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DIFFERENTIABLE SOLUTIONS OF ALGEBRAIC
EQUATIONS ON MANIFOLDS

By SamuEL I. GoLDBERG AND NicHoLAS C. PETRIDIS

1. Introduction. Yano [7] introduced the notion of an f-structure, which is a
non-null (1,1) tensor field f of constant rank » on a C* manifold of dimension
r+m, satisfying f®+f=0. An almost complex and an almost contact structure are
particular cases of an f-structure the existence of an f-structure being equivalent
to a reduction of the structural group of the tangent bundle to U(r/2)XO(m).
They were studied by various authors ([1], [2], [6], etc.) with particular focus on
the case of globally framed structures [2]. Extending the concept of an f-structure,
Goldberg and Yano [3] introduced the notion of a polynomial structure on a
manifold.

An f-structure is a particular case of an almost product structure [7], [8]. The
purpose of this paper is to point out the close relation of the polynomial structures
on manifolds and the almost product structures as defined by Walker [8]. In §2
it is shown that any polynomial structure generates an almost product structure.
From this follow necessary and sufficient conditions for a distribution to be globally
framed and for a manifold to be parallelizable. In §3 reductions of the structural
group of the tangent bundle of a polynomial structure are obtained, similar to that
for f-structures (see [7]). It is shown that for any polynomial structure with
structure polynomial decomposable into distinct irreducible quadratic factors over
the reals R that there is an underlying almost complex structure. In §5 an ana-
logue of the normal f-structures [2] is examined which is more general in the sense
that the tensor field f is not required to satisfy an algebraic equation.

2. Almost product structure. Let A be a differentiable manifold. A C* tensor

field f of type (1,1) on M is said to define a polynomial structure if f satisfies the
algebraic equation

@2.1) P(&) =2+ Az 4+ + gz +a, ] =0,

where [ is the identity mapping and f™(p), f™ ¥ p), ---, f(p), I are linearly in-
dependent for every peM. Clearly, f is non-singular if and only if ;0. The
polynomial P(x) is called the structure polynomial. 1f P(x)=x*+1 we have an
almost complex structure.
An almost product structure on a differentiable manifold M is a system of
differentiable distributions 73, 7%, ---, Tx such that
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112 SAMUEL 1. GOLDBERG AND NICHOLAS C. PETRIDIS
(i) T(p)=Tup)+ -+ Tu( D),
(ii) Tu(p)NTo(p)=0,  a=xb,

for every peM, where T(p) is the tangent space of M at p. It is defined by a
system of projectors ni(p): T(p)—Tip), i=1,2, .-, k, which are C* tensor fields
of type (1, 1) on M, satisfying X%_,n;=1, n;n,=0:;m;, where 0;; is the Kronecker delta.
The distributions T, i=1, 2, -+, k, are the basic distributions of the structure. A
distribution of the form 7V=3;6’T,, 6’=0 or 1, will be called a distribution of the
structure; the distribution 77/=3;(1—¢")T, is called the complementary distribution

to 1.

THEOREM 1. A polynomial structure on a differentiable manifold M, defined
by a C> tensor field f of type (1, 1), induces an almost product structure on M. The
number of distributions of the structure is equal to the number of distinct irreducible
Sfactors over R of the structure polynomial, and the projectors are expressed as poly-
nomials in f.

Proof. Let p(x) be the structure polynomial and p(x)=pi(x)ps(x)% -+ pr(x)%,
where the p;(x) are distinct monic irreducible polynomials over R. Since pi(x)%
..., pr(x)° are relatively prime in the ring F[x] of polynomials over R, applying the
Euclidean algorithm, we obtain polynomials %(z), As(x), -+, #x(x) such that

10(@)1(2) + 2p(@)ha(@) + -+ + (@) (@) =1,

where ;p(x) is the polynomial obtained from p(x) by deleting the factor pi(x)®t. If
we put L=p(Nh(S), i=1,2, -, k, then

Ll +h=I,  lhy=di,

The [, i=1, 2, ---, k, are thus C* projectors defining an almost product structure
with distributions T3, i=1, 2, ---, k, where Ty(p)=LT(p).

