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PICARD CONSTANT OF A FINITELY SHEETED
COVERING SURFACE

By HirokAzU AoGAl

§1. Introduction.

Let R be an open Riemann surface and M(R) the set of non-constant mero-
morphic functions on R. Let f be a member of M(R) and P(f) the number of
lacunary values of f. Let P(R) be

sup P(f).
FEM(R)
This is called the Picard constant of R. It i1s known that P(R)=2 and P(R) is
conformally invariant. If R is an #s-sheeted covering surface of |z|<oo, then
2=P(R)=2n [4].
In this paper we shall consider the following problem:

ProBLEM. Determine the Picard constant of a finitely sheeted covering sur-
face of [z|<oo.

This problem is very difficult to solve, in general. We shall restrict ourvelves
to an #m-sheeted covering surface R which is called regularly branched, that is, a
surface which has no branch point other than those of order n—1.

Ozawa [5] has proved the following result:

If R is a two-sheeted covering surface of |z|<co and if P(R)=4, then R is
essentially equivalent to the surface defined by an algebroid function y such that
y*=(ef —a)(e” —p), where H is an entire function and «, § are constants satisfying
aBla—B)=0.

Niino and Hiromi [1] have proved the following result:

If R is a three-sheeted regularly branched covering surface and if P(R)=5,
then P(R)=6 and R is essentially equivalent to the surface defined by 3*=(e”—a)
X (e —p)?, where H is an entire function and «, 8 and non-zero constants satisfy-
ing axp.

In §2 we shall consider a preliminary result on P(f).
In §3 we shall prove a generalization of the above results.
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In §4 we shall prove a theorem concerning the Picard constant of a surface
defined by y"=g¢(2).

2. Let f be an #u-valued algebroid function. Assume that P(f)=n+2 and f
is entire. Then the defining equation of f is of the form

(1) F(f,2)=f"=5:(2) " +S:(2) "2+ - +(—1)"Su(2) =0,
where {S;(z)} are entire functions. Let {a;} be finite lacunary values of f. Then
(2) F(a,, z)=e", 1=j=I, H;=constant, [+1=j=k, H;=constant,

where a, for 1=j=/ are exceptional values of the second kind and remaining «,
are those of the first kind. Here #=#n+1 and /=#. (Remark: the inequality /=»n
is due to Rémoundos [6])

Pick up #+1 members {Bi, Bz, -+, fa:1} from {a;}, and let L, be the function or
constant A, which corresponds to ;.

Then, from (2).

B =SB S (1S, = e,
B =S+ S B e (— 1S, = e,

(3)
‘Bgn_slﬁ:n""'sz/%ﬁ““ e (=D)nSp=eln,
Therefore,
(Br—e™)—S, e +-S, 80724 +(—1)"S, =0,
(4) (Br—e™) =S, f7 '+ S, 85704+ (= 1)"S, =0,

(,B:':H“el'"“)—81.821{"*‘32,82;%"' 4 (=1)"S,=0.

This linear system has a non-trivial solution (1, —Si, S,, -++, (—1)"S,). Hence

ﬁ:'_eLl, ﬁ:’ﬂl) [3:1—2’ ) 1

ﬁg'—eLzy ;l—ly ;'_z, Tty 1
(5) Det =0.

n L n—1 n—2
Bri—elrry, BoT, Bavh w1

In this equation (5), the coefficient of e*s 1s the determinant of Vandermonde,
and so it is not zero.

Without loss of generality, we may assume that the first m members
B1, B, -+, Pm are lacunary values of the second kind and remaining §, are those of
the first kind. Then, we have
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(6) Go=aelitaeli+ - aneln,  @10s - anx0.

Hence, by the impossibility of Borel's identity (cf. [3]), we can divide the set
{L;} into some classes A,, any one of which contains more than two members,
such that for any L,, LyeA,, L;—Ly=constant, and for any L;eA,, Ly€A, (v=p),
L;— Li=constant.

Now, divide the set {H;} into classes which have the same property of the
above partition of {L;}.

By the assumption P(f)=#n+2, we have K=k—(n+1)=0. If some class A,
contains fewer than K+2 members, then we can obtain the equation (3) which
contains only one member of this class A,. Then the above argument shows that
another member belongs to A,. This is a contradiction.

Hence, any one of these classes contains at least K+2 members.

This fact implies that, if 2(K+2)>/, the difference of any two of {H;},-1....
is constant.

Therefore, if 2(K+2)>n=[ (i.e. k> (3/2)n—1), the difference of any two of
{H;}, which correspond to the lacunary values of the second kind, is constant.

Let f be an n-valued entire algebroid function satisfying P(f)> (3/2)n. From
the above fact, the equation (3) may be written in the following form:

Bt ‘51‘8;1_1 +Szﬁ?“2 +o A+ (=1)"S,= Tleu!

[317;,—51[3;:,_14-32[3,""_24— +(_1)nsn=7'meuy
(7)
ﬁ;’n+l—slﬁ7nn:-’i+sz‘8‘zl:rzl+ et ( - 1)nSn= Im+1s

Bri—Sifari+Sefarit o +(=1)"Su=ju.1,

where H is a non-constant entire function and i, ys, =+, 72,1 are non-zero constants.
Then, we have

(8) (=1)/S,=a;e” +b,, a,, b, being constants, ;=1,2, -, n.
Substituting (8) into (1),
(9) F(f, 2)=Gi(/)+Gu(f)e! =0,
where
Gi(f)=f 4B " b f "2 - 4 by,
Golf)=arf" +asf* 2+ +ay.

