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Recently, 3-structures, almost contact, /^-contact or Sasakian (normal contact),
have been introduced and several interesting subjects concerning these structures
have been studied ([3], [4], [5], [6], [8], [9], [13]). The 3-structure, ^-contact or
Sasakian, is a special kind of triples of Killing vectors, which will be defined in
the present paper as a set of three unit Killing vectors f, η and ζ being mutually
orthogonal and satisfying the structure equations [η, ζ] = 2f, [ζ, ξ] = 2η, [?, >?] = 2ζ.
One of purposes of the present paper is to obtain, in terms of curvatures, a con-
dition that a triple of Killing vectors is a Sasakian 3-structure.

In § 1, we recall definitions and properties of structures, ^-contact or Sasakian.
We define also in § 1 a triple of Killing vectors and give its preliminary properties.
In §2, we give fundamental concepts and divices concerning fibred Riemannian
spaces with triple of Killing vectors. We state, in § 3, some propositions concerning
triples of Killing vectors or K-contact 3-structures as consequences of formulas
established in § 2. The last § 4 is devoted to studying properties of Nijenhuis tensor
of structure tensor fields determined by a triple of Killing vectors or a X~-contact
3-structure.

§ 1. Preliminaries.

First, we recall some properties of a X"-contact structure. Let (M, g) be a
Riemannian manifoldυ of dimension n with metric tensor g. Let there be given
in (M, g) a unit Killing vector ξ satisfying

(1.1) K(ξ,X)ξ=-X + a(X)ξ,

where K denotes the curvature tensor of (M, g) and a the 1-form associated with
ξ, i.e., a(X) = 9(ξ, X).^ Then ζ is said to define a K-contact structure (cf. [2]). If
we put, for a K-contact structure ξ,

Received May 8, 1972.
1) Manifolds, vector fields and geometric objects we discuss are assumed to be dif-

ferentiable and of class C°°.

2) Here and in the sequel, X, Ϋ and Z denote arbitrary vector fields in M
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(1-2) φ = Vξ,

V being the Riemannian connection of (M, g), then φ is a tensor field of type (1, 1)
satisfying

(1. 3)

where / is the unit tensor field of type (1, 1) and the 1-form a°φ is defined by
(aoφ)(X)=a(φX). If we put Φ — fa, then we see that Φ is a skew-symmetric tensor
field of type (0, 2), i.e., a 2-form and satisfies

(1.4) dΦ=Q,

d denoting the exterior differentiation. In such a case, M is necessarily orientable
and odd -dimensional. When the condition

(1.5) N+2Φ®ξ=Q

is satisfied, where N is the Nijenhuis tensor of φ, the ^-contact structure ξ is
called a normal contact structure or a Sasakian structure. A ^-contact structure
ζ is Sasakian if and only if it satisfies

(1 6) ft(ζ,X')=x®ξ-a®X,

where x is the 1-form associated with X (cf. [2]).
We now assume that the Riemannian manifold (M, g) admits three unit Killing

vectors ζ, η and ζ which are mutually orthogonal and satisfy

(17) £=-|-fo,C], ?=-£-[&£], C=^-K.?]

/^
Such a set {ξ, /?, ζ} is, for simplicity, called a triple of Killing vectors in (M, g).
We put

(1.8) φ=Pξ, ψ = fy θ = Pζ',

(1.9) Φ = Fα, Ψ = Pβ, Θ = Pγ,

where α, ^ and γ are 1 -forms associated with ξ, -η and ζ respectively. Then Φ, Ψ
and Θ are skew-symmetric tensor fields of type (0, 2), i.e , 2-forms and equations

(1.10) ^=0, ψη=Q, ^ζ-0;

(1.11) rfΦ=0, J?Γ=0, JΘ-0;

(1. 12) A^=0, ^=0, Fc^-0

are valid, because «f, ^ and ζ are unit Killing vectors. From (1. 7), we have
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(1. 13) 2? - θη - 0ζ, 2η = <&- θξ, 2^φξ- φη.

On the other hand, we find

(1.14)

because ξ, η and ζ are mutually orthogonal. Thus, using (1.13) and (1.14), we
obtain

(1. 15) ξ = θη= -ψζ, η = φζ = ~θξ, ζ = ψξ = ~φη.

