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Recently, 3-structures, almost contact, K-contact or Sasakian (normal contact),
have been introduced and several interesting subjects concerning these structures
have been studied ([3], [4], [5], [6], [8], [9], [13]). The 3-structure, K-contact or
Sasakian, 1s a special kind of triples of Killing vectors, which will be defined in
the present paper as a set of three unit Killing vectors &, » and { being mutually
orthogonal and satisfying the structure equations [y, {]1=2¢, [, £1=2y, [&, y]=2C.
One of purposes of the present paper is to obtain, in terms of curvatures, a con-
dition that a triple of Killing vectors is a Sasakian 3-structure.

In §1, we recall definitions and properties of structures, K-contact or Sasakian.
We define also in §1 a triple of Killing vectors and give its preliminary properties.
In §2, we give fundamental concepts and divices concerning fibred Riemannian
spaces with triple of Killing vectors. We state, in §3, some propositions concerning
triples of Killing vectors or K-contact 3-structures as consequences of formulas
established in §2. The last §4 is devoted to studying properties of Nijenhuis tensor
of structure tensor fields determined by a triple of Killing vectors or a K-contact
3-structure.

§1. Preliminaries.

First, we recall some properties of a K-contact structure. Let (1\7[, g) be a
Riemannian manifold? of dimension # with metric tensor §. Let there be given
in (M, §) a unit Killing vector & satisfying

1.1 K X)e=—-X+aX)e,

where K denotes the curvature tensor of (M, §) and a the 1-form associated with
& e, a(X)=§(, X).» Then & is said to define a K-contact structure (cf. [2]). If
we put, for a K-contact structure &,

Received May 8, 1972.

1) Manifolds, vector fields and geometric objects we discuss are assumed to be dif-
ferentiable and of class C*.

2) Here and in the sequel, X,V and Z denote arbitrary vector fields in M
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(1.2) g0:l7§,

V being the Riemannian connection of (A7I, §), then ¢ is a tensor field of type (1, 1)
satisfying

P=—I+a®é& af)=1,
(1.3)
aop=0, ¢&¢=0, K& X)="Fzp,

Where~I is the unit tensor field of type (1,1) and the 1-form aogp is defined by
(aop)(X)=a(pX). If we put @=Pa, then we see that ¢ is a skew-symmetric tensor
field of type (0, 2), i.e., a 2-form and satisfies

1. 4) do=0,

d denoting the exterior differentiation. In such a case, M is necessarily orientable
and odd-dimensional. When the condition

(1. 5) N+20®e=0

is satisfied, where N is the Nijenhuis tensor of o, the K-contact structure ¢ is
called a normal contact structure or a Sasakian structure. A K-contact structure
& is Sasakian if and only if it satisfies

a6 R X)=2@e-a®X,

where 7 is the 1-form associated with X (cf. [2]). .
We now assume that the Riemannian manifold (M, §) admits three unit Killing
vectors &, » and { which are mutually orthogonal and satisfy

1

1 1
= [n Cl, 1= —5"15 &), L=l

am 3
Such a set {§ 9, ¢} is, for simplicity, called a triple of Killing vectors in M, ).
We put

1. 8) o=V, =P 0=V

1. 9) o=Fa, U=Fp, O=F,

where a, 8 and y are 1-forms associated with & » and { respectively. Then @, ¥
and O are skew-symmetric tensor fields of type (0, 2), i.e, 2-forms and equations

(1. 10) 0E=0,  ¢p=0, OL=0;
(1.11) do=0, d¥=0, dO=0;
(1.12) Vep=0, Fg=0, F6=0

are valid, because &, and { are unit Killing vectors. From (1. 7), we have
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(1.13) 26=0n—gf,  2p=¢L—08  20=¢E—on.
On the other hand, we find
(1. 14) GL+0n=0,  06+0L=0,  op+¢E=0,

because &, » and { are mutually orthogonal. Thus, using (1.13) and (1. 14), we
obtain

(1. 15) §=Op=—g,  n=¢l=—0 C(=¢i=—g.