The algebraic equations G,(z)=0, G,(2)=0 have no common root, because of
the irreducibility of F(f,z). And, the roots of G,(z)=0 are lacunary values of
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the second kind of f, and the roots of G.(2)=0 are lacunary values of the first
kind of f. Moreover, f has no other finite lacunary value. In fact, a function
b+ae” (abx0) has at least one zero (Picard’s small theorem).

Summing up these facts, we have the following theorem:

THEOREM 1. Let f be an n-valued entire algebrowd function satisfying P(f)
>(3/2)n. Then there exist an entire function H and constants a,, s, -+, @y} b1, bsy -+, ba,
such that the defining equation of f is F(f,2)=G.i(f)+G(f)e®=0, where G:i(f)
=frb b P by "+ by and Go(f)=af" 4@+ o+ Furthermorve, the
roots of the algebraic equation G.(2)=0 arve lacunary values of the first kind, and
the roots of G:(2)=0 are those of the second kind, and f has no other lacunary
value. Moreover, these two algebraic equations have no common voot.

§3. We shall prove the following theorem:

THEOREM 2. Let R be an n-sheeted regularly branched covering surface of
|z| <oo, and if P(R)>(3/2)n, then P(R)=2n and R can be represented by an alge-
broid function y such that y"=(e—a)(e” — )", where H 1s a non-constant entire
SJunction and «a, B are constants satisfying af(a—p)=0.

Proof. By the assumption, there exists an algebroid function f on R such
that P(f)>(3/2)n. We may assume that f is entire. Then, f may be regarded
as a function defined by the equation of type (9). By the way, (9) is irreducible,
and therefore the existence domain of f is equivalent to R.

We shall define an algebraic function f,, which is associated to f, by the
equation:

(10) F(fo, 2)=Gi(fo) +2Ga(f0)=0.
In this case, we can see easily
an f=fooe".
A simple application of Nevanlinna’s ramification relation shows that

(12) for any ae{0<|z|<oo}, the equation a=e#® has at least one simple root z,.

REMARK. More precisely, Hiromi and Ozawa [2] have proved that N,(7, a—e¥)
~m(r, e®) as r—oo, where N,(r,a—e¥) is the counting function of simple zeros of
the function @—eX.

From the assumption of regularly branched property of R, f has no algebraic
singularity other than those of order n—1. Considering this fact together with
(11) and (12), we can conclude that f, has no singularity other than algebraic
singularities of order #—1 over 0<|z|<oco.

By the way, (10) may be written in the following form:

Gi(fo)

(13) z2=— Gl F)
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Therefore, f, is an algebraic function of genus zero. From these properties of f,
and Hurwitz’s formula for a covering surface, essentially, f, must be an algebraic
function y such that y"=(z—a)(z—p)"*~*, where af(a—p)=0. Hence, f is essentially
equal to y such that y"=(e —a)(e” —p)"".

Thus we have proved that, if R is regularly branched and if P(R)>(3/2)n,
R is equivalent to the surface defined by an algebroid function y such that
y"=(e¥ —a)(e” —p)""!, where H is an entire function and «, 8 are constants satisfy-
ing af(a—p)=0.

On the other hand, on the surface defined by y"= (e — a)(e” — 3)"!, there
exists an algebroid function ¥(e#—a)(e”—p)* /(e —pB), which omits 2x values
(i.e. the n-th roots of 1 and those of «a/p=1). Then P(R)=2n. Q.E.D.

§4. By an analogous argument, we shall prove the following theorem:

THEOREM 3. Let R be an n-sheeted covering surface of |z|<oo defined by an
algebroid function vy such that y*=g(z), where ¢(z) is a meromorphic function. If
P(R)=2n, and if n is odd, then R can be represented by an algebroid function
f osuch that f"=(e—a)(e—p)", wheve H 15 a non-constant entire function and
a, B are constants satisfying af(a—p)=0.

Proof. There exists a function f on R such that P(f)=2x. We may assume
that f is defined by the equation of type (9). Let f, be an algebraic function
defined by (11) from this function f. The function f represents R.

Investigating branch points of the surface y"=g(z), we can see that the total
order of algebraic singularlities of f, which exist over one point, is equal to
P(n/P—1), where P is a divisor of #.

Therefore, f, has also the same property (by (11) and (12)) and f, has no
singularlity over 0 and co (by theorem 1).

Hence
n ”n
(14) P(—F—1>_n—P;—2—
and by Hurwitz’s formula
(15) >i(order of ramification of ramified points)=27—2.

Therefore, f, is ramified over at most three points. But, if there are three
such points, » must be even. In fact, in such a case, there must exist three
divisors p, ¢ and » of # such that

(16) p+qg+r=n+2  (by (14) and (15)).

If » is odd, then p,q,r=wn/3. But, under this condition, (16) cannot be
satisfied. Thus, f, has two algebraic singularlities of order n —1. This fact
completes the proof (cf. the proof of theorem 2). Q.E.D.
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