Given a triple {ξ , η, ζ} of Killing vectors, we denote by D the distribution
spanned by £, ^ and ζ. Then, by means of (1. 7), D is integrable. Using (1. 7),
(1. 8), (1. 10) and (1. 15), we obtain

(1. 16)
P,C=-^ = f, fa=-?£ = y, ^=_p,£ = ζ.

Thus any integral manifold F of .D is totally geodesic in (M, 5) and hence, by
means of (1. 16),

holds, where K is the curvature tensor of F with induced metric. Therefore,
denoting by σ(C, D) the sectional curvature of F with respect to the section spanned
by tangent vectors C and D to F, we have σ(ξ, η) = l. Similarly, we obtain σ(ηt ζ)
=ff(ζ, f) = l. Consequently, we have

LEMMA 1. 1. In (M, g) with triple {ξ, η, ζ} of Killing vectors, any integral
manifold of the distribution D spanned by ξ, η and ζ is totally geodesic and of
constant curvature 1.

A triple {£, η, ζ} of Killing vectors is called a K-contact ^-structure if each of
ξy -η and ζ defines a ^-contact structure and the equations

θψ

(1. 17)

hold (cf. [5], [9]). In such a case, M is necessarily orientable and of dimension
n=4m+3. In the sequel, we assume that dim M=^=4m+3^7 (i.e., m^l) for any
(Λ/, g) with K-contact 3-structure. A 7Γ-contact 3-structure {f, η, ζ} is called a
normal contact 3-structure or a Sasakian 3- structure if all of ξ, η and ζ are normal
contact structures. If any two of ξ, η and ζ are normal contact structures, then
the triple {ξ, η, ζ} of Killing vectors is Sasakian 3-structure (cf. [5], [6], [8]).

Let (M , Q) be an ^-dimensional Riemannian manifold with triple {ζ, η, ζ} of
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Killing vectors (resp. with K-contact 3-structures or with Sasakian 3-structure) and
M a manifold of dimension n — 3. Assume that there is a differentiate mapping
π\ M->M, which is onto and of the maximum rank, and for any point P of M the
complete inverse image π~\P) is a maximal integral manifold of the distribution
D spanned by ξ, -η and ζ. In such a case, (M, g) is called a fibred Riemannian
space with triple (ξ, η, ζ} of Killing vectors (resp. with ^-contact 3-structure or with
Sasakian 3-structure), each of complete inverse images π^P) the fibre over P and
M the base manifold. Any Riemannian manifold with triple of Killing vectors
admits locally such a structure of a fibred Riemannian space with triple of Killing
vectors (i.e., for any point P of the manifold, there is a suitable neighborhood
containing P and admitting a structure of a fibred Riemannian space). Thus the
arguments developed for a fibred Riemannian space with triple of Killing vectors
will be locally established for any Riemannian manifold with triple of Killing
vectors.

§2. Fibred Riemannian space with triple of Killing vectors.

In this section, we assume that (M, g) is a fibred Riemannian space with triple
{£, 37, ζ} of Killing vectors and denote by π: M-^M the projection, where M is the
base manifold. Since ξ, η and ζ are Killing vectors spanning the tangent space of
each fibre, (M, M, π, g) forms a fibred space with projectable Riemannian metric g
in the sense of [1], [3], [7], [11] and [12].

We take coordinate neighborhoods {U, xh] of M and {£/, va} of M such that

π((j) == U. Then the projection π\ M->M may be expressed, with respect to U and
U, by certain equations of the form3)

(2. 1) va=va(xh),

where υa(xh) denote the coordinates of the projection P = τr(P) of a point P with
coordinates xh in U and are differentiate functions of the variables xh with Jacobian
(dva/dxh) of the maximum rank 4m( = n — 3). Take a fibre F such that FΓ\U^φ.
We may assume that FΓ\0 is connected and that we can introduce local coordinates
(ua) in FnU in such a way that (va, ua) is a system of coordinates in U, (va) being
coordinates of the point π(F) of U. Differentiating (2. 1) by xh, we put

(2.2) Et

a = diVa,

where di = d/dxϊ. Then, for each fixed index <z, fiα are components of a local
covector field Eα in 0. On the other hand, if we put Ca = d/dua which is a local
vector field in 0 for each fixed index a, then C« form the natural frame of each
fibre in FnO. We denote by Ca

h components of Ca in 0.

