendental. We may assume that £ = oo. Since F(z) has only a finite
number of poles, /(ζ) has also only a finite number of poles. Hence <5(oo, /) = !.
Therefore by our Lemma, there exists an asymptotic spot Σ of g(z) over a (a root
Of /(ζ) = Λ).

Let 5 be the order of this #-point α of /(ζ). Then there exists a constant m0

such that for every m^m0

in ωm, where B is a positive constant, ωm is a component of f~l(Ωm) containing
and Σ(ωm)=σ(Ωm). Hence we have

\F(z)-a\ = \f°g(z)-a\ >B \g(z)-a\s

in σ(Ωm}.
On the other hand we have

\F(z)-a

in /(rm), and hence

in J(rm)Γ\σ(Ωm). Integrating both sides in the above inequality, it follows that for
every m^

with a positive constant C. But since we have

r T(r, f o g ) ^_
lim-^ - —=+oo,
r_oo T(r, g)

by a result of Clunie [1], this is a contradiction. Therefore F(z) is pseudo-prime.

Goldstein also proved the following [4], [5].

THEOREM A. Let F(z) be a transcendental meromorphic function of finite order
which takes a value b at most a finite number of times and is such that
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Then F(z) is pseudo-prime.

We shall prove Theorem 5 concerning the special class of meromorphic func-

tions such that Σ<5(#)=2, by using the following theorem of Nevanlinna [9].

THEOREM B. Let F(z) be a meromorphic function of finite order pp without

multiple values. Then the total sum of the deficiencies of F(z) is 2 and PF—^

The simple proof of this theorem was given by Fuchs [3].

THEOREM 5. Let F(z) be a meromorphic function of finite order pF without

multiple values, then F(z) is pseudo-prime.

Proof. Suppose that F(z) has a factorization F(z)=fog(z) where / and g are

both transcendental. Since PF<+°°, |0/=0 by a result of Edrei-Fuchs [2]. On
the other hand, /(ζ) is a meromorphic function of finite order without multiple
values. In fact, if /(ζ) has a multiple value, then F(z) has also a multiple value.
Thus we have pf^l by Theorem B. This is a contradiction. Therefore F(z) is

pseudo-prime.
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