SUBMANIFOLDS SATISFYING THE CONDITION $K(X, Y) \cdot K = 0$

By Kunio Sakamoto

Introduction.

In 1968, Simons [7] obtained a formula giving the Laplacian of the square of length of the second fundamental tensor and applied it to the study of minimal hypersurfaces of a sphere. Nomizu and Smyth [6] applied a formula of Simons' type to the study of hypersurfaces with constant mean curvature and with nonnegative sectional curvature in a Euclidean space or in a sphere. Chern, Do Carmo and Kobayashi [2] also applied Simons' formula to the study of minimal submanifolds of a sphere (see also Chern [1]). Recently, Yano and Ishihara [10] have applied a formula of Simons' type to the study of submanifolds of higher codimension with parallel mean curvature vector and with locally trivial normal bundle in a Euclidean space or in a sphere. On the other hand, Nomizu [5] studied hypersurfaces of a Euclidean space, which satisfy the condition $K(X, Y) \cdot K = 0$ for all tangent vectors X and Y, K being the curvature tensor. Tanno [8], Tanno and Takahashi [9] studied hypersurfaces of a Euclidean space or of a sphere, which satisfy the condition $K(X, Y) \cdot S = 0$ for all tangent vectors X and Y, Y being the Ricci tensor (see also Kenmotsu [4]).

In the present paper, we shall, applying a formula of Simons' type, study submanifolds satisfying the condition $K(X,Y)\cdot K=0$ and having parallel mean curvature vector, non-negative Ricci curvature and locally trivial normal bundle in a space of constant curvature. We shall also study submanifolds with parallel second fundamental tensor and with locally trivial normal bundle in a Euclidean space or in a sphere. The main results are stated in Theorems 3. 3, 3. 4, 3. 5 and 3. 6.

§ 1. Preliminaries.

Let M^m be an m-dimensional Riemannian manifold of class C^{∞} with metric tensor G, whose components are G_{ji} with respect to local coordinates $\{\xi^n\}$. Let M^n be an n-dimensional connected submanifold of class C^{∞} differentiably immersed in M^m (1 < n < m) and suppose that the local expression of the submanifold M^n is

$$\hat{\varsigma}^h = \hat{\varsigma}^h(\eta^a),$$

Received April 28, 1972.

where $\{\eta^a\}$ are local coordinates in the submanifold M^n . The indices h, i, \dots, l run over the range $\{1, \dots, m\}$ and the indices a, b, \dots, g over the range $\{1, \dots, n\}$. If we put

$$(1. 2) B_b{}^h = \partial_b \xi^h, \partial_b = \partial/\partial \eta^b,$$

then the Riemannian metric g of M^n induced from that of M^m is given by

$$(1. 3) g_{cb} = G_{ii}B_{c}{}^{j}B_{b}{}^{i}.$$

For each index b, $B_b{}^h$ denotes a local vector field tangent to M^n and the n local vector fields $B_b{}^h$ span the tangent space of the submanifold M^n at each point. We denote by $C_x{}^h$ m-n mutually orthogonal local unit vector fields normal to M^n , where here and in the sequel the indices x, y, z run over the range $\{n+1, \dots, m\}$,

If we denote by $\{f^b_i\}$ and $\{g^a_b\}$ the Christoffel symbols formed with G_{fi} and g_{cb} respectively, then the van der Waerden-Bortolotti covariant derivative of B_b^b is, by definition, given by

$$(1.4) V_c B_b{}^h = \partial_c B_b{}^h + \left\{ \begin{array}{c} h \\ j \ i \end{array} \right\} B_c{}^j B_b{}^i - \left\{ \begin{array}{c} a \\ c \ b \end{array} \right\} B_a{}^h.$$

Since $V_c B_b{}^h$ is, for any fixed indices c and b, a local vector field normal to M^n , we can write

$$(1. 5) V_c B_b{}^h = h_{cb}{}^x C_x{}^h.$$

The local tensor field h_{cb}^{x} is called the second fundamental tensor of the submanifold M^{n} relative to the unit normals C_{x}^{h} . Equations (1.5) are equations of Gauss for the submanifold M^{n} .