Let M be a differentiable manifold with two complementary C* distributions
Ty, T, of constant dimensions and projectors =, m;, respectively. If there are m
vector fields E,, a=1, 2, -+, m, globally defined on M, spanning the distribution T3,
and m pfaffian forms »* satisfying

ﬂa(Eb)=5gy a, b=1) 2; e, m

where 67 is the Kronecker delta, and if r,=ZF,®7% then the distribution 7} is said
to be globally framed. (The summation convention is used here and in the sequel.)

An m-dimensional C*® manifold is called parallelizable if there are C vector
fields X, X,, ++-, Xn, globally defined on M such that, for every point pe M, Xi(p),
-+, Xou(p) span T'(p), the tangent space of M at p. Such distributions can be trivially
defined on parallelizable manifolds.

COoROLLARY 1. Let M be a simply commected (paracompact) manifold. A
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necessary and sufficient condition for M to have a globally framed distribution is
that there exist a polynomial structure on M, defined by a tensor field f of constant
rank k, with structure polynomial of the form

zP(x),
where P(x) is of degree k having k distinct non-zero real roots.

Proof. Let ¢y, ¢y, -+, ¢, be the roots of P(zx) where ¢,%0, c,3c,, i=7, 1, j=1, 2,
-+, k. Then,

P(z)=(x—c)(@—cs) -+ (®—ci)-

Applying Theorem 1, we obtain an almost product structure on M, with projectors
given by

L=1-p(f)(f), L=f2p(N)h(S) -+,

e=fw()(S), leir=P (i :(f)

where ;p(z) is P(x) with the factor z—c, deleted. If T3, T%, -+, Tis: are the cor-
responding distributions, then 7},, is the null space of f. Since f is of rank
k, Ty.1 must be of dimension #—% and each of the Tys, i=1, 2, ---, , must be of
dimension one.

We define on M a metric ¢ and a connection L such that the distributions
Ty, Ty, -+, Tiy1 are orthogonal with respect to ¢, parallel with respect to L, and ¢
is invariant by parallel translation (see Appendix). If ¢(p) is the holonomy group
of L at peM then the distributions Ty(p), i=1, 2, ---, k+1 are invariant by ¢(p),
and since M is simply connected

P(DY=P1(D) X Pa( D) X +++ X Pi( D) X Pier1( D)

where the ¢y (p), i=1,2, -+, k41, are normal subgroups of ¢(p). Since ¢i(p) is
irreducible on Ty(p), i=1, 2, ---, k+1, and acts trivially on Ty(p), i%Jj, and since the
Ti(p), i=1,2, -+, k, are of dimension one, it follows that the ¢i(p) coincide with
the identity subgroup.

Let Ei(p), Ex(p), -+, Ex(p) be unit length vectors spanning Ti(p), Tx(p), -+, Tu(p),
respectively. By parallel translation we define the vector fields E\, Es, -+, Ex, which
span the distributions T, 7%, ---, Tk, respectively. Defining the pfaffian forms 7* by

7]0‘:(](Ea, .), d:1, 2, ey k’
it follows that
7;“(Eb)=5,‘,‘.

The orthogonal complement of 7Tj,, is therefore a globally framed distribution.
Suppose now that Ti, T3 are two complementary distributions and that 7} is framed
by the globally defined vector fields FE,, a=1,2,---, k. Let 5* be the dual forms.
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We define the tensor field f of type (1, 1) and rank % by
f= anEa,®77a, fra=0

where the ¢,’s are real, c,3c, for @b, and r, is the projector corresponding to
the distribution 7. Observe that 7*((f—cJ)X)=0, (since 7*(E;)=0) for every
vector field X of M. It follows that f satisfies the equation z(x—c;)(@—cs)---(x—ck)
=0.

COROLLARY 2. A mecessary and sufficient comdition for a simply connected C*
manifold M of dimension m to be parallelizable is that there exist a polynomial
structure on M with structure polynomial of degree m having m distinct non-zero
real roots.

COROLLARY 3. There exists a polynomial structure of degree 3 (7) on S* (S7)
with 3 (7) distinct non-zero real roots.

3. Reduction of the structural group. Let M be a differentiable manifold
with a polynomial structure defined by f and structure polynomial

(3. 1) P(x) :x2+azx+a1I

which is irreducible over R.
If a+pi are the roots of (3. 1), then f satisfies the equation

3.2 (x—a)*+ p*=0.

If in (3. 2) we put f=p/+al, then J satisfies the equation x*47=0 and, conse-
quently, it defines an almost complex structure on M. We shall call J the almost
complex structure induced by f.