Given a triple {§ », ¢} of Killing vectors, we denote by D the distribution
spanned by & 5 and {. Then, by means of (1.7), D is integrable. Using (1.7),
(1. 8), (1. 10) and (1. 15), we obtain

Vefzﬁvvzﬁcczo,
(1. 16) ) )
VL=—Voy=¢, V=~V =1, Vep=—F£=C.

Thus any integral manifold F of D is totally geodesic in (1\71, d) and hence, by
means of (1. 16),

K, pe=KE ne
=757vf—77765—7[5,v]’§: -7

holds, where K is the curvature tensor of F with induced metric. Therefore,
denoting by a(C, D) the sectional curvature of F with respect to the section spanned
by tangent vectors C and D to F, we have ¢, »)=1. Similarly, we obtain &(y, {)
=g(¢, £)=1. Consequently, we have

Lemma 1.1. In (1\7, §) with triple (& 9, L} of Killing vectors, any integral
manifold of the distribution D spanned by & n and { is totally geodesic and of
constant curvature 1.

A triple {§, », ¢} of Killing vectors is called a K-contact 3-structure if each of
& 7 and ¢ defines a K-contact structure and the equations

0p=0+BRC  ¢=¢+r®¢E,  do=0+a®m,
(1.17)
P=—0+r®n Op=—¢+a® ¢p=—0+pRE

hold (cf. [5], [9]). In such a case, M is necessarily orientable and of dimension
n=4m+3. In the sequel, we assume that dim M=n=4m+3=7 (i.e., m=1) for any
(ﬂ, g) with K-contact 3-structure. A K-contact 3-structure {&, 7, {} is called a
normal contact 3-structure or a Sasakian 3-structure if all of &, 5 and { are normal
contact structures. If any two of ¢, » and { are normal contact structures, then
the triple {§, », ¢} of Killing vectors is Sasakian 3-structure (cf. [5], [6], [8]).

Let (1\71, g) be an m-dimensional Riemannian manifold with triple {£, 5, {} of
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Killing vectors (resp. with K-contact 3-structures or with Sasakian 3-structure) and
M a manifold of dimension #»—3. Assume that there is a differentiable mapping
. M—M, which is onto and of the maximum rank, and for any point P of M the
complete inverse image =~!(P) is a maximal integral manifold of the distribution
D spanned by & 5 and ¢ In such a case, (1\7!, d) is called a fibred Riemannian
space with triple {&, », {} of Killing vectors (resp. with K-contact 3-structure or with
Sasakian 3-structure), each of complete inverse images ='(P) the fibre over P and
M the base manifold. Any Riemannian manifold with triple of Killing vectors
admits locally such a structure of a fibred Riemannian space with triple of Killing
vectors (i.e., for any point P of the manifold, there is a suitable neighborhood
containing P and admitting a structure of a fibred Riemannian space). Thus the
arguments developed for a fibred Riemannian space with triple of Killing vectors
will be locally established for any Riemannian manifold with triple of Killing
vectors.

§2. Fibred Riemannian space with triple of Killing vectors.

In this section, we assume that (M, g) is a fibred Riemannian space with triple
{&, , £} of Killing vectors and denote by = M—M the projection, where M is the
base manifold. Since &, » and { are Killing vectors spanning the tangent space of
each fibre, (AZI, M, =, §) forms a fibred space with projectable Riemannian metric §
in the sense of [1], [3], [7], [11] and [12].