If we denote by g^* the metric tensor induced on the normal bundle $\mathfrak{R}(M^n)$ of the submanifold M^n from the metric tensor G of M^m , then we have, for the components of g^* relative to the frame $\{C_x^h\}$,

(1. 6)
$$g_{yx}^* = G_{ji}C_{y^j}C_{x^i} = \delta_{yx}.$$

If we denote by $\Gamma_c{}^x{}_y$ components of the connection Γ^* induced on $\mathfrak{R}(M^n)$ from the Riemannian connection Γ of the ambient manifold M^m , the van der Waerden-Bortolotti covariant derivative of $C_y{}^h$ is, by definition, given by

(1.7)
$$V_c C_y{}^h = \partial_c C_y{}^h + \left\{ \begin{array}{c} h \\ j \ i \end{array} \right\} B_c{}^j C_y{}^i - \Gamma_c{}^x{}_y C_x{}^h.$$

Since $V_cC_y^h$ is, for any fixed c and y, a local vector field tangent to M^n , we have from $G_{ji}B_{b^j}C_y^i=0$ and (1.5)

(1.8)
$$V_c C_v{}^h = -h_c{}^a{}_y B_a{}^h \qquad (h_c{}^a{}_y = h_{cb}{}^x g^{ba} \delta_{xy}).$$

Equations (1.8) are equations of Weingarten for the submanifold M^n . We extend the van der Waerden-Bortolotti covariant differentiation Γ_c to tensor fields of mixed

type on M^n in such a way that for any tensor fields, say $T_b{}^a{}_y{}^x$ and $T_b{}_y{}^h$, of mixed type, the covariant derivatives are defined to be

$$\begin{aligned}
& \mathcal{F}_{c} T_{b}{}^{a}{}_{y}{}^{x} = \partial_{c} T_{b}{}^{a}{}_{y}{}^{x} + \left\{ \begin{array}{c} a \\ c \end{array} \right\} T_{b}{}^{e}{}_{y}{}^{x} - \left\{ \begin{array}{c} e \\ c \end{array} \right\} T_{e}{}^{a}{}_{y}{}^{x} + \Gamma_{c}{}^{x}{}_{z} T_{b}{}^{a}{}_{y}{}^{z} - \Gamma_{c}{}^{z}{}_{y} T_{b}{}^{a}{}_{z}{}^{x}, \\
\end{aligned} (1. 9)$$

$$\begin{aligned}
& \mathcal{F}_{c} T_{by}{}^{h} = \partial_{c} T_{by}{}^{h} + \left\{ \begin{array}{c} h \\ j \end{array} \right\} B_{c}{}^{j} T_{by}{}^{i} - \left\{ \begin{array}{c} a \\ c \end{array} \right\} T_{ay}{}^{h} - \Gamma_{c}{}^{x}{}_{y} T_{bx}{}^{h}.
\end{aligned}$$

For tensor fields of mixed type, we have, from (1.9), the Ricci formula

$$(1. 10) V_d V_c T_b{}^a{}_y{}^x - V_c V_d T_b{}^a{}_y{}^x = K_{dce}{}^a T_b{}^e{}_y{}^x - K_{dcb}{}^e T_e{}^a{}_y{}^x + K_{dcz}{}^x T_b{}^a{}_y{}^z - K_{dcy}{}^z T_b{}^a{}_z{}^x,$$

where $K_{dcb}{}^a$ and $K_{dcy}{}^x$ are curvature tensors of g of M^n and V^* of $\mathfrak{R}(M^n)$ respectively. We now assume that the ambient manifold M^m is of constant curvature c, i.e., that

$$(1. 11) R_{kjih} = c(G_{kh}G_{ji} - G_{jh}G_{ki}),$$

where R_{kjih} are covariant components of the curvature tensor of G of M^m . Substituting (1.5) and (1.8) in the Ricci formulas for $B_b{}^h$ and $C_y{}^i$ respectively, we have the structure equations of the submanifold M^n , i.e.,

$$(1. 12) K_{dcba} = c(g_{da}g_{cb} - g_{ca}g_{db}) + h_{da}{}^{x}h_{cbx} - h_{ca}{}^{x}h_{dbx},$$

$$(1. 14) K_{dcy}^{x} = h_{de}^{x} h_{c}^{e}_{y} - h_{ce}^{x} h_{d}^{e}_{y}.$$

Transvecting (1. 12) with g^{da} , we find

(1. 15)
$$K_{cb} = c(n-1)g_{cb} + nh^x h_{cbx} - h_{ce}^x h_b^e_x,$$

where $K_{cb} = K_{ecb}^e$ is the Ricci tensor and $h^x = (1/n)h_c^{ex}$ is the mean curvature vector of the submanifold M^n .