THEOREM 2. Let M be a C* manifold with a polynomial structure. If the
structure polynomial has only distinct complex roots, them there is an underlying
almost complex structure on M.

Proof. Let f denote the tensor field which defines the polynomial structure
on M. According to Theorem 1, it defines an almost product structure on M. Let
Ty, Ts, «+-, T} be the basic distributions of this structure with corresponding pro-
jectors /4, by, -+, Ir. Let P(xz)=q(x)q:(x)---qu(x) be the factorization of the structure
polynomial, where g¢y(x), i=1, 2, -+, k, are monic irreducible over R quadratic
polynomials.

The restriction of f to each Ti(p), i=1, 2, .-, k, has minimal polynomial g¢;(x),
for each peM. Hence, that the restriction of f to each Ty(p) induces a complex
structure J, on Ty(p) for each peM, that is

3.3 LAX)=-LX, J:«(,X)=0, ixj

for any vector field X. From (3. 3) it follows that the tensor field F=]i/i+/Jals
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+ -+ Jilx defines an almost complex structure on M.

CoROLLARY 3. Let M be a C™ manifold of even dimension m with a polynomial
structure defined by the tensor field f of constant vank v and structure polynomial
of the form xzP(x), where P(x) has constant term 1, and its factors are distinct
irreducible quadratic polynomials. If the distribution defined by the projector mo=P(f)
is globally framed, then there is an underlying almost complex structure on M.

Proof. First note that =;=—P(f)+1, and =,=P(f) are projectors defining two
complementary distributions 73, T3, respectively. It follows from Theorem 2 that
f restricted to T; induces on it a complex structure Ji, that is (J;*+1I)r;=0. Thus,
the dimension 7 of 7} is even, and so also the dimension m—7 of T,. Let T be
spanned by the globally defined vector fields E, with dual forms 2% @¢=1,2, -,
m—7.

We define the tensor field

. . . —7
f2=E2i®7721'_1'—E2i—1®7721'; l:‘ly 2’ °tty m2 .

Clearly, (J.24+1)x,=0, so J=Jr:+Jare is an almost complex structure on M.

It follows immediately, under the assumptions of Theorem 2, that the structural
group of the tangent bundle L(M) is reducible to GL(m/2, C), the complex linear
group of complex dimension /2. Similarly, under the assumptions of Corollary 3,
the structural group of L(M) is reducible to GL(7/2, C) X GL((m—7)/2, C).

More refined reductions can be obtained if we assume that the ranks of the
projectors 1, i=1, 2, .-+, k, are constants 7, i=1, 2, ---, k, respectively. In this case,
under the assumptions of Theorem 2, the group of L(M) is reducible to

GL(r1/2, C) XGL(r2/2, C) X -+ X GL(74/2, C).

4. Integrability. The torsion of an almost product structure is defined by
k
4.1) H= Y L[l l}]
1

(see [8]), where /,, i=1, 2, ---, B, are the projectors of the structure and [/, /] is the
Nijenhuis tensor (see §5). It is known [8] that the almost product structure is
integrable if and only if H=0. A polynomial structure defined by f is said to be
wntegrable if [f, f]1=0.

Considering the almost product structure generated by f, the /, in (4.1) are
expressed as polynomials of f. Making use of this fact and the identity

Lfw fefal +Lfifs Lel=Lilfo Fsl 1ol fy, f3) -+, fal s+ [, ol o o

where
[fl, fz]f3(X, Y)=[f1, fz](f3X’ Y)
Uy, fol-fs(X, Y) =111, fol(X, f:Y),
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(see [8]), the torsion H is expressed by
H=ans "1, F1°- 1"

Hence, If the polynomial structure is integrable, then the almost product structure
generated by the polynomial structure is also integrable.

5. Normal f-product structures. For any C* tensor field F on M of type
(1, 1), the Nijenhuis tensor field [F, F] is given by

[F, FI(X, Y)=[FX, FY|-F[FX, Y1-F[X, FY1+F?*X, Y.

An almost complex structure F on M is integrable, if and only if, [F, F]=0.