We take coordinate neighborhoods {0/, "} of M and {U,v% of M such that
a(0)=U. Then the projection z: MM may be expressed, with respect to J and

U, by certain equations of the form®
2.1 v2=0v%z"),

where »%(z") denote the coordinates of the projection P=z(P) of a point P with
coordinates z* 1n U and are differentiable functions of the variables z* with Jacobian
(0v?/ox") of the maximum rank 4m(=n-—3). Take a fibre F such that F nlt =,
We may assume that F° N0 is connected and that we can introduce local coordinates
) in F NO in such a way that (v, u*) is a system of coordinates in 0, (v*) being
coordinates of the point =(F) of U. Differentiating (2. 1) by z* we put

2.2) Er=00°,

where 9;=0/6xz*. Then, for each fixed index a, E,* are components of a local
covector field £¢ in J. On the other hand, if we put C,=d/dx" which is a local
vector field in U for each fixed index «, then C, form the natural frame of each
fibre in FNU. We denote by C,* components of C, in [,

3) The indices 4, 1,7, k, / run over the range {1,2, ---, n} and the indices «, b,¢, d, e
over the range {1, 2, ---, —3}. The summation convention will be used with respect to
these systems of indices.
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Let §; be components of § in . Then the induced metric ¢ of a fibre F has
components of the form ¢,,=§;C’,C% in FNU. If we put C,"=@mg"C", where
(g*%)=(g.s)~", and denote by C* the local vector field with components C,* in U for
each fixed index a, then E¢ and C* form a coframe in 0.9 Denoting by (E%, C*)
the inverse matrix of (£.% C,"), we obtain

EZaEib=Bgy E’Laciﬂz()’
(2. 3)
C*E,=0, CiCis =05

Then we have, in U7, #—3 local vector fields E, with components £% and 3 local
vector fields C, with components C*;, which form in U a frame dual to the coframe

{Ee, C).

Any tensor field, say 7 of type (1,2), in M is represented locally in U as
follows:

T=TWwWE QEQEs+ T E*QE*®Cyot -
+ T,5°C" R C*® Eo+ T,5°C" QR C* @ Cay

where the coefficients 7.7 -, T, are local functions in 0. In the right-hand
side, the first term To®FE°Q@ E°Q® E, determines a global tensor field in M, which
is called the horizontal part of T and denoted by T#. The last term 7,,°C’ ®C?
®C. determines also a global tensor field in M, which is called the vertical part
of T and denoted by 7%. If we have T'=T# (resp. T=T7), then we say that T
is horizontal (resp. vertical). For a function 7 in M, we define its horizontal part
fHbe fHE=7. For any two tensor fields 7 and S in M, we have (T'®S)z=T#
®SH.

When a horizontal tensor field, say 7' of type (1, 2), has the form T =T,,*E°
QR E*QE, in U, we say sometimes that 7 has components 7i,® in U.

A tensor field T in M is said to be projectable if it satisfies (LT =0 for
any vertical vector field X (See [1], [3], [12]) where Lz denote the Lie derivation
with respect to X. Then a tensor field 7' is projectable if _r:T'=0, ,[’,iT 0 and
rd=o.

A function 7 in M is projectable if and only if Lzf =0 for any vertical vector
field X. If 7 is projectable, then f is constant along each fibre because every fibre
is connected. Given a projectable function f in M in such a way that, for any
point P of M, f(P)=7(P), where P is a point of M such that z(P)=P. We call f
the projection of f and denote it by pf. If 7 is a projectable function, then its
gradient grad 7 is so also. For a projectable function 7, (grad f)Z has components
of the form d,7 in U, where 8,=E%d; and 6;=d/dz* in U, and gradf=p (grad f)
(f=pf) has components of the form d,f in U, where 9,=0/dv® in U.

4) The indices a, 8, 7, § run over the range {1, 2,3} and the summation convention
will be used also with respect to this system of indices.
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If we denote by zy and §, respectively the restrictions of = and § to U, then
we have a fibred space {U U, g G} Wlth projectable Riemannian metric g, which
is called the local fibering of J in ’M M, &, §}. In the sequel, we use, concerning
local geometric objects, the terminologies such as to be horizontal, to be vertical,
to be projectable and etc. with respect to the local fibering in the above sense.

A tensor field, say T of type (1 2), in M is projectable if and only if the local
function ch“ is projectable, where T#=T,EcQE*®F,. Then, for a projectable
tensor field T° of this type, we can define a local tensor field 7y with components
p(Tw® in U. The local tensor field Ty determines a global tensor field 7 in M
which is called the projection of T and denoted by pT.