When the ambient manifold M^m is of constant curvature c, we compute the Laplacian ΔF of the function $F = h_{cb}{}^x h^{cb}{}_x$, where $\Delta = g^{cb} \nabla_c \nabla_b$. We thus have

(1. 16)
$$\frac{1}{2} \Delta F = g^{ed} (\nabla_e \nabla_d h_{cb}^x) h^{cb}_x + (\nabla_c h_{ba}^x) (\nabla^c h^{ba}_x).$$

From the Ricci identity for h_{cb}^{x} and (1.13), we have

$$(1.17) \quad \frac{1}{2} \Delta F = n(\nabla_c \nabla_b h^x) h^{cb}_x + K_c^a h_{ba}^x h^{cb}_x - K_{ecba} h^{eax} h^{cb}_x + K_{ecy}^x h_b^{ey} h^{cb}_x + (\nabla_c h_{ba}^x) (\nabla^c h^{ba}_x).$$

If we substitute (1.12), (1.14) and (1.15) in (1.17), then we have (cf. [10])

(1. 18) becomes

$$\frac{1}{2} \Delta F = n(V_c V_b h^x) h^{cb}_x + cnF - cn^2 h^x h_x - h_{ea}{}^y h_{cby} h^{ea}_x h^{cbx}$$

$$(1. 18)$$

$$+ nh^y h_{cay} h_b{}^a_x h^{cbx} - K_{ecy}{}^x K^{ecy}_x + (V_c h_{ba}{}^x) (V^c h^{ba}_x).$$

When the normal bundle $\Re(M^n)$ is locally trivial, i.e., $K_{dcy}^x=0$, the above equation

(1. 19)
$$\frac{1}{2} \Delta F = n(\nabla_c \nabla_b h^x) h^{cb}{}_x + cnF - cn^2 h^x h_x - h_{ea}{}^y h_{cby} h^{ea}{}_x h^{cbx} + nh^y h_{cay} h_b{}^a{}_x h^{cbx} + (\nabla_c h_{ba}{}^x) (\nabla^c h^{ba}{}_x).$$

§ 2. Submanifolds satisfying the condition $K(X, Y) \cdot K = 0$.

Let M^n be a submanifold in a space M^m of constant curvature c, and suppose that the normal bundle $\Re(M^n)$ of M^n is locally trivial, i.e., that $K_{dcy}{}^x=0$ holds. We now consider the condition

$$(*) K(X, Y) \cdot K = 0$$

for any tangent vector X and Y of M^n , where K(X, Y) operates on the tensor algebra at each point as a derivation. The condition (*) is equivalent to

$$(2. 1) V_f V_e K_{dcba} - V_e V_f K_{dcba} = -(K_{fed}{}^g K_{gcba} + K_{fec}{}^g K_{dgba} + K_{feb}{}^g K_{dcga} + K_{fea}{}^g K_{dcbg}) = 0.$$

On the other hand, differentiating (1.12) covariantly, we have

$$(2. 2) V_e K_{dcba} = (V_e h_{da}^x) h_{cbx} + h_{da}^x (V_e h_{cbx}) - (V_e h_{ca}^x) h_{dbx} - h_{ca}^x (V_e h_{dbx}),$$

and hence

$$\begin{split} & V_f V_e K_{dcba} - V_e V_f K_{dcba} \\ = & (V_f V_e h_{da}{}^x - V_e V_f h_{da}{}^x) h_{cbx} + (V_f V_e h_{cb}{}^x - V_e V_f h_{cb}{}^x) h_{dax} \\ & - (V_f V_e h_{ca}{}^x - V_e V_f h_{ca}{}^x) h_{dbx} - (V_f V_e h_{db}{}^x - V_e V_f h_{db}{}^x) h_{cax}. \end{split}$$

Applying the Ricci identity (1.10) to h_{cb}^x with vanishing K_{dcy}^x , we see that the equations above reduce to

$$(2.3) = -(K_{fed}{}^{g}h_{ga}{}^{x} + K_{fea}{}^{g}h_{dg}{}^{x})h_{cbx} - (K_{fec}{}^{g}h_{gb}{}^{x} + K_{feb}{}^{g}h_{cg}{}^{x})h_{dax}$$

$$+ (K_{fec}{}^{g}h_{ga}{}^{x} + K_{fea}{}^{g}h_{cg}{}^{x})h_{dbx} + (K_{fed}{}^{g}h_{gb}{}^{x} + K_{feb}{}^{g}h_{dg}{}^{x})h_{cax}.$$

Since the normal bundle $\mathfrak{R}(M^n)$ of M^n is locally trivial, we see from (1.14) that, for any indices x and y, $h_b{}^{ax}$ and $h_b{}^{ay}$ are commutative, i.e., $h_e{}^{ax}h_b{}^{ey}=h_e{}^{ay}h_b{}^{ex}$.

