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SUBMANIFOLDS SATISFYING THE CONDITION K(X, Y)-K=0
By Kunio SakamoTto

Introduction.

In 1968, Simons [7] obtained a formula giving the Laplacian of the square of
length of the second fundamental tensor and applied it to the study of minimal
hypersurfaces of a sphere. Nomizu and Smyth [6] applied a formula of Simons’
type to the study of hypersurfaces with constant mean curvature and with non-
negative sectional curvature in a Euclidean space or in a sphere. Chern, Do Carmo
and Kobayashi [2] also applied Simons’ formula to the study of minimal submani-
folds of a sphere (see also Chern [1]). Recently, Yano and Ishihara [10] have
applied a formula of Simons’ type to the study of submanifolds of higher codimen-
sion with parallel mean curvature vector and with locally trivial normal bundle
in a Euclidean space or in a sphere. On the other hand, Nomizu [5] studied
hypresurfaces of a Euclidean space, which satisfy the condition K(X, Y)-K=0 for
all tangent vectors X and Y, K being the curvature tensor. Tanno [8], Tanno and
Takahashi [9] studied hypersurfaces of a FEuclidean space or of a sphere, which
satisfy the condition K(X, Y)-S=0 for all tangent vectors X and Y, S being the
Ricci tensor (see also Kenmotsu [4]).

In the present paper, we shall, applying a formula of Simons’ type, study
submanifolds satisfying the condition K(X, Y)-K=0 and having parallel mean
curvature vector, non-negative Ricci curvature and locally trivial normal bundle in
a space of constant curvature. We shall also study submanifolds with parallel
second fundamental tensor and with locally trivial normal bundle in a Euclidean
space or in a sphere. The main results are stated in Theorems 3.3, 3.4, 3.5 and
3. 6.

§1. Preliminaries.

Let M™ be an m-dimensional Riemannian manifold of class C* with metric
tensor G, whose components are G;; with respect to local coordinates {&"}. Let
M™ be an n-dimensional connected submanifold of class C* differentiably immersed
in M™ (1<n<m) and suppose that the local expression of the submanifold M" is

1.1 =2y,
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where {y*} are local coordinates in the submanifold M”. The indices 4, i, ---,/ run
over the range {1, ---,m} and the indices a,3b, ---, ¢ over the range {1, ---, n}. If
we put

(1.2) Byt =0,é", =001,
then the Riemannian metric ¢ of M* induced from that of M™ is given by
1.3) geo =G 1B By'.

For each index b, B,* denotes a local vector field tangent to M" and the » local
vector fields B,* span the tangent space of the submanifold M" at each point.
We denote by C,* m—n» mutually orthogonal local unit vector fields normal to M™,
where here and in the sequel the indices z, y, z run over the range {n+1, -, m},

If we denote by {,”} and {;%)} the Christoffel symbols formed with G;; and gc
respectively, then the van der Waerden-Bortolotti covariant derivative of B,* is,
by definition, given by

. 4) VcBbh=acB,,h+{ h }BJB,,’—{ ¢ }Ba".

ji cb
Since F,B," is, for any fixed indices ¢ and b, a local vector field normal to M*», we
can write

(1 5) VcBbh = hcbzczh-

The local tensor field 4,” is called the second fundamental tensor of the submani-
fold M relative to the unit normals C,*. Equations (1.5) are equations of Gauss
for the submanifold M».

If we denote by ¢* the metric tensor induced on the normal bundle R(M") of
the submanifold M"* from the metric tensor G of M™, then we have, for the com-
ponents of ¢* relative to the frame {C,"},

(1.6) Oie= Gjicyjczl =0ya-

If we denote by I'.°, components of the connection F* induced on N(M") from the
Riemannian connection F of the ambient manifold M™, the van der Waerden-
Bortolotti covariant derivative of C,* is, by definition, given by

1.7 7,Ch=0.C," + { j"i }Bcfc,/—z'fyczh.