Given a tensor field T in M, there is uniquely a horizontal and projectable
tensor field 7 in M such that pT'=7. This T is called the /ift of T and denoted
by T%.

The Riemannian metric § is projectable because _[¢§=0, [,§=0, L:§=0. If
we put g=pg. then ¢ is a Riemannian metric in M, which is called the induced
metric of M. The Riemannian manifold (}4, ¢) thus introduced is called the base
space. The induced metric ¢ of M has in U components of the form g =§;:L7.E",
where the both sides are identified with their projections respectively. We denote
by (¢®) the inverse matrix (gs) in M. In the sequel, we shall identify any pro-
jectable (local) function with its projection.

Since each fibre is totally geodesic, we have in [J

@. 4) PEmy= { C"b }EﬁE"a-icb“EfCh“—/zb“ﬂcjﬁE"a,

(2. 5) Vjchﬁz _/anﬂE]tha+Pcﬁ“chCh"_|_ { )"a‘@ }C]i’ch,a
and equivalently

(2. 6) VB = _{ cab }Echlb‘l‘/lb“ﬂ(E]bCiﬁ +EC),

@7 P.C = — oy E P EP — Po E,*Cof —

o
C,/C#,
A2

{c%} and {,%} being the Christoffel’s symbols constructed by g. and by g,s respec-
tively, where /»* are local functions in U such that /" + /" =0, 7% =g"¢s.ltoc”
and P,,* the functions appearing in

[C,B) Eb]: —Pbﬂaca) [Cﬁ) Ca]=0)
@.8)
LosEr=0,  LofC =Py E".

From (2. 4)~(2.7), we have

(Ee, Es]l=2hey'Cay  [Es, Cl=Py"C
2.9
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L5 Ee=0,  L5,C"=2%h"E— Py C".

We can verify that, for any projectable tensor field 7' in M, PeuTH is projectable
and

2. 10) pFAT =0T,  T=pT, X=pX,

where X is a projectable vector field in M (cf. [1], [3], [11], [12]).
We now need the well known Ricci identities

Vkﬁthb - VijE"'b = ]?kﬂhEib,
VkVJC"ﬂ - I7jl7kC",g = kkﬁhciﬁ,

where K x;" are components in U of the curvature tensor & of (M, §). If we take
account of (2. 4)~(2.7) and use the Ricci identities given above, then we find the
following structure equations (cf. [1], [3], [7], [11], [12], [14]):

(2.11) ]?arpazf?arﬂay
2. 12) K;,52=0,

which are respectively the equation of Gauss and that of Codazzi for the immersion
of each fibre in (M, §), where

K‘;,pa = Kkﬁ"C%Cf,Ci,gCh“, Karﬂa’ = Kkﬁ”C"’.;Cf,Ci,;Eh“

and K,,;* are components of the curvature tensor K of the fibre. The equation
of Ricci for the fibre is equivalent to (2.15) or to (2.19) which will be given later;

(2.13) K aor— Kur®= — ha®hos™ + heahas” + 2hac e
(2.14) f?dcb" =Viher" —Vehap® + Pa,"heo” — P, hay’

kdcﬂ” ':achﬁ“ - acPdﬂ“ —PdﬂrPL‘ya +Pcﬁ7Pd,a
. 15)

+ hdbﬁhcb[r - hcbﬂ/ldba —2ha” { ]’aﬁ } ,

which are respectively the equation of co-Gauss, that of co-Codazzi and that of co-
Ricci for the fibering of (M, §), where

~ ~ . . ~ ~ . . .

Kao®=Kij" BB EWEL, Kae = K" BB EHWCh,
N ~ o

Kaop"= K ji" E* 7 CCh",

a
db

a

thcf:adhc;—{ s

haba - {

and Kyu® are components in J of the lift K% of the curvature tensor K of the
base space (M, g);
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(2. 16) Kio® =Vshes +Mo%hea’,

where
kﬁcba = kkjihckancEibchaa Vshey" =0shep” + l 5aﬂ } Y/

9, being defined by 9,=Cid; in U.