Hence we see that there exist certain n mutually orthogonal unit vectors v_1^a , ..., v_n^a such that

(2.4)
$$h_b^{ax} v_a^{\ b} = \lambda_a^{\ x} v_a^{\ a} \qquad (\alpha; \text{ not summed})$$

at each point of M^n , where here and in the sequel indices α , β , γ , ε run over the range $\{1, \dots, n\}$. We shall now compute

$$(\nabla_f \nabla_e K_{dcba} - \nabla_e \nabla_f K_{dcba}) v_{\beta}{}^f v_{\alpha}{}^e v_{\gamma}{}^d v_{\varepsilon}{}^c.$$

First we find from (1.12)

$$K_{feba}v_{\beta}{}^fv_{\alpha}{}^e = (c + \sum\limits_x \lambda_{\alpha}{}^x\lambda_{\beta}{}^x)(v_{\beta a}v_{\alpha b} - v_{\alpha a}v_{\beta b})$$
 $(\alpha \pm \beta).$

Since we see, from (1.12), that the sectional curvature $\sigma_{\beta,\alpha}$ of M^n with respect to the plane section determined by eigenvectors v_{α} and v_{β} of $h_b{}^{ax'}$ s is given by

(2. 5)
$$\sigma_{\beta,\alpha} = c + \sum_{\alpha} \lambda_{\beta}^{x} \lambda_{\alpha}^{x} \qquad (\alpha \neq \beta),$$

we have

$$(2. 6) K_{feb}{}^{a}v_{s}{}^{f}v_{a}{}^{e} = \sigma_{\beta,a}(v_{\beta}{}^{a}v_{ab} - v_{a}{}^{a}v_{\beta b}).$$

If we transvect (2.3) with $v_{\beta}^{f}v_{\alpha}^{e}$ and use (2.4) and (2.6), then we find

$$(V_{f}V_{e}K_{dcba} - V_{e}V_{f}K_{dcba})v_{\beta}^{f}v_{\alpha}^{e}$$

$$= -\sigma_{\beta,\alpha}[\lambda_{\beta}^{x}(v_{\beta a}v_{\alpha d} + v_{\beta d}v_{\alpha a}) - \lambda_{\alpha}^{x}(v_{\alpha a}v_{\beta d} + v_{\alpha d}v_{\beta a})]h_{cbx}$$

$$(2.7) \qquad -\sigma_{\beta,\alpha}[\lambda_{\beta}^{x}(v_{\beta b}v_{\alpha c} + v_{\beta c}v_{\alpha b}) - \lambda_{\alpha}^{x}(v_{\alpha b}v_{\beta c} + v_{\alpha c}v_{\beta b})]h_{dax}$$

$$+\sigma_{\beta,\alpha}[\lambda_{\beta}^{x}(v_{\beta a}v_{\alpha c} + v_{\beta c}v_{\alpha a}) - \lambda_{\alpha}^{x}(v_{\alpha a}v_{\beta c} + v_{\alpha c}v_{\beta a})]h_{dbx}$$

$$+\sigma_{\beta,\alpha}[\lambda_{\beta}^{x}(v_{\beta b}v_{\alpha d} + v_{\beta d}v_{\alpha b}) - \lambda_{\alpha}^{x}(v_{\alpha b}v_{\beta d} + v_{\alpha d}v_{\beta b})]h_{cax}.$$

Thus transvecting (2.7) with $v_r^d v_{\varepsilon}^c$, we have from (2.4)

$$(\nabla_{f} \nabla_{e} K_{dcba} - \nabla_{e} \nabla_{f} K_{dcba}) v_{\beta}^{f} v_{\alpha}^{e} v_{\gamma}^{d} v_{\varepsilon}^{c}$$

$$= \sigma_{\beta, \alpha} \sum_{x} [(\lambda_{\beta}^{x} - \lambda_{\alpha}^{x}) \{ -\lambda_{\varepsilon}^{x} (\delta_{\alpha_{f}} v_{\beta a} + \delta_{\beta_{f}} v_{\alpha a}) v_{\varepsilon b}$$

$$-\lambda_{\gamma}^{x} (\delta_{\alpha \varepsilon} v_{\beta b} + \delta_{\beta \varepsilon} v_{\alpha b}) v_{\gamma a} + \lambda_{\gamma}^{x} (\delta_{\alpha \varepsilon} v_{\beta a} + \delta_{\beta \varepsilon} v_{\alpha a}) v_{\gamma b} + \lambda_{\varepsilon}^{x} (\delta_{\alpha_{f}} v_{\beta b} + \delta_{\beta_{f}} v_{\alpha b}) v_{\varepsilon a} \}].$$