Since F,C,* is, for any fixed ¢ and y, a local vector field tangent to A", we have
from G;;By’C,*=0 and (1. 5)

(1. 8) Vccyh == hcayBah (hca'y = hcbnga(sxy)~

Equations (1. 8) are equations of Weingarten for the submanifold M* We extend
the van der Waerden-Bortolotti covariant differentiation F, to tensor fields of mixed



SUBMANIFOLDS SATISFYING THE CONDITION K(X, ¥V)-K=0 145
type on M™ in such a way that for any tensor fields, say 7»%" and 73,*, of mixed
type, the covariant derivatives are defined to be

Vchayxzachaﬂz-l-{ Cae }T”eyz_{ Ceb }Teaﬂz+r cszbayz_F v %",

1.9
h
Jji

a

Vchyh=achy"+ { ’BchbyL_ { c b } Tg,yh—rczyTba:h-

For tensor fields of mixed type, we have, from (1.9), the Ricci formula
(1.10) Pl Tp%" — Vel g To%y " = Kaee® To%y" — Kaer® Te%"™ + Kaer™ To%y" — Kacy® Tp%",

where K;.* and Ky, are curvature tensors of g of M® and F* of R(M™) respectively.
We now assume that the ambient manifold AM™ is of constant curvature c,
ie., that

(1. 11) Rkjm=C(Gthj1;—Gthkz),

where Ryj» are covariant components of the curvature tensor of G of M™. Subs-
tituting (1. 5) and (1. 8) in the Ricci formulas for By* and C,* respectively. we have
the structure equations of the submanifold M7, i.e.,

(1.12) Kacva=¢(gaager — geaar) + haa"Revs — lea”havz,
(1.13) Vahey” =Vehab”,
(1. 14) chya: = hdexhcey —hee"ha®y.

Transvecting (1. 12) with g%, we find
(1. 15) K= C(ﬂ - l)gcb +nh hers — hcezhbez’

where Kq=K,® is the Ricci tensor and A%=(1/n)k.°" is the mean curvature vector
of the submanifold M.

When the ambient manifold AM™ is of constant curvature ¢, we compute the
Laplacian 4F of the function F=/A,"h%?,, where 4=¢°F.V,, We thus have

(1. 16) %— AF =gl 4hes” ) o+ (Pehoa™)(VeHP ).

From the Ricci identity for A,° and (1.13), we have

€L

5 AF =0V lh™)h? o+ Kohipo "1 s — Kocpat*Th 5 4 Kooy "o 10z + (Veltoa ) (Vo1 5).

(1.17)

If we substitute (1.12), (1. 14) and (1. 15) in (1. 17), then we have (cf. [10])



146 KUNIO SAKAMOTO

—;—— AF=nVlh™) i s+ cnF— cnPh e — oo hopy 1 o P

(1. 18)
+”hylzcayllbaxh0bx - Kecnyecyx + (Vclzbax)(yclzbaz)-

When the normal bundle N(M™) is locally trivial, i.e., K4,*=0, the above equation
(1. 18) becomes

(1.19) —;— AF=nV V7). + cnF— cnh®hy — Reo® leyy i /10"

F 10 Beayty® o110 4 (Pohtoa™) (V1P 5).

§2. Submanifolds satisfying the condition K(X, Y)-K=0.

Let M™ be a submanifold in a space M™ of constant curvature ¢, and suppose
that the normal bundle M(M™) of M™ is locally trivial, i.e., that Ky,*=0 holds.
We now consider the condition

*) KX, Y)-K=0

for any tangent vector X and Y of M", where K(X, Y) operates on the tensor
algebra at each point as a derivation. The condition (*) is equivalent to

2.1)  ViVeKacra— Vel s Kacva= — (Kyea’ Kgeva+ Kee” Kagva+ Kyer? Kacga+ K rea” Kacng) =0.
On the other hand, differentiating (1. 12) covariantly, we have
(2.2) VoK acva=Vehaa®) tevs + Maa® Vehtess) — (Veltea™) havs — fea® Pehtava),
and hence
ViVeKaesa— Vel s Kacva
=V Vehaa® =Vl thaa®) cos + (Vi Vehter” — Vol shey®)haas
— (Vi Vehea® = Vel shea®have — (Vi Vehas®™ — Vol thas®) rcas-

Applying the Ricci identity (1. 10) to 4;® with vanishing Ky, we see that the
equations above reduce to

VfVechbu - Verchba
(2 3) = (Kfedghgax + Kfeaghdgw)hcbx - (Kfecghghz + Kfebghcgz)hda.z
+ (Kfecghga,x + Kfea,ylzcgz)/ldbx + ([ffcvlgllgbx + [{febghdgx)/lcuw

Since the normal bundle R(M™) of M™ is locally trivial, we see from (1. 14)
that, for any indices x and ¥, /2,%* and 7Y are commutative, i.e., 2.""/, Y= h,""I,"".
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Hence we see that there exist certain » mutually orthogonal unit vectors v,%, -+, v,*
such that