In the left hand side of (2.13), K ae® denote components in U of K2, which is
projectable since ,L’el%:‘,kaz,fcl%:o. Therefore the right hand side of (2. 13)
denotes a horizontal and projectable tensor P of type (1, 3), whose components in
U are given by

2.17) Paot= —ha®ho + houhay™ +2hac hya.

Since each fibre is of constant curvature 1, we have K, =dig,s—gss- Thus
(2. 11) reduces to

@.18) K 35" =03g,0— %035

The equation (2. 12) shows that the comnection induced in the normal bundle of each

fibre has zero curvature tensor.
The Jacobi identity [[E4, Ecl, Cl+I[[Ee Csl, Edl+[Cs, Eql, E.]=0 is equivalent to
the identity

0aPes" —0cPas" — Pap’ Pe,” + Peg’ Pa,” +20sh4."=0.
Using the identity above, we see that the equation (2. 15) of co-Ricci is equivalent to
(2.19) K aes" = hashes” — hdshay™ — 2V shas".
If we put in [J

sztpchc®Eb, ¢}I:¢chc®Eb’ 0H:00bEc®Eb;
(2. 20)
@H:q)chc@Eb’ Qf}lngchc@Eb, @HZODI;EC@EI',

then we obtain ¢o=0c"¢uw Qo =Pc gas and O =0c"gas.
If we put in U

(2.21) E=a"C., 7=b"C., (=c"C.
and a,g———a"g,,,g, b,gzb"ga,g, c,gzc“g,,,g, then we find

Ca = aaé + bn7]+ CaC,
(2. 22)
apa”™ +bgh" +cpc” =05

and, using (1. 16),

(2.23) Vraﬂ = (b,(,‘,e —¢,bg), Vrbﬁ =—(c,a3— a,¢s), Vieg=— (arbﬁ —b,ap),
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where V,a;=0,a;—{,"s}a. and etc. Since &, » and { are Killing vectors, each of the
operators (¢, L, and ; commutes with the covariant differentiation /. Thus,
using (1. 7), we find

2. 24) Lop=2rd—q0), Lop=2(p0—7rp), Lv0=2(qp—p¢)

for any linear combination D=p&+gp+#{ with constant coefficients p, ¢ and #, or
equivalently

(2 25) aﬂgow = 2(059[’017 - bﬁﬁcb)’ aﬂ¢cb = 2(aﬂ(9¢b - Cﬂgl?cb)» aﬁocb = 2([);99001; - d,ggbcb).
Next, using (2. 24), we have
Lo PR+ R¢p+0RQ0)=0, Lo @NO+UNT+ONO)=0

for any linear combination D of & » and { with constant coefficients. Therefore
two tensor fields

(2. 26) N=0Ro+V RP+OR0, S=0NO+¥ N \T+ONO
are projectable. Thus, if we put
(2. 27) A=pA, S=pS.

then 4 and S are tensor fields in the base space (M, g).
We obtained, in (2. 8), [Cs Eb]=— Py;"C,, which is equivalent to

Cjﬁﬁthb—EjbﬁjChﬂ: —Pb,gacha.

Substituting (2. 4) and (2. 22) into the equation above and taking account of (2. 25),
we obtain

(2. 28) o =— (aaSch + bnsbcb +c“0c),

Py =(0pa5)a” + (0sbs)b" + (0sc5)c”
(2. 29)
= —a3(0s@") — bg(0s0") — c5(05C").