3) The indices h, i, j , k, I run over the range {1, 2, ••-, n] and the indices a, b, c, d, e
over the range {1, 2, ••-, ^—3}. The summation convention will be used with respect to
these systems of indices.
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Let Sji be components of g in 0. Then the induced metric g of a fibre F has
components of the form g7β=gjiCJ

7C
i

β in FπO. If we put Cl

a = gihgaβCh

β, where
(gaβ} — (QaβYlj and denote by Ca the local vector field with components C^0ί in 0 for
each fixed index α, then Ea and Ca form a coframe in £/.4) Denoting by (E\, C%)
the inverse matrix of (El

a

J Cl

a], we obtain

(2.3)
CΛE^O, C^aCi

β=δa

β.

Then we have, in 0, n — 3 local vector fields £6 with components E\ and 3 local
vector fields Cβ with components C%, which form in 0 a frame dual to the coframe
(E\ Ca}.

Any tensor field, say f of type (1, 2), in M is represented locally in 0 as
follows:

τΐβ

aσ

where the coefficients Tcδ

α, •••, Tr/3

α are local functions in U. In the right-hand
side, the first term Tcb

aEc®Eb(g)Ea determines a global tensor field in M, which
is called the horizontal part of f and denoted by TH. The last term Trβ

aCr®&
®Ca determines also a global tensor field in M, which is called the vertical part
of f and denoted by f v. If we have f=TH (resp. f =f F), then we say that f
is horizontal (resp. vertical). For a function / in M, we define its horizontal part

#=/. For any two tensor fields f and § in M, we have (f®S)H=TH

When a horizontal tensor field, say f of type (1,2), has the form f=Tcb

aEc

a in £7, we say sometimes that T has components Tcύ

a in ί7.
A tensor field T in M is said to be projectable if it satisfies (J?χTH)H=Q for

any vertical vector field X (See [1], [3], [12]), where £% denote the Lie derivation
with respect to X. Then a tensor field f is projectable if J7^f=0, j£ηf =0 and

A function / in M is projectable if and only if J7^/=0 for any vertical vector
field X. If / is projectable, then / is constant along each fibre because every fibre
is connected. Given a projectable function / in M in such a way that, for any
point P of M,/(P)=/(P), where P is a point of M such that ττ(P)=P. We call /
the projection of / and denote it by pf. If / is a projectable function, then its
gradient grad / is so also. For a projectable function /, (grad f)H has components
of the form dbf in 0, where db=Eί

bdί and di=d/dxl in U, and graάf=p (grad/)
(f—Pf) nas components of the form d&/ in U, where db — d/dvύ in U.

4) The indices a, β, γ, δ run over the range {1, 2, 3} and the summation convention
will be used also with respect to this system of indices.
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If we denote by πσ and gσ respectively the restrictions of π and g to U, then
we have a fibred space {0, U, πΠ) g^} with projectable Riemannian metric guy which
is called the local fibering of 0 in {M, M, π, g}. In the sequel, we use, concerning
local geometric objects, the terminologies such as to be horizontal, to be vertical,
to be projectable and etc. with respect to the local fibering in the above sense.

A tensor field, say f of type (1, 2), in M is projectable if and only if the local
function Tcύ

a is projectable, where fH=Tcb

aEc®Eb®Ea. Then, for a projectable
tensor field T of this type, we can define a local tensor field Tu with components
p(Tcb

a) in U. The local tensor field Tu determines a global tensor field T in M
which is called the projection of T and denoted by pf.

Given a tensor field T in M, there is uniquely a horizontal and projectable
tensor field f in M such that pf=T. This f is called the lift of T and denoted
by TL.

The Riemannian metric g is projectable because J??g = 0, £•$ — 0, Xζg^O. If
we put g—pg, then g is a Riemannian metric in M, which is called the induced
metric of M. The Riemannian manifold (M, g) thus introduced is called the base
space. The induced metric g of M has in U components of the form gcb = QjίEJcEί

b,
where the both sides are identified with their projections respectively. We denote
by (gcδ) the inverse matrix (gcδ) in M. In the sequel, we shall identify any pro-
jectable (local) function with its projection.