We can easily verify that the right-hand side of (2. 8) vanishes identically except in the following four cases: Case I $\gamma = \alpha$, $\gamma \neq \beta$, $\varepsilon \neq \alpha$, $\varepsilon \neq \beta$ ($\alpha \neq \beta$), Case II $\gamma \neq \alpha$, $\gamma = \beta$, $\varepsilon \neq \alpha$, $\varepsilon \neq \beta$ ($\alpha \neq \beta$), Case III $\gamma \neq \alpha$, $\gamma \neq \beta$, $\varepsilon = \alpha$, $\varepsilon \neq \beta$ ($\alpha \neq \beta$) and Case IV $\gamma \neq \alpha$, $\gamma \neq \beta$, $\varepsilon \neq \alpha$, $\varepsilon = \beta$ ($\alpha \neq \beta$). For these four cases, (2. 8) reduces to

$$(2. 9) \qquad (\nabla_f \nabla_e K_{dcba} - \nabla_e \nabla_f K_{dcba}) v_{\beta}{}^f v_{\alpha}{}^e v_{\gamma}{}^d v_{\alpha}{}^c = \sigma_{\beta, \alpha} \sum_x (\lambda_{\beta}{}^x - \lambda_{\alpha}{}^x) \lambda_{\gamma}{}^x (v_{\gamma b} v_{\beta a} - v_{\beta b} v_{\gamma a}).$$

We moreover assume that the submanifold satisfies the condition (*), which is equivalent to the condition

(2. 10)
$$\sigma_{\beta,\alpha} \sum_{x} (\lambda_{\beta}^{x} - \lambda_{\alpha}^{x}) \lambda_{\gamma}^{x} = 0 \qquad \gamma \neq \alpha, \ \beta \ (\alpha \neq \beta)$$

because of (2.9). Using (2.5), we see easily that (2.10) is equivalent to

(2. 11)
$$\sigma_{\beta,\alpha}(\sigma_{\gamma,\beta}-\sigma_{\gamma,\alpha})=0 \qquad \gamma \neq \alpha, \beta \ (\alpha \neq \beta).$$

We here assume that there is at least one non-zero $\sigma_{\beta,\alpha}$. Then we may suppose that $\sigma_{1,2,\cdots}$, $\sigma_{1,p}$ are non-zero and $\sigma_{1,p+1}=\cdots=\sigma_{1,n}=0$. We find from (2.11)

$$\sigma_{\tau,\beta} = \sigma_{\tau,\alpha}$$
 $(\beta < \alpha; 1, \dots, p, \gamma = 1, \dots, n).$

Thus we have

$$\sigma_{\beta,\alpha} = \sigma_{1,2}$$
 $(\beta < \alpha; 1, \dots, p),$
 $\sigma_{\beta,\alpha} = 0$ $(\beta = 1, \dots, p, \alpha = p + 1, \dots, n).$

Similarly, if we suppose that $\sigma_{p+1}, p+2, \dots, \sigma_{p+1,q}$ are non-zero and $\sigma_{p+1}, q+1=\dots = \sigma_{p+1,n}=0$, then we find

$$\sigma_{\beta, \alpha} = \sigma_{p+1, p+2}$$
 $(\beta < \alpha; p+1, \dots, q),$ $\sigma_{\beta, \alpha} = 0$ $(\beta = p+1, \dots, q, \alpha = q+1, \dots, n).$

In this way, we have

$$\sigma_{\beta,\alpha} = \sigma_{q+1,q+2}$$
 $(\beta < \alpha; q+1, \dots, r),$

$$\sigma_{\beta,\alpha} = 0$$
 $(\beta = q+1, \dots, r, \alpha = r+1, \dots, n),$

as far as there is a non-zero $\sigma_{\beta,\alpha}$.