Let M be a differentiable manifold with an almost product structure defined
by the distributions Ti, T: of ranks 7,7, and projectors =, 7;, respectively. In
addition, we assume that 73 is globally framed with (globally defined) vector fields
E, spanning T, and dual forms 7® such that z.=FE,& 5"

If there exists a C linear transformation field f on M inducing an endomor-
phism on Tiy(p), for each peM, and f=0 on T3, ie., rank f=r, f=fr,=n.f, fr2=0,
we shall say that we have an f-product structure on M. The globally framed f-
manifolds are examples of such structures. An f-product structure is said to be
normal if the dy® are of bidegree (1,1) with respect to f, ie., if

d(fX, Y)+dy"(X, fY)=0,
and if

6.1 L/, F1+ Ea®dy*=0.

These relations are clearly satisfied on a normal globally framed f-manifold [4]. A
normal f-product structure will be denoted by M(f, Eq, 7%.

Let R™ be the 7,-dimensional affine space. For an arbitrary point (p, z)e MX R™,
the tangent space T'(p, z) of MXR™ at (p, x) will be identified with the direct
sum T'(p, z)=T(p)+ Ts(x), where T(p) is the tangent space of M at p and Ti(x) is
the tangent space of R™ at x. From the almost product structure of M we have
T(p)=Ti(p)+ Tx(p). Hence, the distributions 73, T3, 75 define an almost product
structure on MXR"™. Let =, n;, s be the corresponding projectors.

The frame field {E}, E;, -+, E,,} defines a non-singular linear mapping e: R"
—Ty(p) for each peM. Let X,=e YE,), a=1,2, ---, 7o. We define a C> tensor field
F of type (1,1) on MXR™ by

F=f+e_1ﬂ2—€71'3.
We then have the following basic theorem.
THEOREM 3. For a normal f-product structure

[F, F1=0.
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CoROLLARY 4. For a normal f-product structure M(f, Eq, 1), the vector fields
E, are infinitesimal automorphisms, i.e.,

(5' 2) [Ea) Eb] =O,
(5.3) Ly =0,
(5. 4) Lz /=0,

where Lx denotes the Lie derivative in the direction of X and [E., Ey)=Lg, a, b
=1, 2. -+, 7,.

This generalizes Lemma 2 in [4].
To prove Theorem 3, we establish a number of lemmas.

Lemma 1.
(5.5) Fro=fri=mf=f, FE,=X, FX,=—F,,
(5. 6) nsFrny=nFr,=0,
6.7 msF=n3Frny=Fry=nsFn,
(5.8) Fry=—m,,  Fmy=—n,  mF?n=0,
ng = — Fry= —n,F,
(5.9) mlrX, 2 Y]=0, XuzX)=(@X)X,=0, [Xa, X5]=0,

where 7©=m;+7s.

Proof. (5.5) and (5. 6) follow directly from the definitions, and (5.7) follows
from (5.5) and (5.6). The first two relations of (5.8) follow directly from the
definition of F and the third follows from (5.5) and the first of (5.8). The last
relation of (5. 8) follows from the first two of (5. 8), from (5. 6) and the first relation
first formula of (5.9) follows from the fact that the distribution defined by = is
of (5.5). The integrable, and the last two relations of (5.9) follow from the fact
that X,=0d/0z% a=1, 2, ---, 2, Where (!, ---, x™2) are the natural coordinates of R™,
and =X is a vector field over M.

Lemma 2.
(5. 10) [f, 1+ Ea®dn*=0
implies

(5.11) #[F, FlzX, zY)=0.
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Proof. Let U be a coordinate neighborhood of M such that the distribution
T, is spanned in U by the differentiable tensor fields X,, a=1, 2, ---, 7;. Then,
Ti+ T, is spanned in U by

(5' 12) Xl) -X2: ) Xrly El) EZ) ) ETZ'

Since [F, F] is bilinear over the module of vector fields X(M) of M, it is
enough to prove (5.11) for the vectors of a local frame (5.12). We have

(5.13) [F. FI(X., Ey)=[FX., FE]+F*[X., Ej)— FIFX., Es)—F[X., FE].
By Lemma 1
FX.,, B=1*X., E)—m[X., B3],
FIFX,, E]=f[fXe Eol+Frsl f X, B,
[FX,, FE;]=0,
2Frlf X., Es]=0,
so, from (5.13)
(5.14) o[ F, F1(Xe, Eb)=f*[Xoy E]—f[fXa, Es]—7:] X, Ei]
=S Xz, Ep),

where we have put Sy=[f, f1+E.Qdnp"
Applying the last two relations of (5.9), the first two relations of (5.8) and
the first formula of (5.5), we obtain