2. 4) B0, = 2,70,% (a; not summed)

at each point of M", where here and in the sequel indices a, §, 7, ¢ run over the
range {1, ---, n}. We shall now compute

(VfVechba— Verchba)Z),gfl)an)rdUec.
First we find from (1.12)

Kfebav,gfv,,e = (C + Zxaxzﬁx)(vmvab - vaavﬁb) (a * ﬁ)
z

Since we see, from (1. 12), that the sectional curvature g4, of M™ with respect to
the plane section determined by eigenvectors v, and v; of £,%%'s is given by

(2.5) 03,a=C+ 225" 2" (a=p),
we have
(2 6) K/eb“v,gfvae =0p, ,,(v,g“vab - Uaa'l)ﬁb)-

If we transvect (2.3) with vy/v,® and use (2. 4) and (2. 6), then we find
(ViVeKacva—VeV 1 Kacva)Vs 0a®
= —03, Jf A" (VsaV0d + V30Vaa) — A2a"VuaVsa + VaiVsa) Voo
(2.7 — 04, [ A7 (OspVac+ Vpclab) — Aa™(VatVse +VacVp0) Vbdaz
+ 05, a[ 25" (Vgalac + VscVaa) — A (Vaalpe + Vaclsa) Viass
+08, o[ 2"V gsVad F VsaVat) — A" WatVsa F Vaapp) Vicaz-
Thus transvecting (2.7) with »,%.°, we have from (2. 4)
(PiVeKacva— VeV 1 Kacoa)vs 00, 0
2.8 =0, a};l [(25% — 2%} — A* By + B3y V)Vt
— 2, (a0 pp +05Vad)Vra + A, *(Oaclpa+ 0plac)Vr0 + A" (Oar Vg 05y U Vea} |-

We can easily verify that the right-hand side of (2. 8) vanishes identically except
in the following four cases: Case I y=a, 755, exa, e (axpf), Case II y3xq,
7=p exa, exf (axp), Case Il y=a, yxp, e=a, exp (axp) and Case IV y=xa, r=p,
exa, e=f (a=p). For these four cases, (2. 8) reduces to

(2 9) (VfVechba - Verchba)Uﬁfvae”rdvac =08, a Z (lﬂz — L,I)Z,‘E(Z)Tbl)ﬂa - vﬂbv,a).
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We moreover assume that the submanifold satisfies the condition (*), which
is equivalent to the condition

(2. 10) 05 a (A% — 25,5 =0 rxa, f (axp)

because of (2.9). Using (2.5), we see easily that (2. 10) is equivalent to

(2.11) 08.4(0,,—01,2)=0 7¥xa, B (axp).
We here assume that there is at least one non-zero gs.. Then we may sup-
pose that gy,..., 01,5, are non-zero and g, ps1=--=01,,=0. We find from (2. 11)
0y,8=0r,a ({3<a; 1: b, T:]-: ) n)'

Thus we have
0g,a=01,2 (,B<a; 1’ "')p):
Uﬁ.azo (18:1:"'71‘): a:p+1y ) ﬂ).

Similarly, if we suppose that op.1, pizs ***, Ops1.q are non-zero and op.1, gr1=-
=0,+1,,=0, then we find

O a=0pi1,pra (B<a; p+1, -, @),

G5,.=0 (B=p+1, -+, g, a=q+1, -, n).
In this way, we have

Tp.a=0gi1,q+2 (B<a; q+1, -, 7),

0p,.=0 B=q+1, -, 7, a=r+1, -+, n),

as far as there is a non-zero gy, .
If we denote by S the Ricci tensor, we easily find

(2.12) SWay Vo) = Kep0o0o? = ,92 Op,a (a; fixed).
*a

Hence, when we assume that the Ricci tensor S 1s non-negative, taking account of
the behavior of the sectional curvatures o; ., explained above, we see that the
sectional curvature gy, is non-netative for all g and «. Using (2.4) and (2.5), we
find from (1.19) (cf. [10])

€L

©.13) 5

AF=n(Vloh®)h® o+ (Pehpa®) TR ) + D5 D0 (A6 — 227)20, o
a<lp x

Therefore we have
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ProrosiTION 2.1. Let M* (n=3) be a submanifold immersed in a space of
constant curvature and satisfy the conditions:

(A) The normal bundle WM™) is locally trivial,

(B) The mean curvature vector is parallel in N"(M™), i.e., V.h®=0;

(C) K(X, Y)-K=0 for any tangent vectors X and Y of M™

(D) The Ricci tensor is non-negative.
If M™ is compact, then we have

(2. 14) Peltye® = for any indices ¢, b and a,
(2. 15) (26" —2.5)%05,.=0 for any indices a, B (a=p) and x.