If we substitute (2. 28) and (2. 29) into (2. 13), (2. 14) and (2. 19), then we have,
using (2. 23) and (2. 25), respectively

(2. 30) K 4er® = Kuen® = — Aapa®+ Aane® + 24 e
(2.31) f?dchZQaVb%d +0Vspea + ¢ Volea,
K 4es"=(Loa+" Lea)(csb”™ —bsc™) +(Mea+' Mea)(ape™ —coa”)
(2. 32)
+(Nea+' Nea)(bpa® —ash"),

where we have put
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Ly* =@+ 0%, My* = +0:%00%  No®= 05"+ e ",

'Lbazgab“——ﬂc“g/}bc, /Mbazgl}ba_gocaﬁbc’ /Mazaba_¢ca¢bc,

chchagab; Mb:Mcagab: - ete,
a a
Vd@cb:adfpcb— dc Pap — db Peay 'y etc.,
Aae® denoting components in I of AH, that is,
(2. 33) Aacs® = @acps® + Pacds® +0ac0s”.

By a similar way, we have, from (2. 16),

K aed” = = (0avPc*@s0" + Pape®Dsb” + 0aplcsc”)
(2. 34)
—@s(Newd® —' Mepc®) — bs(Leve™ —' Newa™) — co(Mepa@™ = Leob®).

The Ricci tensor R of (1\71, d) has the form
(2. 35) R=R,EQE"+ K, ,C QFE'+ K EQC+K,C RC?
in {f. Then, using (2.12), (2.18), (2. 30), (2. 31), (2.32), (2.33) and (2. 34), we find

~ ~

ch=K0b+2Aacbay Kyb:ayVaSbba +b77a¢'ba’+07‘7a0bay
(2. 36) .
K 5= (per¢™) @5+ (Pesp™)b: b+ (0co0°)c, 5+ 29,5,

where ¢?P=g%p,0, -, etC., Vops®=0cpp” +{c%} s’ — {c%o}pe% +++, etc. and Kp=Kan® are
components in U of the lift RZ of the Ricci tensor R of the base space (1M, g).

3. Some propositions.

The curvature tensor K of (M, §) with triple of Killing vectors is projectable.
Then, from (2. 30), we have

ProrosiTION 3.1. The curvature tensor K of the base space (M, g) o[ a fibved
Riemonnian space with triple of Killing vectors is given by K(X, Y)Z=(pK) X, Y)Z

+AY,Z, X)—AX,Z, Y)-24X, Y, Z), X, Y and Z being arbitrary vector fields in
M, wheve A=pA is a tensor field of type (1.3) defined in M by (2.27) (cf. [3], [7]).

If we take account of (1.10) and (1. 15), we find
B.1) =" +BRL—rQn ¢=¢"+rRE—a®( 0=0"+a@@n—pR¢E
and hence

B.2) =)= (ERn+r L), §*'=")}—(a®&+r®Q), 0°=(0")*—(a®E+p&n);



FIBRED RIEMANNIAN SPACE WITH TRIPLE OIF KILLING VECTORS 185

0p=0"" +r Q7 ph=p"0"+a QL Pp=¢"o" +8&S,
3.3)
PO=¢u0T+BRC, Op=0"p"+7 Q% ¢f=p"P" +a®y.

We now suppose that pl? =K (resp. pR=R) holds. Then, by (2.30) (resp. by
(2. 36)), we obtain — Aepa®+ Aape® + 244> =0 (resp. Au*=0), from which, by contrac-
tion, @v%e®+ %P’ +6,20,°=0 and hence ¢,*=0"=¢,*=0, i.e., o7 =¢H=0"=0. Thus,
using (3.1), we find

Ve=BRL—7®7 M=rQ—a®f M=a@®p—pRE.

Taking account of these equations, we can easily verify that (A71, §) is locally a
pythagorean product of a fibre and a Riemannian manifold. Thus we have

PROPOSITION 3.2. Let K and R (resp. K and R) bejesj)ectively the curvature
and the Ricci tensors of a fibved Riemanwman space (M, §) with triple of Killing
vectors (vesp. of the base space). Then we have pk =K (or pﬁ =R) if and only if
(1\71, §) is locally a pythagorean product of a fibve and a Riemannian manifold.