[F, FY(Ee, Ev)=fEq, Es]—m:[Eq, Eb)
(5. 15) =Si(Ea, Ey)

=n[F, F|(Ea, Eb).
Finally,
(5. 15a) [F, FI(Xey Xp)=[fXe, FXo]+ F*[Xo, Xp]— FIf X, Xp]— F[Xo, fX5].
Applying the first relations of (5.8) and (5. 6) yields
5.16) alF, FI(Xa, Xp)=[/Xa, fXs]+1 [ X0, Xpl =72 Xay X5
= Xe, Xel—f[Xe, fX3]1=5S7(Xe, Xp).
The lemma now follows from (5. 14), (5. 15) and (5. 16).

LEMMA 3. For a normal f-product structure
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(5.17) w3 F[F, Fl(FrX, zY)=mn[F, Fl(zX, zY).
Proof. We show
(5.18) mF[F, FI(FX., Xp)=mu[F, F1(Xo, Xp).

From (5. 15a)

F[F, FI(FXe, Xg)=F[f*Xu, fX)+ F°lf Xoy X1 — F*[ X0, Xgl = F*[f Xo, fX5).

Applying the third and fourth formulas of (5. 8), we obtain
(5.19) wF[F, FI(FX., Xp)=rnsFIf2X., fXp] —nsFral fXa, Xp).
From the normality condition Sy(fX., X;3)=0, we get
o[ 2 X, FXp] =m0l F Xy X5,
so (5. 19) becomes
s FIF, FI(FX., X3)=0.
On the other hand,
mslFy, FUXoy Xp) = —rmaFro{[ fXa, Xp]+[Xe, F X1}
Since the dp® are of bidegree (1.1) with respect to f
5[ F, F1(Xe, Xp)=0

which completes the proof of (5.18)
We now show that

(5. 20) o F[F, FIFX., E)=ms[F, FI(X., Eb).
Using the second formula of (5.9) and the third and fourth of (5. 8)

s F[F, FI(FXa, Ey)=—Fri[ fX., Ey],

ws[F, FI(Xe, By)=—Fra[fXa, B3],

from which (5. 20) follows.
We also show that

(5. 21) 0 F[F, FIFE,, Ey)=ns[F, F1(Eq, Eb).
Using the last two relations of (5.9) and the first of (5. 8)
[F, FI(FEa, Ey)=F[Eq, B3],
[F, FI(Ea, Ey)=F*[Eq, Eb],
from which (5. 21) follows.

119
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Finally, we show
(5. 22) w0 F[F, FI(FEq, Xo) =ms[F, F](Eq, X.).
Using the first formula of (5. 8), the second of (5.7) and of (5.9),
0 F[F, Fl(FEe, Xo)=—nF[Eqs, FX.]1=m[F, F](Ea, Xo).
The relations (5. 18), (5. 20), (5. 21) and (5. 22) complete the proof of the lemma.

LemMma 4.
(5. 23) o F[F, Fl(ms X, nY)=—m[F, Fl(m: X, FrY).

Proof. Applying the second formula of (5.7) and the last two of (5.9)
(5. 24) s F[F, F1(Xe, Xo)=n:sF[FXa, f X]=—mlF, F1(Xa, FX.).
Moreover,
(5. 25) s F[F, F1(Xa, Ey)=mn3[F, F|(Xa, FE;)=0.

Now, (5.24) and (5. 25) yield (5. 23).
LEMMA 5.
(5. 26) w3 F[F, F1(Frs X, n1Y)=mns[F, Fl(z: X, Y).

Proof. Applying the second formula of (5.9) and the second, third and fourth
of (5.8) gives

(5. 27) TCsF[F‘, F](FXa, Xa): _7T3F[FX(Z) Xn]"__n'!i[E F](Xa,, Xﬂ)'
Also
(5. 28) o [F, FI(FXa, Ey)=mn[F, F(Xa, Ep)=—nm:F[FXa, Ey).