Since each fibre is totally geodesic, we have in 0

(2.4)
CO

(2.5)

and equivalently

(2. 6) , -
I c u

(2. 7)

{Λ} and {r

a

β} being the ChristoffeΓs symbols constructed by gcb and by grβ respec-
tively, where kcb

a are local functions in U such that hcb

a+hbc

a:= 0, hb

a

β = gacgβahbca

and Pbβ

a the functions appearing in

[Cβ, Eb]=-Pbβ

aCa, [Cβ, Cβ] = 0,
(2.8)

From (2. 4)— (2. 7), we have

[£β> £6] - 2Ac6

βCβ, [£6, CJ = Pbβ*Ca,

(2.9)
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XEcE
a = 0, £Έ£a = 2hcb"Eb - Pcβ

aCβ.

We can verify that, for any projectable tensor field f in M, VχnfH is projectable
and

(2.10) p(V^fH^VxT, T=pf, X=pX,

where X is a projectable vector field in M (cf. [1], [3], [11], [12]).
We now need the well known Ricci identities

P/kE\ = Kkjί

hE\

where Kkjί
h are components in 0 of the curvature tensor K of (M, g). If we take

account of (2. 4)~(2. 7) and use the Ricci identities given above, then we find the
following structure equations (cf. [1], [3], [7], [11], [12], [14]):

(2. 11) Kδrβ"=K8rβ

a,

(2. 12) R*rf=Q>

which are respectively the equation of Gauss and that of Codazzi for the immersion
of each fibre in (M, g), where

R*rf = KkJi
hc\orc^ch

a, κδrβ

a = κkjί

hσδσrσβEh

a

and Kifβ" are components of the curvature tensor K of the fibre. The equation
of Ricci for the fibre is equivalent to (2. 15) or to (2. 19) which will be given later;

(2. 13) Kdcba - Kdcb

a = - hd

a

ahcb

a + hc

a

ahdb

a + 2hdc

ahb

a

a,

(2. 14) K^^Vah^-Vch

Kdc

a - faPc" - dcP
(2. 15)

— hc

b

βhdb

a — 2hdc

r

} ί ,
T p \

which are respectively the equation of co-Gauss, that of co-Codazzi and that of co-
Ricci for the fibering of (M, g), where

hab — 1 7 T \ MCO,
a

7 F "Όb — l τ τ
del \d b[ a c \ ( a D j

and Kdcb

a are components in U of the lift KL of the curvature tensor K of the
base space (M, g);
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(2. 16) Kδcb

a = Vδhcb

a + hfthca*,

where

dβ being defined by dβ=Cίβdί in 0.
In the left hand side of (2. 13), Kdcb

a denote components in 0 of KH, which is
projectable since j?ζK=j;ηK=j:ζK=Q. Therefore the right hand side of (2. 13)
denotes a horizontal and projectable tensor P of type (1, 3), whose components in
0 are given by

(2. 17) Pdcb

a = - h&\ hcb

a + hc\hdb

a + 2hdc

ahb\.

Since each fibre is of constant curvature 1, we have Kδΐβ

a=da

δgrβ—da

rgδβ> Thus
(2. 11) reduces to

(2. 18) K rβ'^tiffrβ-ty β

The equation (2. 12) shows that the connection induced in the normal bundle of each
fibre has zero curvature tensor.

The Jacobi identity [[Ed, Ec], Cβ] + [[Ee, Cβ], Ed] + [[Cβ, Ed], Ec]=0 is equivalent to
the identity

dc

a = 0.

Using the identity above, we see that the equation (2. 15) of co-Ricci is equivalent to

(2. 19) Ktcβ* = hd

b

βhcb

a - hc

b

βhdb

a - 2ϊ7βhdc

a.