If we denote by S the Ricci tensor, we easily find

(2. 12)
$$S(v_{\alpha}, v_{\alpha}) = K_{cb} v_{\alpha}^{\ c} v_{\alpha}^{\ b} = \sum_{\beta + \alpha} \sigma_{\beta, \alpha} \qquad (\alpha; \text{ fixed}).$$

Hence, when we assume that the Ricci tensor S is non-negative, taking account of the behavior of the sectional curvatures $\sigma_{\beta,\alpha}$, explained above, we see that the sectional curvature $\sigma_{\beta,\alpha}$ is non-netative for all β and α . Using (2.4) and (2.5), we find from (1.19) (cf. [10])

$$(2. 13) \qquad \frac{1}{2} \Delta F = n(\nabla_c \nabla_b h^x) h^{cb}_x + (\nabla_c h_{ba}^x) (\nabla^c h^{ba}_x) + \sum_{\alpha < \beta} \sum_x (\lambda_\beta^x - \lambda_\alpha^x)^2 \sigma_{\beta, \alpha}.$$

Therefore we have

PROPOSITION 2.1. Let M^n $(n \ge 3)$ be a submanifold immersed in a space of constant curvature and satisfy the conditions:

- (A) The normal bundle $\mathfrak{N}(M^n)$ is locally trivial;
- (B) The mean curvature vector is parallel in $\Re(M^n)$, i.e., $\nabla_c h^x = 0$;
- (C) $K(X, Y) \cdot K = 0$ for any tangent vectors X and Y of M^n ;
- (D) The Ricci tensor is non-negative.

If M^n is compact, then we have

(2. 14)
$$\nabla_c h_{ba}^x = 0$$
 for any indices c, b and a,

PROPOSITION 2. 2. Let M^n $(n \ge 3)$ be a submanifold immersed in a space of constant curvature and satisfy the conditions (A), (B), (C) and (D) in Proposition 2.1. If $F = h_{cb}{}^x h^{cb}{}_x$ is constant, we have (2.14) and (2.15).

§3. Submanifolds with parallel second fundamental tensor.

Let M^n be a connected submanifold with parallel second fundamental tensor, i.e., $\Gamma_c h_{ba} x = 0$, in a space M^m of constant curvature c and suppose that the normal bundle $\Re(M^n)$ is locally trivial. Then we easily see that all of the eigenvalues λ_a^x of the second fundamental tensor are constant and that each of eigenspaces of the second fundamental tensor is of constant dimension. If we denote by λ_a the normal vector fields with components $\lambda_a^h = \lambda_a^x C_x^h$, then they are globally defined. When we fix the normals C_x^h , we can identify λ_a with a vector of R^{m-n} with components $(\lambda_a^{n+1}, \dots, \lambda_a^m)$ and the inner product of λ_a and λ_β with the usual inner product $(\lambda_a, \lambda_\beta)$ in R^{m-n} . If all of the eigenvector fields corresponding to λ_a form a p_a -dimensional distribution, then we say that the multiplicity of λ_a is p_a .

Let μ_1, \dots, μ_N be distinct vectors of eigenvalues and let p_1, \dots, p_N be the multiplicity of μ_1, \dots, μ_N . We denote by D_A the distribution formed by all eigenvector fields corresponding to μ_A of multiplicity p_A , where the index A runs over the range $\{1, \dots, N\}$. Taking a vector field X^a belonging to D_A , we have

$$(3. 1) h_b^{ax} X^b = \mu_A^x X^a$$

and hence

$$(3. 2) h_b^{ax} \nabla_c X^b = \mu_A^x \nabla_c X^a,$$

since $V_c h_b^{ax} = 0$ and μ_A^x are constant. If a vector field Y^a belongs to D_A , then we find from (3.2)

$$(3.3) h_b^{ax}(Y^c \nabla_c X^b - X^c \nabla_c Y^b) = \mu_a^{x}(Y^c \nabla_c X^a - X^c \nabla_c Y^a).$$

Thus we see that the distribution D_A and the orthogonal complement \bar{D}_A of D_A are both integrable and parallel. Therefore, if we denote by M_A and \bar{M}_A some integral manifolds of D_A and \bar{D}_A respectively, they are totally geodesic submani-

folds in M^n and M^n is locally a pythagorean product $M_A \times \overline{M}_A$. Since, for any vector fields X^a and Y^a tangent to M_A , we have

$$X^c \nabla_c (Y^a B_a{}^h) = (X^c \nabla_c Y^a) B_a{}^h + \mu_A{}^x g_{ca} X^c Y^a C_x{}^h,$$

we see that M_A is totally umbilical in the ambient manifold M^m if $\mu_A \neq 0$ and that M_A is totally geodesic in the ambient manifold M^m if $\mu_A = 0$. Thus we have (cf. [10])

Lemma 3.1. Let M^n be a submanifold with parallel second fundamental tensor immersed in a space M^m of constant curvature and assume that the normal bundle $\Re(M^n)$ of M^n is locally trivial. If distinct vectors of eigenvalues of the second fundamental tensor are given by μ_1, \dots, μ_N , then M^n is locally a pythagorean product $M_1 \times \dots \times M_N$, where M_A $(A=1, \dots, N)$ is a totally umbilical submanifold in M^m with mean curvature vector μ_A if $\mu_A \neq 0$ and M_A is a totally geodesic submanifold in M^m if $\mu_A = 0$. In particular the normal bundle $\Re(M_A)$ of M_A in M^m is locally trivial.