Now, (5. 27) and (5. 28) yield (5. 26).
LemmA 6.
(5. 29) ms[F, Fl(zs X, 7 Y)=0.
Proof. Applying the last two relations of (5.9), we obtain
w5 F, F1(Xa, Xo) =3[ Ea, E3]=0,
thereby giving (5. 29).
LEMMA 7. For a normal f-product structure

. 30) [F, Fl(zX, zY)=0.
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Proof. By Lemma 2, it is enough to show
(5.31) w3l F, Fl(zX, zY)=0.
From Lemma 3
(5. 32) mslF, Fl(z X, nY)=nsF[F, Fl(FrX, zY).
(@) Suppose FrX=rZ. Then, (5.32) becomes
wlF, Fl(zX, nY)=nF[F, Fl(zZ, = Y).
Applying the first relation of (5.7) and Lemma 2, we have
0P [F, Fl(zZ, nY)=nsFz[F, Fl(zZ, Y )=0
which establishes (5. 32) in this case.
(b) Suppose FrX=r3Z. Then applying Lemma 4
o F[F, F1(FrX, nY)=nsF[F, Fl(nsZ, zY )= —ns[F, Fl(msZ, FrY).
If FrY=nW, then by Lemma 6
wslF, Fl(nsZ, FrY)=ns[F, Fl(nsZ, ns W)=0.
If FrY=zW then, by Lemma 5
sl Fy, Fl(msZ, FrY)=mlF, Fl(nsZ, s W)
=myF[F, Fl(FrsZ, s W)=n:FalF, Fl(nFrsZ, z W).
But, from Lemma 2,
w[F, FYaFryZ, nW)=0.
The lemma follows from (a) and (b).
LemMma 8.
[F, Fl(zX, zY)=0
implies
[F, F1=0.
Proof. We must show that
(@ [F, FlzX, ;Y)=0 and (b) [F, Fl(z:X, 7Y)=0.
For (a), we have

[F, FI(Xa, Xo)=—[Eq, FX )+ F[Ea, X.],
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[F, FI(Ee, Xo)=F*[Eo, X.]—F[Ee, FX.],

that is
F[F, Fl(Xq, Xo)=[F, Fl(Eq, X.)=0

by assumption. Since F is non-singular, this implies [F, F1(X;, X.)=0. On the

other hand,
[F, FI( X, Ep)=F[Eq, E],
[F, FI(Eo, Ey)=F*[Es, Ey],
that is
FIF, FI(Xe, Ev)=I[F, Fl(Eo, Ep)=0
which implies
[F, FI(Xe, E5)=0.
For (b)
[F, FI(Xa, X3)=[Ea, Eb]
[F, FI(Eo, Ey)=F"[Eq, Eb),
that is
F*[F, F1(Xo, X5)=[F, F)(Ea, E»)=0.

With this lemma, the proof of Theorem 3 is complete.

Proof of Corollary 4. Let X be a vector field on M, then =X=X.

Theorem 3 we have

[F, FI(X, Xa)=0, that is, [FX, FX,]—F[X, FX,]=0,

or
[fX+Fr.X, Eo]—f[X, Ea]l— Fra[X, E.]=0,
that is,
(5. 33) [fX, Eol+[FreX, Eo]l—f[X, Eo]l—Frol X, Eo]=0.

From the second relation of (5.9) and the first of (5.7)
[Fr:X, EJeTs,  FrilX, Ed)eTs.

Thus, from (5. 33)

(5. 34) [fX, E]—f1X, Ed]=0,

From
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(5. 35) [FroX, Egl— Frol X, Ea]=0.

From (5.34), we have Ly, f=0. Since n.=E,®7% we have mX=yX)E, and
Fr, X=pYX)F(E)=n%(X)X, and Fr,[X, Es]=79%[X, E])Xa. Since [X,, E3]=0, (5. 35)
gives Ey(n"(X)Xa—y*([Ey, X)=0, that is, Ey*(X))—7*(Es, X1)=0, or Lp,*=0.
Finally,

[F, F1(Xo, Xo)=[Ea, Eb].

Therefore, [F, F1=0 implies [E,, F3]=0 which completes the proof of the corollary.
Consider a polynomial structure f on M with structure polynomial

P(x)=an 1™ +ana™+ -+ a0 + 2.
It defines two complementary distributions 73, 7, with projectors
= — Gyt f = f ™ — e — s f
and
To=mi1 f "+ Anf ™+ b @+,

respectively. This polynomial structure is said to be globally framed if the distri-
bution T, is globally framed.
If, in addition, the dy® are of bidegree (1, 1) with respect to f and

Lf, f1+ E.®dp*=0,
the polynomial structure will be called a normal polynomial structure.