PROPOSITION 2. 2. Let M™ n=3) be a submanifold immersed in a space of
constant curvature and satisfy the conditions (A), (B), (C) and (D) in Proposition
2.1. If F=hah®, is constant, we have (2.14) and (2. 15).

§3. Submanifolds with parallel second fundamental tensor.

Let M™ be a connected submanifold with parallel second fundamental tensor,
ie., Vohpo®=0, in a space M™ of constant curvature ¢ and suppose that the normal
bundle N(M™) is locally trivial. Then we easily see that all of the eigenvalues 2,°
of the second fundamental tensor are constant and that each of eigenspaces of the
second fundamental tensor is of constant dimension. If we denote by A, the normal
vector fields with components 2,"=2,°C,", then they are globally defined. When
we fix the normals C,*, we can identify 2, with a vector of R™ ™ with components
A", -+, 4™ and the inner product of 1, and A; with the usual inner product
(Aey 45) in R™ ™. If all of the eigenvector fields corresponding to 2, form a p,-
dimensional distribution, then we say that the multiplicity of 2, iS p..

Let py, -+, uv be distinct vectors of eigenvalues and let py, -+, p» be the multi-
plicity of g, ---, uv. We denote by D, the distribution formed by all eigenvector
fields corresponding to p4 of multiplicity p4, where the index A runs over the
range {1, ---, N}. Taking a vector field X* belonging to D4, we have

3.1) At Xl =p, 7 X
and hence
3.2 V. X =p V. X7,

since V.4,2*=0 and p,® are constant. If a vector field Y* belongs to D,, then we
find from (3. 2)

(3.3) (YU, X0 — XV, Y ) = p. oYV X — XV, Y*).

Thus we see that the distribution D4 and the orthogonal complement D_A of Dy
are both integrable and parallel. Therefore, if we denote by M, and M, some
integral manifolds of D4 and D, respectively, they are totally geodesic submani-
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folds in M and M is locally a pythagorean product Msx M. Since, for any
vector fields X* and Y tangent to My, we have

XV(Y*Bo")=(XV. Y*) By + #A-tngc yeC,",

we see that M, is totally umbilical in the ambient manifold M™ if ;1,20 and that
M, is totally geodesic in the ambient manifold M™ if p,=0. Thus we have (cf.
[10D)

LemMa 3. 1. Let M™ be a submanifold with parallel second fundamental tensor
immersed in a space M™ of constant curvatuve and assume that the normal bundle
R(M™) of M™ is locally trivial. If distinct vectors of eigenvalues of the second
Jundamental tensor are given by ., -+, py, then M™ is locally a pythagorvean product
My X+ X My, where My (A=1, ---, N) is a totally umbilical submanifold in M™ with
mean curvature vector p, if p,=0 and M, is a totally geodesic submanifold in M™
if pa=0. In particular the normal bundle N(Ma) of My in M™ s locally trivial.

Let M™ be an n-dimensional submanifold with parallel second fundamental
tensor immersed in a space M™ of constant curvature ¢ and suppose that the normal
bundle R(M™) is locally trivial. If #% and v* are unit vector belonging to D4 and
Djp respectively, then we have

Kacpautulv?=0
and hence, from (1. 12),
KaovauuPv®=c+ L pa" "=+ (%4, 125)=0.

We note that we have this result under the assumptions in Propositions 2.1 and
2.2. We have known the following lemma (cf. [10]).

LemmMma 3.2. Let p, -, uy be distinct wvectors belonging to R™™ such that
(tas ps)=Fk (A=B; A, B=1, .-, N). If p, -, py SPan an r-dimensional subspace,
(m—n=r>0), then N=v or N=r+1. When N=r+1, and when p,, ---, py span an
r-dimensional subspace,

(/11, /11) koo k
k (/lz, /32) k
............... =0.
k koo (llN: #N)

If k=0, then one of m, -, uy is necessarily zero.