Let M^n be an n-dimensional submanifold with parallel second fundamental tensor immersed in a space M^m of constant curvature c and suppose that the normal bundle $\mathfrak{N}(M^n)$ is locally trivial. If u^a and v^a are unit vector belonging to D_A and D_B respectively, then we have

$$K_{dcba}v^du^cu^bv^a=0$$

and hence, from (1.12),

$$K_{dcba}v^du^cu^bv^a = c + \sum \mu_A{}^x\mu_B{}^x = c + (\mu_A, \mu_B) = 0.$$

We note that we have this result under the assumptions in Propositions 2.1 and 2.2. We have known the following lemma (cf. [10]).

Lemma 3. 2. Let μ_1, \dots, μ_N be distinct vectors belonging to R^{m-n} such that $(\mu_A, \mu_B) = k$ $(A \neq B; A, B = 1, \dots, N)$. If μ_1, \dots, μ_N span an r-dimensional subspace, $(m-n \geq r > 0)$, then N = r or N = r + 1. When N = r + 1, and when μ_1, \dots, μ_N span an r-dimensional subspace,

$$\begin{vmatrix} (\mu_{1}, \mu_{1}) & k & \cdots & k \\ k & (\mu_{2}, \mu_{2}) & \cdots & k \\ & \cdots & & & \\ k & k & \cdots & (\mu_{N}, \mu_{N}) \end{vmatrix} = 0.$$

If k=0, then one of μ_1, \dots, μ_N is necessarily zero.

In general, a submanifold M^n immersed in an m-dimensional space M^m is said to be of essential codimension r $(0 \le r \le m-n)$, if there exists in the ambient manifold M^m an (n+r)-dimensional totally geodesic submanifold containing M^n as a submanifold and no such a totally geodesic submanifold of dimension less than n+r. The subspace in the normal space at a point P of M^n spanned by normal

vectors $v^c u^b h_{cb}{}^x C_x{}^h$, u^a and v^a being any tangent vectors of M^n at P, is called the first normal space at P.

We now assume that the ambient manifold M^m is an m-dimensional Euclidean space R^m . Then, from the above Lemma 3.2, we see that the first normal space is of constant dimension r and N=r or N=r+1, if μ_1, \dots, μ_N span an r-dimensional subspace of R^{m-n} , and that one of μ_1, \dots, μ_N is necessarily zero if N=r+1. If X^a , Y^a and Z^a are vector fields tangent to M^n , then we have

$$Z^{e} \nabla_{e} (X^{c} Y^{b} h_{cb}^{x}) C_{x}^{h} = (Z^{e} \nabla_{e} X^{c}) Y^{b} h_{cb}^{x} C_{x}^{h} + X^{c} (Z^{e} \nabla_{e} Y^{b}) h_{cb}^{x} C_{x}^{h},$$

because of $\mathcal{V}_c h_{ba}{}^x = 0$. Thus the first normal space is parallel in the normal bundle $\Re(M^n)$. Therefore we see that the essential codimension is r, i.e., that M^n is immersed in an (n+r)-dimensional plane in R^m , if μ_1, \dots, μ_N span an r-dimensional subspace of R^{m-n} (cf. [3]) Since it is easily verified that the second fundamental tensor of M_A ($A=1,\dots,N$) in R^m is parallel and that the first normal space of M_A in R^m is of constant dimension 1 if $\mu_A \neq 0$, we see from Lemma 3.1 that M_A is immersed in an (p_A+1) -dimensional plane in R^m as a totally umbilical hypersurface if $\mu_A \neq 0$ and that, in particular, if M_A is of dimension 1, M_A is a curve of constant curvature in a 2-dimensional plane in R^m . Therefore we have (cf. [5], [6] and [10])

Theorem 3.3. Let M^n be a connected complete submanifold of dimension n with parallel second fundamental tensor immersed in a Euclidean space R^m of dimension m (1 < n < m) and suppose that the normal bundle is locally trivial. Then M^n is a sphere $S^n(r)$ of dimension n with radius r, an n-dimensional plane R^n , a pythagorean product of the form