CoROLLARY 5. For a normal polynomial structure f of constant rank the
relations (5. 2), (5. 3), (5.4) are satisfied.

Proof. Clearly, the almost product structure defined by the complementary
distributions discussed above is a normal f-product structure.

Remark 1. If the polynomial structure is an f-structure, and if it is globally
framed, then [f, f]1+ E,®dy*=0 implies the bidegree property [2].

ReMARK 2. The bidegree property of a normal f-product structure is trivially
satisfied if dy?=0, a=1, ---, k, which in the case of metric f-structures characterizes
the (C-structures [1].

6. Appendix. The following theorem is basically due to A. G. Walker.

THEOREM 4. Let M be a (paracompact) C* manifold with an almost product
structure defined by the distributions T, T, -+, Tx with corresponding projectors
T1, Ta, **+, Tk Lhem, there exists a metric connection on M with rvespect to which
the distributions T, i=1, 2, ---, k, are parallel and orthogonal.
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The proof will be split into the following two lemmas:

LemMA 9. Let M be a (paracompact) C° manifold with an almost product
structure 'defined by the distributions T, Ty, -+, Ty with corresponding projectors
71, To, -, T 1Rem, there exists a metric connection on M with respect to which the
distribution T is parallel and the distributions T, i=1, 2, -, k, are orthogonal.

LemmAa 10. Let M be a (paracompact) C* manifold with an almost product
Structure defined by the distributions T, Ty, ---, Tx with corresponding projectors
T, 7oy o0y Tk Lf there is a metric conmection on M with respect to which the distri-
butions T, i=1, 2, ---, k, are orthogonal, and the distributions T,,j=1, 2, -, m, m<k&,
are parallel, then there is a metric connection with respect to which the distributions
T, i=1,2, -, k are orthogonal and the distributions T,,j=1, 2, ---, m+1 are parallel.

Proof of Lemma 9. Let I be a connection on M. Then the distribution 7}
is parallel with respect to I" if

6. 1) Vzzi=0

for every vector field Z of M, where FV denotes covariant differentiation with
respect to I.
Defining the tensor field a;r of type (1, 2) by

(6.2) arr(Y, Z)=(m1—ns—++ —rmx)(Vzm) Y
we have, by (6. 1),
(6.3) ayr=0.
Let %2 be a positive definite metric on M and define the tensor field ¢ by
(6. 4) oX, YV)=h(m X, 1Y)+ -+ M(mr X, m: Y).

Clearly, ¢ is a positive definite metric with respect to which the T, :=1,2, --- &,
are orthogonal. Let C be the Levi-Civita connection defined by g, then

(6. 5) Vzg _-—'0

for every vector field Z of M, where V denotes covariant differentiation with
respect to C.
If S is a tensor field of type (1, 2), then I'=C+S is a connection and

(6. 6) Ve Y=V, Y+S(Y, Z).

The metric ¢ is preserved by I" if and only if Fzg=0 which, because of (6. 5)
and (6. 6), bedomes

(6.7) 9(5(X, Z), Y)+9(X, S(Y., Z))=0.
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Now, (6. 2) may be written as
(6.9) air(Y, Z)=aiY, Z)+(mi—mz— - —ap)[S. Y, Z2)—mS(Y, Z)]
so that (6. 3) becomes:
6.9) Y, Z)=(m—rs— - —ap)[mS(Y, Z)=S(r.Y, Z)].

We wish to determine S so that (6. 7) and (6. 9) are satisfied.
Using (6. 5) and the fact that the T, i=1, 2, --., &, are orthogonal,

9 X, Z), Y)=g((ns—n3—++ —me)(Vzm) X, Y)
=g((m— s~ —m)Vo(mX), Y)—g(m:V2X, ¥)
=gV X), Y) =gl s X), Y)= - —glmila(m: X), Y)—g(x:V2X, Y)
=g(V2(m: X), 1Y) —g(Va(m: X), 7Y ) = - —g(Va(m: X), 1Y) —g(Vz X, 1Y)
=Zg(m: X, 1Y) —g(m X, Vo(mY)+9(mX, Vy(m:Y))
ot g(mX, Va(mY)—Zg(X, 7 Y)+9(X, Va(n: V)
= —g(m:X, Valm Y )+ 9(m: X, Vi(m: X))+ - +9(mX, Valze Y ))+9(X, Vu(m: V)
=9(X, 1Vo(m: X))+ +9(X, 1V a(m: Y))
+0(X, mala(m )+ +9(X, mlo(m:Y))
=9(X, 7V2 Y)=9(X, m:Va(m: ¥ )+ 9(X, (mat -+ m)lu(m: Y)
=¢(X, (me+ -+ +me—a)(Va(r: Y) =210z X))
=—g(X, ai (Y, Z)).
Thus,
(6. 10) 9(ee(X, 2), V) +9(X, aso( Y, Z))=0.
If in the second member of (6.9) we put S=ay,