If we put in 0

(2. 20)

then we obtain φcb=φc

agab, ψcb=ψc

agab and θcb = θc

agab.
If we put in 0

(2.21) ξ=a*Ca, η=baCa, ζ=caCa

and aβ = aagaβ, bβ = bagaβ, cβ = cagaβ, then we find

(2. 22)
aβa

a+bβ

and, using (1. 16),

(2. 23) Praβ=-(brCβ-crbβ), F7bβ= -(craβ-arcβ), Frcβ=-(arbβ-braβ\
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where Praβ = draβ — {r

a

β}aa and etc. Since ξ, η and ζ are Killing vectors, each of the
operators J?ί, £η and J?ζ commutes with the co variant differentiation V. Thus,
using (1. 7), we find

(2. 24) XDφ = 2(rφ - qθ\ £Dψ = 2(pθ - rφ\

for any linear combination D=pξ + qη + rζ with constant coefficients p, q and r, or
equivalently

(2.25) dβφCb

Next, using (2. 24), we have

for any linear combination D of f, η and ζ with constant coefficients. Therefore
two tensor fields

(2.26) Λ

are projectable. Thus, if we put

(2.27) Λ=pΛ, S=pS.

then A and S are tensor fields in the base space (M, g).
We obtained, in (2.8), [Cβ, Eb]=—Pbβ

aCa, which is equivalent to

Substituting (2. 4) and (2. 22) into the equation above and taking account of (2. 25),
we obtain

(2. 28) hcb

a — — (aaφcb + baψcb + caΘcb) ,

Pbβ" = (dbaβ)aa + (dbbβ}ba + (obCβ)ca

(2. 29)
= — aβ(dbaa) — bβ(dbb

a) — cβ(dbc
a).

If we substitute (2. 28) and (2. 29) into (2. 13), (2. 14) and (2. 19), then we have,
using (2. 23) and (2. 25), respectively

(2. 30) Kdcb

a - Kdcb

a = - Λcbd

a + Adbΰ

a + 2/UΛ

(2. 31) A^cδ

α = 0β JVcd + baybψcd + caPbθcd,

Kdcβ

a = (Lcd + 'Lcd}(cβb
a - bβc

a) + (Mcd + '
(2. 32)

where we have put
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Lcb = Lc

agab, Mcb = Mc

agab, •••, etc.,

a \ \ a

dc\φ<*-\db
φca, •••, etc.,

Λdcb

a denoting components in 0 of ΛH, that is,

(2. 33) Λdcb

a = φdcφba + 0<zc0δα + θdcθb

a.

By a similar way, we have, from (2.16),

(2. 34)
— aδ(Ncbb

a — 'Mcbc
a) — bδ(LCbCa ~ 'Ncba

a)—cδ(Mcba
a — fLcbb

a}.

The Ricci tensor R of (M, g) has the form

in ϋ. Then, using (2. 12), (2.18), (2. 30), (2. 31), (2. 32), (2. 33) and (2. 34), we find

(2. 36)
Krβ - (φcbφ

cb}araβ 4- (φcbψcb)bγbβ + (θcbθ
cb)crcβ + 2gr^,

where ψcb=gceφe\ •••, etc., Γc^δα=^δ

α + {Λ}^δ

e-{Λ}^Λ •••> etc. and Kcb=Kacb

a are
components in £/ of the lift jR1- of the Ricci tensor R of the base space (M, g).

3. Some propositions.

The curvature tensor K of (M, g) with triple of Killing vectors is projectable.
Then, from (2. 30), we have

PROPOSITION 3. 1. The curvature tensor K of the base space (M, g) of a fibred
Riemonnian space with triple of Killing vectors is given by K(X, Y)Z=(pK)(X, Y)Z
+Λ(Y, Z, X)-Λ(X, Z, Y)-2Λ(X, Y, Z\ X, Y and Z being arbitrary vector fields in
M, where Λ=pA is a tensor field of type (1. 3) defined in M by (2. 27) (cf. [3], [7]).

If we take account of (1. 10) and (1. 15), we find

(3.1) φ

and hence

(3. 2) φ*
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θψ

(3.3)

We now suppose that pK=K (resp. pR = R) holds. Then, by (2. 30) (resp. by
(2.36)), we obtain -Λcbd

a+Λdbc

a+2Λdcb

a = Q (resp. Λαcδ

α=0), from which, by contrac-
tion, φb

aφa

b + ψb

aψab + θb

aθa

b = 0 and hence φb

a = θb

a = ψb

a = 0, i.e., φ

H = ψH = θH = 0. Thus,
using (3. 1), we find

Taking account of these equations, we can easily verify that (M, g) is locally a
Pythagorean product of a fibre and a Riemannian manifold. Thus we have

PROPOSITION 3. 2. Let K and R (resp. K and R) be respectively the curvature
and the Ricci tensors of a fibred Riemannian space (M, g) with triple of Killing
vectors (resp. of the base space). Then we have pίί — K (or pR~R) if and only if
(M, g) is locally a Pythagorean product of a fibre and a Riemannian manifold.