(3.4)
$$S^{p_1}(r_1) \times \cdots \times S^{p_N}(r_N), \ p_1 + \cdots + p_N = n, \ p_1, \cdots, p_N \ge 1, \ 1 < N \le m - n,$$

or a pythagorean product of the form

$$(3.5) S^{p_1}(r_1) \times \cdots \times S^{p_N}(r_N) \times R^p, \ p_1 + \cdots + p_N + p = n, \ p_1, \ \cdots, \ p_N, \ p \ge 1, \ 1 < N \le m - n,$$

where $S^p(r)$ is a p-dimensional sphere with radius r and R^p is a p-dimensional plane. If M^n is a pythagorean product of the form (3,4) or (3,5), then M^n is of essential codimension N.

In the case where the ambient manifold M^m is an m-dimensional sphere $S^m(a)$ with radius a, we have (see [10])

Theorem 3.4. Let M^n be an n-dimensional connected complete submanifold with parallel second fundamental tensor immersed in an m-dimensional sphere $S^m(a)$ with radius a (0 < a, 1 < n < m) and suppose that the normal bundle is locally trivial. Then M^n is a small sphere, a great sphere or a pythagorean product of a certain number of spheres. If, moreover, M^n is of essential codimension m-n, then M^n is a pythagorean product of the form

(3. 6)
$$S^{p_1}(r_1) \times \cdots \times S^{p_N}(r_N)$$
, $p_1 + \cdots + p_N = n$, $p_1, \cdots, p_N \ge 1$, $r_1^2 + \cdots + r_N^2 = a^2$, $N = m - n + 1$,

or a pythagorean product of the form

$$\Sigma^{\mathbf{p}_{\mathbf{l}}}(\mathbf{r}_{1}) \times \cdots \times \Sigma^{\mathbf{p}_{N'}}(\mathbf{r}_{N'}) \subset \Sigma^{m-1}(\mathbf{r}),$$

(3.7)

$$p_1 + \cdots + p_{N'} = n, p_1, \cdots, p_{N'} \ge 1, r_1^2 + \cdots + r_{N'}^2 = r^2 < \alpha^2, N' = m - n,$$

where $\Sigma^p(r)$ is a p-dimensional small sphere with radius r in $S^m(a)$.

Taking account of Proposition 2.1, we have, as a corollary to Theorems 3.3 and 3.4,

Theorem 3.5. Let M^n be a connected submanifold immersed in a Euclidean space R^m (resp. a sphere $S^m(a)$) $(3 \le n < m)$ and satisfy the conditions (A), (B), (C) and (D) stated in Proposition 2.1. If M^n is compact, then M^n is a sphere or a pythagorean product of the form (3.4) (resp. a small sphere, or a pythagorean product of a certain number of spheres).

Taking account of Proposition 2.2, we have, as a corollary to Theorems 3.3 and 3.4,

Theorem 3. 6. Let M^n be a connected complete submanifold immersed in a Euclidean space R^m (resp. a sphere $S^m(a)$) ($3 \le n < m$) and satisfy the conditions (A), (B), (C) and (D) stated in Proposition 2.1. If $F = h_{cb}^x h^{cb}_x$ is constant, then we have the same conclusion as in Theorem 3.3 (resp. as in Theorem 3.4).

BIBLIOGRAPHY

- [1] Chern, S. S., Minimal submanifolds in a Riemannian manifold. Technical Report 19, University of Kansas (1968).
- [2] CHERN, S. S., M. Do CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length. Functional analysis and related fields. Springer-Verlag (1970), 60-75.
- [3] Erbacher, J., Reduction of the codimension of an isometric immersion. J. Differential Geometry 5 (1971), 333-340.
- [4] Kenmotsu, K., Some remarks on minimal submanifolds. Tôhoku Math. J. 22 (1970), 240-248.
- [5] Nomizu, K., On Hypersurfaces satisfying a certain condition on the curvature tensor. Tôhoku Math. J. 20 (1968), 46-59.
- [6] Nomizu, K., and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature. J. Differential Geometry 3 (1969), 367-377.
- [7] Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62–105.
- [8] Tanno, S., Hypersurfaces satisfying a condition on the Ricci tensor. Tôhoku Math. J. 21 (1969), 297-303.
- [9] TANNO, S., AND T. TAKAHASHI, Some hypersurfaces of a sphere. Tôhoku Math. J. 22 (1970), 212-219.
- [10] Yano, K., and S. Ishihara, Submanifolds with parallel mean curvature vector.
 J. Differential Geometry. 6 (1971), 95-118.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.