Denote by (X, )7) the sectional curvature of (1\71, §) with respect to the section
spanned by X and ¥. Thus we obtain, for unit vectors XV and VZ, o(X7, V%)
= — RoepuX°VeX?Y9, where Kieso = Koeif0ear Koes® = Kiji"CHEICLE and XV
= X*C,, Ve =Y?E,. Therefore, using (2. 34), we find for a unit vector ve

o6, T)= —(puepn ¥V, oy, )= —(guetp®) YY",
(3.4) .
oG, PH) = — (0l YY",

Thus, if and only if ¢(X7, ¥#)=1 for any X and ¥, we have
3.5) (pM)P=—I1, (p")=—1", (O")*=—I",
which are equivalent respectively to

3.6) p'=—I+a®¢ ¢*=—I+pQ®y *=—I+r®C
by means of (3.2). Thus, taking account of Lemma 1, we have

ProposiTIiON 3.3. In (1\71, §) with triple (&, v, {} of Killing vectors, eacNh of &7
and { is a K-contact structure if and only if the sectional curvature of (M, §) with
respect to any section containing at least ome vertical vector is equal to 1.

If & 9 and ¢ are all K-contact structures, then we have, from (2. 36) and (3. 5),
ch =ch - 6gcln krﬁz (” - 1)grﬁ» Krb =0.
The last equality can be derived from Lemma 8 in [10]. Thus we have

LemMA 3. 4. Assume that, for a triple (&, 7, (} of Killing vectors, each of &,
and § is a K-contact structure. Then, the base space (M, g) is a Einstein space if
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and only if (M, g) is so.

We now consider the condition
3.7 KXy, YmZmy=—¢¥", ZmX,

which implies (3. 5) and hence (3. 6). Taking account of (2. 32), we see that (3.7)
implies

ch:/ch:Mcb:/Mcb:Mb:/Ncb:O,
that is,

(3. 8) OHYH = — pHOH =l HOH = —GHpH =l HpH = — pHpH =1,

which are equivalent to (1. 17) by means of (3.3). Thus {§ », {} is necessarily a
K-contact 3-structure. Therefore we have

ProprosITION 3. 5. A triple of Killing vectors is a K-contact 3-structure if and
only if the condition (3.7) is satisfied (cf. [9]).

By means of (2.31), the condition
3.9 (K(Xn, YmyZmy =0
is satisfied if and only if
(3.10) Vepp®=0,  Vep®=0,  Felp®=0
hold. The equations (3. 10) imply F4=0 and FS=0 in (M, g). Thus we have

PROPOSITION 3. 6. If, in (M, §) with triple of Killing vectors, the condition (3. 9)
1s satisfied, then VA=0 and VS=0 hold in (M, g).

Taking account of (2.12), (2.18), (2.30), (2.31) and (2. 32), we see that, for a
K-contact 3-structure {£, », {}, & satisfies the condition (1. 6) if and only if Fp,*=0
holds. Thus we have

LemMma 3.7. For a K-contact 3-structuve (&, », L}, & is a Sasakian structure if
and only if Vepy*=0 holds.

If, for a K-contact 3-structure {&, », {}, Vepp®=0 and Fe¢,®=0 are satisfied, then
V.6,>=0 holds because of 6,*=¢.%p,° (cf. (3.8)). Thus, as a corollary to Lemma
3.7, we have the following well known

ProrosiTiON 3.8. A K-contact 3-structure {&, 7, £} is a Sasakian 3-structure if
and only if two of & 7 and C arve Sasakian structures.

Combining Propositions 3.3, 3.5, 3. 6 and Lemma 3. 7, we have

ProrosiTiON 3.9. A triple of Killing wvectors is a Sasakian 3-structure if and
only if the conditions (3.7) and (3.9) are satisfied.
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ProposITION 3.10. If (M, §) with triple (&, 7, &} of Killing vectors is of constant
curvature c, then c=1 and (&, », {} is a Sasakian 3-stvucture.