Denote by σ(X, Ϋ) the sectional curvature of (M, g) with respect to the section
spanned by X and Ϋ. Thus we obtain, for unit vectors Xv and ΫH, σ(Xv, ΫH)
= - KδcβaXδYcX*Ya, where Kδcβa = Kδcβ

egea, KScβ

e = Kkji

hC\&cσβEh« and Xv

= XPCβ, ΫH=YbEb. Therefore, using (2. 34), we find for a unit vector ΫH

σ(ξ, H) = - (φacφb

a) Yc Y\ σ(η, H) - - (φacψb

a) Yc

(3.4)

Thus, if and only if σ(Xv, ΫH) = l for any X and Ϋ, we have

(3.5) (pff)'=-/*,

which are equivalent respectively to

(3.6) φ*=-I+a®ξ, ψ*=

by means of (3. 2). Thus, taking account of Lemma 1, we have

PROPOSITION 3. 3. In (M, g) with triple {ξ, η, ζ} of Killing vectors, each of <f, η
and ζ is a K-contact structure if and only if the sectional curvature of (M, g) with
respect to any section containing at least one vertical vector is equal to 1.

If ί, η and ζ are all ^-contact structures, then we have, from (2. 36) and (3. 5),

Kcb=Kcb-6gcb, Krβ = (n-l)grβ, Krb = 0.

The last equality can be derived from Lemma 8 in [10]. Thus we have

LEMMA 3. 4. Assume that, for a triple {£, η, ζ} of Killing vectors, each of |, η
and ζ is a K-contact structure. Then, the base space (M, g) is a Einstein space if
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and only if (M, g) is so.

We now consider the condition

(3. 7) (K(XV, ΫH)ZHY = - g(ΫH, ZH)XV,

which implies (3. 5) and hence (3. 6). Taking account of (2. 32), we see that (3. 7)
implies

Lcb = 'Leb = Mcb = 'Mc» = Nci, = 'Ncb=Q,

that is,

(3. 8) θ
H
φ

H
 = - φ

H
θ

H
=φ

H
, φ

H
θ

H
 = - θ

H
φ
H
 = ψ

H
, ψ

H
ψ

H
 = - φ

H
ψ

H
 = Θ

H
,

which are equivalent to (1.17) by means of (3. 3). Thus {ξ, η, ζ} is necessarily a
Λ"-contact 3-structure. Therefore we have

PROPOSITION 3. 5. A triple of Killing vectors is a K-contact 3-structure if and
only if the condition (3. 7) is satisfied (cf. [9]).

By means of (2. 31), the condition

(3.9) (R(XH, ΫH)ZH)V = Q

is satisfied if and only if

(3.10) Pcp6

α=0, Fc^6

α=0, W=0

hold. The equations (3. 10) imply FΛ = 0 and FS=0 in (M, g). Thus we have

PROPOSITION 3. 6. If, in (M, g) with triple of Killing vectors, the condition (3. 9)
is satisfied, then PA = Q and FS=0 hold in (M, g).

Taking account of (2.12), (2.18), (2. 30), (2. 31) and (2. 32), we see that, for a
X"-contact 3-structure {£, 77, ζ}, ξ satisfies the condition (1. 6) if and only if Fc^δ

α=0
holds. Thus we have

LEMMA 3. 7. For a K-contact ^-structure {ξ, η, ζ}, ξ is a Sasakian structure if
and only if Pcφba = Q holds.

If, for a ^-contact 3-structure {<?, η, ζ}, 7cφb

a—^ and Fc^δ

α=0 are satisfied, then
PcOba=Q holds because of θb

a=φc

aφb

c (cf. (3. 8)). Thus, as a corollary to Lemma
3. 7, we have the following well known

PROPOSITION 3. 8. A K-contact 3-structure {ξ, η, ζ} is a Sasakian ^-structure if
and only if two of <?, rj and ζ are Sasakian structures.

