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ON A METRIC INDUCED BY ANALYTIC CAPACITY

By Nosuyvyuki Suira

Dedicated to Professor Yukinari Toki on his 60th birthday

1. In our previous paper [6] we gave a conjecture that the metrics c4(2)|dz|

and \/nﬁ(z, z)|dz| have negative curvatures =—4; here cy(z) and K(z, z) are the
capacity and the Bergman kernel of exact analytic differentials on an open (non-
trivial) Riemann surface. In the present paper we shall show that the curvature
of the metric cp(z)|dz|<—4 for plane regions 2¢O45 where cp(z) denotes the
analytic capacity of Q at z. In order to verify cp(z)eC? we prove that cp(z) is real
analytic. This enables us to answer a question of Havinson [4], namely “ Does the
sequence of extremal functions ¢, in the dual problem of Schwarz’s lemma in 2,

converge as {2,} exhausts Q7?".

2. Let 2 be a plane region ¢O43. The analytic capacity cp() is given by
sup | f/(€)| in the family of analytic functions satisfying f({)=0 and | f(2)|=1. Let {2,}
be a canonical exhaustion of 2 such that the boundary of 2, consists of a finite
number of analytic curves. Let c,({) be the analytic capacity of 2,. Then {c,({)}
is decreasing and tends to cp({). There exist extremal functions f, such that
L@ =cn(8) and f§(C)=cp(). It is known that those extremal functions are unique
[4]. The function log cz({) is subharmonic [2].

In every 2, there exists the Szego kernel k,.(z, {) and its adjoint kernel /,(z, )
[8]. %a(z, ) is hermitian and analytic with respect to z and {. Further the follow-
ing facts are known [3]:

kn(2, ©)
In(2, ©)

(1) Su(2)= - with (@) =27kx(L, O)

and
|&a(2, O)12=1ka(2, 2)||Ea(C, O

Thus k(2 £) is uniformly bounded on every compact subset and hence forms a
normal family of analytic functions of two variables z, . We will show that {%,(z, )}
converges to a function A(z, {) uniformly on every compact subset of Q.

Suppose that there exist two limit functions k(z, {) and k*(z,{). We may
assume 0€f. The difference k(z, {)—k*(z, {) has an expansion in a polydisc {|z| <7}

X{|¢ <7}
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ke O—k*@ 0= 3 28 with  a,=a,.

v, =0

Since k(z, 2)=Fk*(z, 2)=cp(2)/27, by setting z=|z|e? we have @p=0 and by induction

Z av“ei(v—,u)ﬂ:O.
vtp=n
Hence @,,=0 and k(z, {) coincides with k*(z, {). {fu(2)} clearly converges to fo(z)
uniformly on every compact subest of 2. Thus the sequence {/,(z, {)} converges to
a meromorphic function /(z, ) uniformly on every compact subset of 2—¢. This
yields

THEOREM 1. The sequence {ki(z, ()} comverges wuniformly on every compact
subset of Q. The analytic capacity cp(z) is real analytic. Further the sequence
{Iu(z, ©)} converges uniformly on every compact subset of 2—C.

3. The last statement gives an affirmative answer to a question of Havinson
[4]. For a moment suppose coef. Take an exhaustion {2,} of £ with coef;. Let
Ei(2,) be the family of functions ¢ analytic in 2, satisfying ¢(co)=0 and

S plds=<1,
22,

where ds is the length element on 6£2,.
As the duality relation in Schwarz’s lemma, Havinson [4] showed

calo0)=  min S 1+ glds
a2,

$EE1(Dy)
and that the extremal function ¢, exists uniquely in F,(2,) and satisfies
—ifa(2)(1+ ¢pn(2))dz=|1+¢n(2)|ds

where f, is the extremal function in no. 2 with {=oco. He proved that every
subsequence of {¢,} contains a convergent subsequence and conjectured that {¢,}
itself is convergent as n—co.

On the other hand the square of /,(z, c0) is expressed as

1 by
2~_ —_——— — “ee
l.(2, c0)?= i <1+ p, + >

near the point at infinity and has no zeros in £,. The fundamental relation
1(2, 00)ds =iky(2, c0)dz along 02, [3] and (1) show —il,(z, 00)%f,(2)dz>0 along 02,
which implies that (1+¢a(2))/ln(z, 00)? is real and that ¢.(z)=4r%,(z, 0)*—1. The
validity of his conjecture is deduced from Theorem 1.

4. We now turn to the estimation of the curvature of the metric cp(z)|dz|.
Let A|ldz| and pldz| with 2, p=0 be two metrics on a plane region Q. Following
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Ahlfors [1], we call p|dz| a supporting metric of A|dz| at the point { if 1) 2=p at
¢ and 2) 2—p=0 in a neighborhood of . Then we prepare

LeMMA. If pldz] is a supporting metric of 2|dz| and if both 2 and p are of
class C?, then the curvature of p|dz| dominates that of A|dz|.

Proof. The curvature «£(2; z) of 2|dz] at z is given by

—4log 2
W 2)= — ng .

Since log (2/p) assume a local minimum at z={, we have 4 log (2/¢)=0, which
implies the assertion.
We state

THEOREM 2. The curvature of the metric cp(z)|dz|<—4.

Proof. Let fi(z) be the extremal function with c¢sQ)=s5). Set F(z, 1)
=(fo(2) = Fol)/(L=Ffoln)fo(2)). We have |F(z, 7)|=1 and

1f i)
I—-1folml®

The metric F’(z, z)|dz| has the curvature —4 at every point z except for the zeros
z, of fi. Thus cp(z)|dz| has a supporting metric |F’(z, 2)||dz| at every point {eQ.
We have x(cp 2)<—4.

There remains a problem to decide the equality statement in Theorem 2. It
is plausible that if «(cs z)=—4 at one point z, 2 is conformally equivalent to the
unit disc less a (possible) closed set expressed as a countable union of compact
Ng sets.

=cz(y).

5. A recent development of the theory of conformal metrics was given by
Heins [5]. He defined an S-K metric by a metric 1|dz| such that

1) 2 is nonnegative and upper semi-continuous, and

2) lim -12-(51— Sz" log A(C +7e)d—log z(c)> =200
T Jo

As he pointed out, the operator in the left hand side in 2) is one tourth of the
generalized lower Laplacian and if log 1€C? the condition 2) reduces to

4 log AC)=4a)>

A sufficient condition for a metric to be S-K is the existence of a supporting metric
with curvature <-—4 at every point [5]. From this Theorem 2 again follows.

This remark works for the metric csp(2)|dz| associated with bounded univalent
functions. Let & be the family of univalent functions satisfying |g|=1 on £.
css(§) is defined by
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csp(&)=sup |¢’ Q).
gEF

If F=¢, there exists an extremal function satisfying css({)=g¢:({) with s({)=0 in
. Thus we can construct a supporting metric at every point {€2 as before.
However csgp(2) is not necessarily differentiable (an example is csz(z) for an annulus
1<|z|<r at the points on the circle |z|=+/7). Hence we must stop at the result
that csp(2)|dz] is an S-K metric on Q.
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