(mi—mg— - —mp)[mose(Y, Z)—are(m: Y, Z)]

=(m—mp— - —w) 1 Va(r: V) =2V Y= 2 Va0, ¥) 2V Y ) 4 (o -+ + 1) V(1 Y]
=(mi— 1y —7) Vel ¥) =2V V),

from which

6.11) Y, Z)=(mi—ny— - —m)imen ¥, Z) — (.Y, Z)].

From (6. 10) and (6. 11), we see that if
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(6.12) =S,
then (6.7) and (6. 9) are satisfied.

Proof of Lemma 10. Let I be a connection on M with respect to which
(6.13) Vamy=Vgmy=+=Vzan=0, m<k,
(6.14) V2g=0

for every vector field Z of M, where ¥ denotes covariant differentiation with respect
to I and ¢ is a metric such that

(6. 15) g(m: X, 7, Y)=0  for  ixj.
Defining the tensor fields air, i=1, 2, ---, m+1, of type (1, 2) by
(6. 16) (Y, Z2)=Q@ui—n)Vzm)Y,  a=mi+- -+
the relations (6. 13) become
(6.17) air=0, i=1,2, -, m.

Consider the connection L=1I"+4S, where S is a tensor field of type (1, 2) and
denote covariant differentiation with respect to L by V. We wish to determine S

so that
(6. 18) aiz=0, i=1,2, -, m+1
(6.19) 98X, Z), Y)+9(X, S(Y, Z))=0

where a;z, is given by (6. 16) with F replaced by /.
Applying the identity (6.6) and (6.17) we obtain

(6. 20) (Y, Z)=Qni—m)[S@.Y, Z)—nS(Y, Z)], i=12, -, m

and

(6. 21) am+1.L(Y, Z)—':(Xmﬂ,r(Y, Z)+(275m+1—77)[s<ﬂ'm+1y; Z)—'ﬂm+1S(Y, Z)],

so (6. 18) becomes

(6° 22) (Zﬁi_ﬂ)[s(ﬂiyt Z)—ﬂZS(Y! Z)]:‘Or Z=17 27 ey, M
and
6. 23) s (Y, Z)=Crmes— DS Y, Z)—Smi Y, Z)).

We observe that
(7zﬂm+1)(ﬂiy)=""ﬂm+1f72(71'1:Y)=0, ixm+1
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since Vz(mY)=m72Y, i=1, .-, m; hence ani1,r(m:Y, 2) =0, i=1, -, m. Similarly,
ritm1, (Y, Z)=0, i=1, -, m.
It follows that

(6. 24)

Cri—m)amr, r(m Y, Z)—rmiami1.r(Y, Z)]=0, i=1, -, m.

We also observe that

(6. 25)
and

(6. 26)

Tm+1%m+1, r( Y, Z) =Tm+1 7z(ﬂ'm+1 Y) —Tm+1 7Z Y,

am+1'1'(7fm+l Y, Z)=(27Zm+1—75)7z(”m+1 Y)—ﬂm+172(ﬂm+1 Y)-

Subtracting (6. 26) from (6. 25) gives

Hence,

(6. 27)

7fm+1am+1.r( Y, Z)—am+1.r(7fm+1y, Z)=("7zﬂ'm+1) Y.

a’m.+1.r( Y, Z)=(27Tm+1_77-')[77-'m+1a’m+1,r(Y, Z)"‘am+h[‘(7fm+1 Y, Z)]

It follows from (6. 24) and (6. 27) that (6. 22) and (6. 23) are satisfied for S=ami1,r.

In a similar manner to that used to establish (6. 10)

(6. 28)

g(ami1,r(X, Z), Y)+9(X, ami1.r(Y, Z))=0.

Consequently, if S=ampi1,r, (6.18) and (6. 19) are satisfied.
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