Combining Propositions 3. 3, 3. 5, 3. 6 and Lemma 3. 7, we have

PROPOSITION 3. 9. A triple of Killing vectors is a Sasakian 3-structure if and
only if the conditions (3. 7) and (3. 9) are satisfied.
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PROPOSITION 3. 10. If (M, g) with triple {ζ, -η, ζ} of Killing vectors is of constant
curvature c, then c — \ and {ζ, η, ζ} is a Sasakian 3-structure.

Recently, Kashiwada [4] has proved that any Riemannian manifold admitting
a Sasakian 3-structure is a Einstein space. Then, by means of Lemma 3. 4, we see
that, for any fibred Riemannian space with Sasakian 3-structure, the base space is
a Einstein space.

§4. Nijenhuis tensors.

In (M, g) with triple {ξ, η, ζ} of Killing vectors, the Nijenhuis tensor N(φ, φ) of
φ and φ is, by definition, a tensor field of type (1, 2) with components

2N(φ, φ)jih = φf^φf- - φikVkφ3

h + ψjkVkφih - φf^φf'

(4.1)

- <pth(Pjφi* ~ Viφf) ~ Ψ

and the Nijenhuis tensor N(φ) of φ is defined by

(4.2) ft(φ) = ft(φ, φ).

As we have seen in (3. 1),

Differentiating this covariantly and using (2. 4) and (2. 6), we have

(4. 3) VEcφ - (Pcφb

a)Eb (x) Ea+fa'hc^σ ®Ea + (φb

ahca

a)Eb (x) Cβ,

(4. 4) FEcΦ = (Pcφba)Eb ®Ea + (φbahc

b

β)σ ®Ea + (φbahc\)E* (g) C".

If we use (4. 3), we have, from (4. 2) and (4. 1),

(4.5)
N(φ, ψ)H=N(φ, φ)cb

aEc

respectively, where

2N(φ, ψ)cb

a = ψWdψf - φW&φ

(4. 6) -φ

On the other hand, we can verify

ft(φ)* =

(4.7)
N(φ, ψ)H =
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Thus, taking account of (1. 5) and (4. 7), we see that, for a ^-contact 3-structure
{<?, η, ζ}, ξ is a Sasakian structure if and only if N(φ)H = Q. By means of Proposition
3. 8, a K-contact 3-structure {ξ, η, ζ} is a Sasakian 3-structure if and only if two of
N(φ)H, N(φ)H and N(Θ)H vanish.

The condition N(ψ, φ)H—ΰ is equivalent to

(4. 8) φC

dPdφba - φb

dPdφca + φcdPdφba ~ ψbdPdφca - φa

dPdφcb ~ ψa^dψcb = 0

by means of the identities

c + Vaψcb = 0, Peφba + Pύψae + Faφcb = 0, Pcθba + Fδ#αc + Paθcb = 0

which are consequences of dΦ = Q, dΨ = Q, dθ = Q and the equation (4. 4). If we add
(4. 8) to the equation obtained by interchanging indices in (4. 8) in such a way
that c-^>b-+a-*c, then we have

(4. 9) φbdPdψca + ψbdVdφc

a = ΰ.

Conversely, (4. 9) implies (4. 8). Thus the condition N(φ, ψ)H = Q is equivalent to
(4. 9). Similarly, we can verify that the condition 7V(^)^ = 0 is equivalent to

(4. 10) φb*Pdφc

a = Q.

For a TΓ-contact 3-structure, the conditions (4. 9) and (4. 10) are equivalent
respectively to

(4. 11) φ*dr<ιφc

a = ψtdP<ιφca,

(4. 12) Pdφc

a = Q.

Thus, for a ^-contact 3-structure, the conditions N(φ, ψ)H=0 and N(ω)H=Q are
equivalent to (4. 11) and (4. 12) respectively. Thus we have

PROPOSITION 4. 1. A K-contact 3-structure {ξ, η, ζ} is a Sasakian ^-structure if
and only if two of NH(φ), NH(ψ) and NH(φ, ψ) vanish. In this case, NH(Θ), NH(ψ, θ)
and NH(Θ, φ) vanish.

Recently, it has been proved in [13] that a ^-contact 3-structure {£, η, ζ} is a
Sasakian 3-structure if and only if one of NH(ψ, θ), NH(Θ, φ) and NH(φ, ψ} vanishes.
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