In general, a submanifold M™ immersed in an m-dimensional space M™ is said
to be of essential codimension » (0=r=m—n), if there exists in the ambient mani-
fold M™ an (n+7)-dimensional totally geodesic submanifold containing M™ as a
submanifold and no such a totally geodesic submanifold of dimension less than
n+7. The subspace in the normal space at a point P of M” spanned by normal
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vectors v°uh.,,"C,", u* and »® being any tangent vectors of M™ at P, is called the
first normal space at P.

We now assume that the ambient manifold M™ 1s an m-dimensional Euclidean
space R™ Then, from the above Lemma 3. 2, we see that the first normal space
is of constant dimension # and N=7or N=v»+1, if py, ---, p#y Span an 7-dimensional
subspace of R™™, and that one of i, -, py is necessarily zero if N=r+1. If
X2 Y* and Z* are vector fields tangent to M", then we have

ZeV (XY 2hp®)Co" = (20 X°) Y P hey™C " + X2V Y 2) ey *C ",

because of F/,®=0. Thus the first normal space is parallel in the normal bundle
R(M™). Therefore we see that the essential codimension is 7, i.e. that M” is
immersed in an (#+7)-dimensional plane in R™, if u, -+, uy span an 7-dimensional
subspace of R™ " (cf. [3]) Since it is easily verified that the second fundamental
tensor of My (A=1, ---, N) in R™ is parallel and that the first normal space of M,
in R™ is of constant dimension 1 if p,%0, we see from Lemma 3.1 that M, is
immersed in an (p,+1)-dimensional plane in R™ as a totally umbilical hypersurface
if 4,20 and that, in particular, if //, is of dimension 1, M, is a curve of constant
curvature 1n a 2-dimensional plane in R™. Therefore we have (cf. [5], [6] and [10])

THEOREM 3. 3. Let M™ be a connected complete submanifold of dimension n
with parallel second fundamental temnsor immersed in a FEuclidean space R™ of
dimension m (1<n<m) and suppose that the normal bundle is locally trwial. Then
M™ is a spheve S™r) of dimension n with radius v, an n-dimensional plane R™, a
pythagorean product of the form

(3' 4) Spl(rl)x"'XSpN(rN)’ p1+“'+pN:ny ph "'»ﬁzvil, 1<N§m_ny
or a pythagovean product of the form
(3.95) SP(r) X e X SPN(ry) X R, pr+++py+p=n, by, =, Py, p=1, I<N=m—n,

where SP(¥) is a p-dimensional sphere with radius v and R* is a p-dimensional plane.
If M™ is a pythagovean product of the form (3.4) ov (3.5), then M™ is of essential
codimension N.

In the case where the ambient manifold M™ is an m-dimensional sphere S™(a)
with radius ¢, we have (see [10])

THEOREM 3.4. Let M™ be an n-dimensional connected complete submanifold
with parallel second fundamental tensor immersed in an m-dimensional spheve S™(a)
with radius a (0<a, 1<n<m) and suppose that the normal bundle is locally trivial.
Then M™ is a small spheve, a great spheve ov a pythagorean product of a certain
number of spherves. If, moreover, M™ is of essential codimension m—mn, then M™ is
a pythagorvean product of the form

(3. 6) SPu(ry) X+ XSPN(vy), p1+ - +Dy=n, p1, -, Py =1, 1P+ Fry’=a’, N=m—n+1,
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or a pythagovean product of the form

IP(r) X X 3PN (r ) C 3™ N(r),
3.7
Z§1+"'+pN'=n:P1; “"PN'EL 7’12+"'+7’N'Z:7’2<612, N’:m—n,

where X°(r) is a p-dimensional small sphere with radius r in S™(a).

Taking account of Proposition 2.1, we have, as a corollary to Theorems 3. 3
and 3.4,

THEOREM 3.5. Let M™ be a connected submanifold immersed in a Euclidean
space R™ (resp. a sphere S™a)) (3=n<m) and satisfy the conditions (A), (B), (C)
and (D) stated in Proposition 2.1. If M™ is compact, then M™ is a sphere or a
pythagorean product of the form (3. 4) (resp. a small sphere, or a pythagorean product
of a certain number of spheres).

Taking account of Proposition 2.2, we have, as a corollary to Theorems 3. 3
and 3.4,

THEOREM 3. 6. Let M™ be a connected complete submanifold immersed in a
Euclidean space R™ (resp. a sphere S™(a)) (3=n<m) and satisfy the conditions (A),
(B), (C) and (D) stated in Proposition 2.1. If F=hu*h®, is constant, then we have
the same conclusion as in Theorvem 3.3 (resp. as in Theorem 3. 4).
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