Recently, Kashiwada [4] has proved that any Riemannian manifold admitting
a Sasakian 3-structure is a Einstein space. Then, by means of Lemma 3. 4, we see
that, for any fibred Riemannian space with Sasakian 3-structure, the base space is
a Einstein space.

§4. Nijenhuis tensors.

In (1\71, §) with triple {§, , ¢} of Killing vectors, the Nijenhuis tensor ﬁ(gp, ¢) of
¢ and ¢ is, by definition, a tensor field of type (1, 2) with components

2N(p, §)si"= @i — 0 Fih "+ § o — i Figp
(4. 1)

— 0" (Vi —Vigp,#) — i Pipi* — Vigp )
and the Nijenhuis tensor ﬁ(go) of ¢ is defined by
4.2) Nip)=Np, o).
As we have seen in (3. 1),

o=p"+7Qn—FRC
Differentiating this covariantly and using (2.4) and (2. 6), we have
4.3) Ve,0=Tepp)E® @ Ea+ (05"h5)C* ® Ea+(95%hea”)E® @ Coy
4. 4) Vg0 =Fepa) E® @ E 4 (@1ahc)C* Q@ £+ (@oatc®) E* Q C*.
If we use (4. 3), we have, from (4.2) and (4. 1),

N(p)# = N(@)o*E*Q E* @ Ea,
4. 5) .
N(g, 9)#=Ng, P E*QE* R E,

respectively, where
2N(@, P)ev” =0 Vahs® — o*Vape® + P Vao® — fo"Vape"
4. 6) — 0a*(Pehp? — Vope®) — P (Vepp® — Vo pe?),
Ney*(p)=N(g, p)ev”,
On the other hand, we can verify

Np)#=N(p)+20 ®¢,
4.7 N .
N(p, 9)T=N(p, $)+PQn+T RE.
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Thus, taking account of (1.5) and (4.7), we see that, for a K-contact 3-structure
{€, 7, C}, € is a Sasakian structure if and only if ﬁ(go)” =0. By means of Proposition
3.8, a K-contact 3-structure {§, , {} is a Sasakian 3-structure if and only if two of
N(p), N(¢)" and N(@)% vanish.

The condition ﬁ(go, ¥ =0 is equivalent to

4. 8) e Vaoa— sV apea + e Vaoa— DoV apea — 0 Vaer — Pa®Vaper =0
by means of the identities
‘7c§0ba + Vb§0a0 + Va#’cb :O, Vc‘/’ba + Vb‘/)ac + Va,¢cb :0, Vellpa+ Vs0ae+Valer =0

which are consequences of d@=0, d¥ =0, d®=0 and the equation (4.4). If we add
(4. 8) to the equation obtained by interchanging indices in (4.8) in such a way
that ¢c—>b—a—c, then we have

4.9 oV + o Wape=0.

Conversely, (4.9) implies (4. 8). Thus the condition ﬁ(ga, dF=0 is equivalent to
(4.9). Similarly, we can verify that the condition N(¢)Z=0 is equivalent to

(4.10) s Vapc=0.

For a K-contact 3-structure, the conditions (4.9) and (4.10) are equivalent
respectively to

(4 11) SOded§0ca'=(/deVd(/’ca;
4.12) Vage®=0.

Thus, for a K-contact 3-structure, the conditions ﬁ(go, »)H=0 and ﬁ(go)” =0 are
equivalent to (4.11) and (4. 12) respectively. Thus we have

ProrosiTION 4. l A lg-com‘act 3-structure {&, 9, C} is a Sasakian~3-stru€ture if
and ogly if two of N%(p), NE(¢) and NH(p, ¢) vanish. In this case, N(0), N7 (¢, 6)
and NH(0, ) vanish.

Recently, it has been proved in [13] that a K-contact 3-structure {&, 5, (} is a
Sasakian 3-structure if and only if one of N#(¢p, 8), N¥(6, ¢) and N¥#(¢p, ¢) vanishes.
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